Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery
Abstract
:1. Introduction
2. Quality by Design Concept
2.1. Quality Target Product Profile (QTTP)
2.2. Critical Quality Attributes (CQA)
2.3. Critical Process Parameters (CPP)
2.4. Critical Material Attributes (CMAs)
2.5. Risk Assessment
2.6. Design Space (DS)
2.7. Control Strategy
3. QbD and DOE in the Development of the RNA-LNP System
- QTPP: safety and efficacy.
- CQAs: z-average, PDI, zeta potential, encapsulation efficiency, loading efficiency, stability, shelf life, storage conditions, and lipids contents.
- CMAs: N/P ratio, lipids type, non-toxicity, biodegradability.
- Critical process parameters (CPPs): temperature, microfluidics, filtration.
DOE Approach—Design Models, Variables, and Range
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deidda, R.; Orlandini, S.; Hubert, P.; Hubert, C. Risk-based approach for method development in pharmaceutical quality control context: A critical review. J. Pharm. Biomed. Anal. 2018, 161, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S.; Winkle, H. Quality by design for biopharmaceuticals. Nat. Biotechnol. 2009, 27, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009, 27, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J. 2014, 16, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Yu, L. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm. Res. 2007, 25, 781–791. [Google Scholar] [CrossRef]
- Csoka, I.; Pallagi, E.; Paal, T.L. Extension of quality-by-design concept to the early development phase of pharmaceutical R&D processes. Drug Discov. Today 2018, 23, 1340–1343. [Google Scholar]
- Food and Drug Administration. Pharmaceutical cGMPs for the 21st Century—A Risk-Based Approach; Final Report; Food and Drug Administration: Silver Spring, MD, USA, 2004.
- Zhang, L.; Mao, S. Application of quality by design in the current drug development. Asian J. Pharm. Sci. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- ICH. Q8(2R), Pharmaceutical Development; International Conference on Harmonization: London, UK, 2009. [Google Scholar]
- ICH. Q9, Quality Risk Management; International Conference on Harmonization: London, UK, 2005. [Google Scholar]
- ICH. Q10, Pharmaceutical Quality System; International Conference on Harmonization: London, UK, 2008. [Google Scholar]
- ICH. Q11, Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities); International Conference on Harmonization: London, UK, 2011. [Google Scholar]
- Simon, D.; Kis, Z.; Kontoravdi, C.; Shah, N. Quality by Design for enabling RNA platform production processes. Trends Biotechnol. 2022, 40, 1213–1228. [Google Scholar] [CrossRef]
- Ditzel, H.J.; Tuttolomondo, M.; Kauppinen, S. Design and Delivery of SiRNA Therapeutics; Humana Press: Hertfordshire, UK, 2021; Chapter 9; p. 139. [Google Scholar]
- Thanki, K.; Zeng, X.; Justesen, S.; Tejlmann, S.; Falkenberg, E.; Van Driessche, E.; Nielsen, H.M.; Franzyk, H.; Foged, C. Engineering of small interfering RNA-loaded lipidoid-poly(DL-Lactic-Co-Glycolic Acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Eur. J. Pharm. Biopharm. 2017, 120, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Thanki, K.; Papai, S.; Lokras, A.; Rose, F.; Falkenberg, E.; Franzyk, H.; Foged, C. Application of a Quality-By-Design Approach to Optimise Lipid-Polymer Hybrid Nanoparticles Loaded with a Splice-Correction Antisense Oligonucleotide: Maximising Loading and Intracellular Delivery. Pharm. Res. 2019, 36, 37. [Google Scholar] [CrossRef]
- Lokras, A.; Thakur, A.; Wadhwa, A.; Thanki, K.; Franzyk, H.; Foged, C. Optimizing the Intracellular Delivery of Therapeutic Anti-inflammatory TNF-a siRNA to Activated Macrophages Using Lipidoid-Polymer Hybrid Nanoparticles. Front. Bioeng. Biotechnol. 2021, 8, 601155. [Google Scholar] [CrossRef]
- Zheng, Q.; Qin, F.; Luo, R.; Jin, C.; Huang, H.; Xi, H.; Xiao, W.; Guo, M.; Yang, S.; He, S.; et al. mRNA-Loaded Lipid-Like Nanoparticles for Liver Base Editing Via the Optimization of Central Composite Design. Adv. Funct. Mater. 2021, 31, 2011068. [Google Scholar] [CrossRef]
- van de Berg, D.; Kis, Z.; Behmer, C.F.; Samnuan, K.; Blakney, A.K.; Kontoravdi, C.; Shattock, R.; Shah, N. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines 2021, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yen, C.W.; Lin, H.C.; Hou, W.; Estevez, A.; Sarode, A.; Goyon, A.; Bian, J.; Lin, J.; Koenig, S.G.; et al. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. Int. J. Pharm. 2021, 599, 120392. [Google Scholar] [CrossRef] [PubMed]
- Bevers, S.; Kooijmans, S.A.A.; Van de Velde, E.; Evers, M.J.W.; Seghers, S.; Gitz-Francois, J.J.J.M.; van Kronenburg, N.C.H.; Fens, M.H.A.M.; Mastrobattista, E.; Hassler, L.; et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 2022, 30, 3078–3094. [Google Scholar] [CrossRef] [PubMed]
- Karl, A.T.; Essex, A.S.; Wisnowski, J.; Rushing, H. A Workflow for Lipid Nanoparticle (LNP) Formulation Optimization Using Designed Mixture-Process Experiments and Self-Validated Ensemble Models (SVEM). arXiv 2022. [Google Scholar] [CrossRef]
- Schmidt, A.; Helgers, H.; Vetter, F.L.; Zobel-Roos, S.; Hengelbrock, A.; Strube, J. Process Automation and Control Strategy by Quality-by-Design in Total Continuous mRNA Manufacturing Platforms. Processes 2022, 10, 1783. [Google Scholar] [CrossRef]
- Toma, I.; Porfire, A.S.; Tefas, L.R.; Berindan-Neagoe, I.; Tomut, I. A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA. Pharmaceutics 2022, 14, 1482. [Google Scholar] [CrossRef]
- Young, R.E.; Nelson, K.M.; Hofbauer, S.I.; Vijayakumar, T.; Alameh, M.G.; Weissman, D.; Papachristou, C.; Gleghorn, J.P.; Riley, R.S. Lipid Nanoparticle Composition Drives Delivery of mRNA to the Placenta. bioRxiv. 2022. [Google Scholar] [CrossRef]
- Nag, K.; Sarker, E.H.; Kumar, S.; Khan, H.; Chakraborty, S.; Islam, J.; Baray, J.C.; Khan, M.R.; Mahmud, A.; Barman, U.; et al. DoE-derived continuous and robust process for manufacturing of pharmaceutical-grade wide-range LNPs for RNA-vaccine/ drug delivery. Sci. Rep. 2022, 12, 9394. [Google Scholar] [CrossRef]
- Ly, H.H.; Daniel, S.; Soriano, S.K.V.; Kis, Z.; Blakney, A.K. Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of-Experiment Approach. Mol. Pharm. 2022, 19, 1892–1905. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, M.C.P.; Kont, A.; Kowalski, P.S.; O’Driscoll, C.M. Design of lipid-based nanoparticles for delivery of therapeutic nucleic acids. Drug Discov. Today 2023, 28, 103505. [Google Scholar] [CrossRef] [PubMed]
- Bastogne, T.; Hassler, L.; Bruniaux, J.; Thomassin, M.; Gidrol, X.; Sulpice, E.; Navarro, F.P. A Bayesian implementation of Quality-by-Design for the development of Cationic Nano-Lipid for siRNA Transfection. IEEE Trans. NanoBiosci. 2023, 22, 455–466. [Google Scholar] [CrossRef]
- Beg, S.; Rahman, M.; Kohli, K. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discov. Today 2019, 24, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Cuhna, S.; Costa, C.P.; Moreira, J.N.; Lobo, J.M.S.; Silva, A.C. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomed. Nanotechnol. Biol. Med. 2020, 27, 102206. [Google Scholar] [CrossRef]
- Short, S.M.; Cogdill, R.P.; Drennen, J.K., III; Anderson, C.A. Performance-Based Quality Specifications: The Relationship Between Process Critical Control Parameters, Critical Quality Attributes and Clinical Performance. Eur. J. Pharm. Sci. 2010, 100, 1566–1575. [Google Scholar] [CrossRef]
- Aksu, B.; Mesut, B. Quality by design (QbD) for pharmaceutical area. J. Fac. Pharm. Istanbul. 2015, 45, 233–251. [Google Scholar]
- Cun, D.; Jensen, D.K.; Maltesen, M.J.; Bunker, M.; Whiteside, P.; Scurr, D.; Foged, C.; Nielsen, H.M. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: Quality by design optimization and characterization. Eur. J. Pharm. Biopharm. 2011, 77, 26–35. [Google Scholar] [CrossRef]
- Chen, D.; Love, K.T.; Chen, Y.; Eltoukhy, A.A.; Kastrup, C.; Sahay, G.; Jeon, A.; Dong, Y.; Whitehead, K.A.; Anderson, D.G. Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. J. Am. Chem. Soc. 2012, 134, 6948–6951. [Google Scholar] [CrossRef]
- Li, B.; Luo, X.; Deng, B.; Wang, J.; McComb, D.W.; Shi, Y.; Gaensler, K.M.L.; Tan, X.; Dunn Amy, L.; Kerlin, B.A.; et al. An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. Nano Lett. 2015, 15, 8099–8107. [Google Scholar] [CrossRef]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; DeRosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. [Google Scholar] [CrossRef] [PubMed]
- Blakney, A.K.; McKay, P.F.; Yus, B.I.; Hunter, J.E.; Dex, E.A.; Shattock, R.J. The Skin You Are In: Design-of-Experiments Optimization of Lipid Nanoparticle Self-Amplifying RNA Formulations in Human Skin Explants. ACS Nano 2019, 13, 5920–5930. [Google Scholar] [CrossRef]
- Hashiba, A.; Toyooka, M.; Sato, Y.; Masatoshi, M.; Tokeshi, M.; Harashima, H. The use of design of experiments with multiple responses to determine optimal formulations for in vivo hepatic mRNA delivery. J. Control. Release 2020, 327, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Terada, T.; Kulkarni, J.A.; Huynh, A.; Chen, S.; van der Meel, R.; Tam, Y.Y.C.; Cullis, P.R. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Langmuir 2021, 37, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
References | The Main Goal/Target/Delivery System | QbD Aspects | DOE/Mathematical Model/Statistical Analysis Tests and Software |
---|---|---|---|
[34] | siRNA-loaded PLGA poly(DL-lactide-glycolide acid) without cationic excipients prepared by the double emulsion solvent evaporation method | Not applied |
|
[35] | siRNA-containing lipid nanoparticles (LNPs) prepared by microfluidic method | Not applied |
|
[36] | mRNA TT (N1,N3,N5-tris(2-aminoethyl)benzene-1,3,5-tri carboxamide) lipid-like nanoparticles (TT-LLNs) | Not applied |
|
[37] | Erythropoietin(EPO)-mRNA-loaded C12-200 lipid nanoparticles | Not applied |
|
[15] | siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) |
|
|
[16] | LPNs composed of cationic lipidoid 5 (L5) and poly(DL-lactic-co-glycolic acid) (PLGA) or delivery of an ASO mediating splice correction of a luciferase gene transcript (Luc-ASO) |
|
|
[38] | saRNA lipid nanoparticles in human skin explants | Not applied |
|
[39] | Liver-targeted mRNA-loaded LNPs prepared with pH-sensitive cationic lipids that had been previously designed for siRNA delivery | Not applied |
|
[17] | Intracellular delivery of therapeutic anti-inflammatory TNF-a siRNA loaded LNPs to activated macrophages |
|
|
[18] | Lipid-like nanoparticles (O-LLNs) containing three new cholesterol derivatives to achieve the liver-targeting delivery of mRNA. The O-LLNs outperformed DLin-MC3-DMA (MC3) in the functional delivery of Cre-recombinase (Cre) and human erythropoietin (hEPO) mRNA. Delivery of cytidine base editor mRNA (CBE mRNA) and sgRNA by O-LLNs in a liver-related metabolism disorder, phenylketonuria (PKU). | QbD not applied
|
|
[19] | Rapid RNA vaccine production against emerging infectious diseases |
|
|
[20] | LNPs loaded with antisense oligonucleotides (ASOs) formulated by an automated solvent-injection method using a robotic liquid handler (e.g., Duchenne muscular dystrophy) |
|
|
[40] | LNP-siRNA systems as a promising approach for silencing disease-causing genes in hepatocytes following intravenous administration | Not applied |
|
[21] | mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell antitumor immunotherapy by engaging splenic immune cells |
|
|
[22] | Lipid nanoparticle (LNP) formulations for vivo gene delivery systems |
|
|
[23] | Process Automation and Control Strategy by QbD in Total Continuous mRNA Manufacturing Platforms (mRNA)-based vaccines |
|
|
[24] | miRNA nonviral vectors for genetic material delivery in cancer therapy |
| The DOE’s advantages are providing better results with a minimum number of experiments and evaluating CMAs and CPPs to obtain a product meeting the QTPP |
[25] | LNPs that enable high levels of mRNA delivery to trophoblasts in vitro and to the placenta in vivo with no toxicity to treat placental dysfunction | Not applied |
|
[26] | Pharmaceutical-grade wide-range LNPs for RNA-vaccine/drug delivery |
|
|
[27] | Lipid nanoparticles for saRNA expression and cellular activation |
|
|
[28] | LNPs delivery of different types of nucleic acids siRNA, mRNA, and pDNA—Review |
|
|
[29] | Cationic nano-lipid for siRNA transfection |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurba-Bryśkiewicz, L.; Maruszak, W.; Smuga, D.A.; Dubiel, K.; Wieczorek, M. Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery. Biomedicines 2023, 11, 2752. https://doi.org/10.3390/biomedicines11102752
Gurba-Bryśkiewicz L, Maruszak W, Smuga DA, Dubiel K, Wieczorek M. Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery. Biomedicines. 2023; 11(10):2752. https://doi.org/10.3390/biomedicines11102752
Chicago/Turabian StyleGurba-Bryśkiewicz, Lidia, Wioleta Maruszak, Damian A. Smuga, Krzysztof Dubiel, and Maciej Wieczorek. 2023. "Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery" Biomedicines 11, no. 10: 2752. https://doi.org/10.3390/biomedicines11102752
APA StyleGurba-Bryśkiewicz, L., Maruszak, W., Smuga, D. A., Dubiel, K., & Wieczorek, M. (2023). Quality by Design (QbD) and Design of Experiments (DOE) as a Strategy for Tuning Lipid Nanoparticle Formulations for RNA Delivery. Biomedicines, 11(10), 2752. https://doi.org/10.3390/biomedicines11102752