In Silico Approaches to Developing Novel Glycogen Synthase Kinase 3β (GSK-3β)
Abstract
:1. Introduction
2. Material and Methods
2.1. Clinical Trials Screening
2.2. Scaffold Morphing
2.3. In Silico Pharmacokinetic Predictions
2.4. Molecular Docking Studies
2.5. Molecular Dynamic Simulations
3. Results and Discussion
3.1. Scaffold Morphing through Bioisosteric Replacement
3.2. In Silico Pharmacokinetic Studies
3.3. Molecular Docking
4. Molecular Dynamics Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C. Progress in developing inhibitors of SARS-CoV-2 3C-like protease. Microorganisms 2020, 8, 1250. [Google Scholar] [CrossRef] [PubMed]
- Taherizadeh, M.; Tabibzadeh, A.; Panahi, M.; Tameshkel, F.S.; Golahdooz, M.; Niya, M.H.K. An introduction to SARS coronavirus 2; Comparative analysis with MERS and SARS coronaviruses: A brief review. Iran. J. Public Health 2020, 49 (Suppl. 1), 30. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Tiwari, R.; Patel, S.K.; Karthik, K.; Iqbal Yatoo, M.; Malik, Y.S.; Singh, K.P.; Panwar, P.K.; Harapan, H.; Singh, R.K. Coronavirus disease 2019 (COVID-19) in domestic animals and wildlife: Advances and prospects in the development of animal models for vaccine and therapeutic research. Hum. Vaccines Immunother. 2020, 16, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.W.; Yuan, S.; Yuen, K.S.; Fung, S.Y.; Chan, C.P.; Jin, D.Y. Zoonotic origins of human coronaviruses. Int. J. Bbiological Sci. 2020, 16, 1686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Grunewald, M.; Perlman, S. Coronaviruses: An updated overview of their replication and pathogenesis. Methods Mol. Biol. 2020, 2203, 1–29. [Google Scholar]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef]
- Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorganic Med. Chem. Lett. 2020, 30, 127377. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xiong, Y.; Zhu, G.H.; Zhang, Y.N.; Zhang, Y.W.; Huang, P.; Ge, G.B. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm 2022, 3, e151. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmed, S.; Parray, H.A.; Das, S. Chikungunya and arthritis: An overview. Travel Med. Infect. Dis. 2021, 44, 102168. [Google Scholar] [CrossRef] [PubMed]
- Pivarcsik, T.; Tóth, G.; Szemerédi, N.; Bogdanov, A.; Spengler, G.; Kljun, J.; Kladnik, J.; Turel, I.; Enyedy, É.A. Comparison of solution chemical properties and biological activity of ruthenium complexes of selected β-diketone, 8-hydroxyquinoline and pyrithione ligands. Pharmaceuticals 2021, 14, 518. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Grewal, P.; Poonia, K. Dicarbonyl compounds in O-heterocycle synthesis. Synth. Commun. 2021, 51, 2423–2444. [Google Scholar] [CrossRef]
- Talbi, S.; Dib, M.; Bouissane, L.; Abderrafia, H.; Rabi, S.; Khouili, M. Recent Progress in the Synthesis of Heterocycles based on 1, 3-diketones. Curr. Org. Synth. 2022, 19, 220–245. [Google Scholar] [CrossRef]
- Seifi, M.; Sheibani, H. Studies on condensation of 1, 3-dicarbonyls with malononitrile: Synthesis of 2-pyridinones. Arab. J. Chem. 2017, 10, S2453–S2456. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Alcántara, A.R. Recent Developments in the Synthesis of β-Diketones. Pharmaceuticals 2021, 14, 1043. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Silakari, O. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Virus Res. 2020, 289, 198146. [Google Scholar] [CrossRef] [PubMed]
- Vincetti, P.; Kaptein, S.J.; Costantino, G.; Neyts, J.; Radi, M. Scaffold morphing approach to expand the toolbox of broad-spectrum antivirals blocking dengue/Zika replication. ACS Med. Chem. Lett. 2019, 10, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Ji, C. MolOpt: A web server for drug design using bioisosteric transformation. Curr. Comput.-Aided Drug Des. 2020, 16, 460–466. [Google Scholar] [CrossRef]
- Doogue, M.P.; Polasek, T.M. The ABCD of clinical pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, J.; Hu, C.Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 2019, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kaur, M.; Singh, N.; Silakari, O. Exploration of multi-target potential of chromen-4-one based compounds in Alzheimer’s disease: Design, synthesis and biological evaluations. Bioorganic Med. Chem. 2017, 25, 6273–6285. [Google Scholar] [CrossRef] [PubMed]
- Kryger, G.; Silman, I.; Sussman, J.L. Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure 1999, 7, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, V.; Singh, M. N-methylpiperazinyl and piperdinylalkyl-O-chalcone derivatives as potential polyfunctional agents against Alzheimer’s disease: Design, synthesis and biological evaluation. Chem. Biol. Drug Des. 2023, 1–21. [Google Scholar] [CrossRef]
- Bhatia, S.; Singh, M.; Sharma, P.; Mujwar, S.; Singh, V.; Mishra, K.K.; Singh, T.G.; Singh, T.; Ahmad, S.F. Scaffold Morphing and In Silico Design of Potential BACE-1 (β-Secretase) Inhibitors: A Hope for a Newer Dawn in Anti-Alzheimer Therapeutics. Molecules 2023, 28, 6032. [Google Scholar] [CrossRef]
- Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharmacal Res. 2015, 38, 1686–1701. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Anand, A.; Lamba, Y.; Roy, A. Molecular docking analysis of selected phytochemicals against SARS-CoV-2 M pro receptor. Vegetos 2020, 33, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef] [PubMed]
- Furlan, V.; Bren, U. Insight into inhibitory mechanism of pde4d by dietary polyphenols using molecular dynamics simulations and free energy calculations. Biomolecules 2021, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Lešnik, S.; Bren, U.; Domratcheva, T.; Bondar, A.N. Fentanyl and the fluorinated fentanyl derivative NFEPP elicit distinct hydrogen-bond dynamics of the opioid receptor. J. Chem. Inf. Model. 2023, 63, 4732–4748. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 84-es. [Google Scholar]
- Li, Q.; Zhang, H.; Guan, S.; Du, J.; Zhang, Y.; Wang, S. Molecular dynamics simulation of the inhibition mechanism of factor XIa by Milvexian-like macrocyclic inhibitors. Comput. Theor. Chem. 2023, 1225, 114131. [Google Scholar] [CrossRef]
- Vikas, K.; Parate, S.; Zeb, A.; Singh, P.; Lee, G.; Jung, T.S.; Lee, K.W.; Ha, M.W. 3D-QSAR-based pharmacophore modeling, virtual screening, and molecular dynamics simulations for the identification of spleen tyrosine kinase inhibitors. Front. Cell. Infect. Microbiol. 2022, 12, 909111. [Google Scholar]
- Ferreira, J.C.; Fadl, S.; Villanueva, A.J.; Rabeh, W.M. Catalytic dyad residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 protease 3-chymotrypsin-like protease. Front. Chem. 2021, 9, 692168. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, I.; Zhu, W.; Mohammed, H.H.H.; Dutta, K.; Li, C. Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CLpro: An in silico approach with 19 structural different hydrolysable tannins. J. Food Biochem. 2020, 44, e13432. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, P.; Kaushal, J. Epidemic trend of COVID-19 transmission in India during lockdown-1 phase. J. Community Health 2020, 45, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Nagu, P.; Parashar, A.; Behl, T.; Mehta, V. CNS implications of COVID-19: A comprehensive review. Rev. Neurosci. 2021, 32, 219–234. [Google Scholar] [CrossRef] [PubMed]
Molecule Name | Pharmacology and Clinical Consideration | Trial Status | Clinical Trial ID |
---|---|---|---|
GSK239512 | Brain penetrant H3 receptor antagonist/inverse agonist | Phase II completed | NCT01009060 |
TRx0237 | Tau stabilisers and aggregation inhibitors | Completed | NCT01689233 |
AADvac1 | Tau stabilisers and aggregation inhibitors | Phase II-pending results | NCT02579252 |
Zagotenemab (LY3303560) | Capture and neutralise tau aggregate | Ongoing Phase II | NCT03518073 |
ANAVEX2-73 | Anti-tau, anti-amyloid | Ongoing Phase II | NCT03790709 |
Solanezumab, Gantenerumab | Monoclonal antibodies | Recruiting clinical trials | NCT02008357, NCT01760005 |
Tideglusib (NP031112) | Inhibits GSK-3 irreversibly | Phase II | NCT01350362 |
Protocol | No. of Replacements | Analogues Generated |
---|---|---|
AI generative model | 09 | 1750 |
Data mining | 06 | 728 |
Data mining (fast) | 06 | 1150 |
Similarity comparison | 09 | 1714 |
S.No | Compound ID | Structure | S.No | Compound ID | Structure |
---|---|---|---|---|---|
1. | MSD 1 | 19. | MSD 23 | ||
2. | MSD 3 | 20. | MSD 24 | ||
3. | MSD 4 | 21. | MSD 25 | ||
4. | MSD 5 | 22. | MSD 27 | ||
5. | MSD 6 | 23. | MSD 30 | ||
6. | MSD 7 | 24. | MSD 31 | ||
7. | MSD 8 | 25. | MSD 33 | ||
8. | MSD 9 | 26. | MSD 35 | ||
9. | MSD 10 | 27. | MSD 38 | ||
10. | MSD 11 | 28. | MSD 39 | ||
11. | MSD 12 | 29. | MSD 42 | ||
12. | MSD 13 | 30. | MSD 43 | ||
13. | MSD 15 | 31. | MSD 44 | ||
14. | MSD 16 | 32. | MSD 46 | ||
15. | MSD 17 | 33. | MSD 47 | ||
16. | MSD 18 | 34. | MSD 49 | ||
17. | MSD 19 | 35. | MSD 50 | ||
18. | MSD 20 |
S.No. | CPD ID | MW | HB A | HBD | TPSA (Å) | Consensus Log P | Ali Log S | Lipinski Violations | Brain Permeability | GI Absorption |
---|---|---|---|---|---|---|---|---|---|---|
1. | MSD 1 | 219.24 | 3 | 1 | 55.4 | 1.89 | −3.05 | 0 | Yes | High |
2. | MSD 3 | 219.24 | 3 | 1 | 55.4 | 1.83 | −2.71 | 0 | Yes | High |
3. | MSD 4 | 232.28 | 2 | 2 | 58.2 | 1.7 | −2.02 | 0 | Yes | High |
4. | MSD 5 | 280.32 | 2 | 2 | 58.2 | 2.58 | −3.25 | 0 | Yes | High |
5. | MSD 6 | 233.26 | 3 | 1 | 55.4 | 1.77 | −2.11 | 0 | Yes | High |
6. | MSD 7 | 246.3 | 2 | 2 | 58.2 | 2.02 | −2.39 | 0 | Yes | High |
7. | MSD 8 | 233.26 | 3 | 1 | 55.4 | 1.99 | −2.58 | 0 | Yes | High |
8. | MSD 9 | 247.29 | 3 | 1 | 55.4 | 2.11 | −2.59 | 0 | Yes | High |
9. | MSD 10 | 234.25 | 3 | 2 | 67.43 | 1.67 | −3.22 | 0 | Yes | High |
10. | MSD 11 | 265.31 | 2 | 1 | 46.17 | 2.92 | −3.7 | 0 | Yes | High |
11. | MSD 12 | 294.35 | 2 | 2 | 58.2 | 2.92 | −3.63 | 0 | Yes | High |
12. | MSD 13 | 281.31 | 3 | 2 | 66.4 | 2.66 | −3.56 | 0 | Yes | High |
13. | MSD 15 | 233.26 | 3 | 1 | 55.4 | 1.82 | −2.11 | 0 | Yes | High |
14. | MSD 16 | 233.26 | 3 | 1 | 55.4 | 2.09 | −2.55 | 0 | Yes | High |
15. | MSD 17 | 233.26 | 3 | 1 | 55.4 | 1.92 | −2.76 | 0 | Yes | High |
16. | MSD 18 | 250.27 | 3 | 2 | 58.2 | 1.66 | −1.88 | 0 | Yes | High |
17. | MSD 19 | 247.29 | 3 | 1 | 55.4 | 2.09 | −2.42 | 0 | Yes | High |
18. | MSD 20 | 247.29 | 3 | 1 | 55.4 | 2.58 | −4.04 | 0 | Yes | High |
19. | MSD 23 | 268.31 | 2 | 2 | 58.2 | 2.04 | −2.45 | 0 | Yes | High |
20. | MSD 24 | 248.28 | 3 | 2 | 67.43 | 1.47 | −2.42 | 0 | Yes | High |
21. | MSD 25 | 249.26 | 4 | 1 | 64.63 | 1.87 | −2.61 | 0 | Yes | High |
22. | MSD 27 | 262.3 | 3 | 2 | 67.43 | 1.57 | −2.65 | 0 | Yes | High |
23. | MSD 30 | 233.26 | 3 | 1 | 55.4 | 2.08 | −3.13 | 0 | Yes | High |
24. | MSD 31 | 272.34 | 2 | 1 | 49.41 | 2.23 | −2.52 | 0 | Yes | High |
25. | MSD 33 | 247.29 | 3 | 1 | 55.4 | 2.11 | −2.73 | 0 | Yes | High |
26. | MSD 35 | 282.72 | 3 | 2 | 67.43 | 1.77 | −2.64 | 0 | Yes | High |
27. | MSD 38 | 264.3 | 3 | 2 | 58.2 | 1.97 | −2.27 | 0 | Yes | High |
28. | MSD 39 | 264.32 | 3 | 2 | 59.59 | 1.66 | −2.48 | 0 | Yes | High |
29. | MSD 42 | 268.26 | 4 | 2 | 58.2 | 1.93 | −1.99 | 0 | Yes | High |
30. | MSD 43 | 262.3 | 3 | 2 | 67.43 | 1.67 | −2.55 | 0 | Yes | High |
31. | MSD 44 | 269.3 | 3 | 2 | 71.09 | 1.49 | −2.44 | 0 | Yes | High |
32. | MSD 46 | 264.32 | 3 | 2 | 59.59 | 1.72 | −2.48 | 0 | Yes | High |
33. | MSD 47 | 268.26 | 4 | 2 | 58.2 | 1.9 | −1.99 | 0 | Yes | High |
34. | MSD 49 | 252.28 | 3 | 2 | 50.36 | 2.01 | −2.42 | 0 | Yes | High |
35. | MSD 50 | 264.34 | 3 | 1 | 32.34 | 2.54 | −2.31 | 0 | Yes | High |
36. | ZDWX-25 | 309.33 | 4 | 2 | 84.08 | 2.14 | −3.19 | 0 | No | High |
S.No. | Compound ID | Docking Score (kcal/mol) | Interactions |
---|---|---|---|
1. | [MSD46] | −40.8728 | Val135, Lys85, Leu188, Ala83, Tyr134, Glu137, Arg141, Asp13, Asp 200,. |
2. | [MSD44] | −40.7119 | Val135, Lys85, Phe67, Leu132, Ala32, Val70, Cys199, Asp133, Tyr134, Ala83 |
3. | [MSD39] | −40.0165 | Val135, Lys85, Tyr134, Ile62, Leu188, Asp200, Gln185, Pro136, Ala83 |
4. | [MSD23] | −39.4222 | Lys85, Val135, Tyr134, Ala83, Leu188, Val70, Ile62, Phe67, Leu132 |
5. | [MSD31] | −38.6482 | Val135, Lys85, Tyr134, Val70, Ala83, Leu188, Cys199, Thr138, Leu132 |
6. | [MSD33] | −38.5194 | Val135, Lys85, Cys199, Ala83, Asp200, Phe67, Leu188, Val70, Ile62 |
7. | [MSD49] | −37.9704 | Val135, Lys85, Ala83, Val110, Tyr134, Leu188, Pro136, Ile62, Asp200 |
8. | [MSD6] | −37.4285 | Lys85, Val135, Cys199, Ala83, Leu188, Val70, Phe67, Ile62, Asp200 |
9. | [MSD35] | −37.1191 | Lys85, Val135, Leu188, Ile62, Ala83, Leu132, Tyr134, Cys199, Val110, Asp200, Thr138 |
10. | [MSD9] | −36.8884 | Lys85, Val135, Tyr134, Leu188, Phe67, Asp200, Cys199, Val70, Ala83 |
11. | ZDWX-25 | −36.4244 | Cys199, Pro136, Val135, Lys85, Leu188, Ala83, Tyr134, Glu137, Arg141, Asp13, Asp 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyal, S.; Singh, M.; Thirumal, D.; Sharma, P.; Mujwar, S.; Mishra, K.K.; Singh, T.G.; Singh, R.; Singh, V.; Singh, T.; et al. In Silico Approaches to Developing Novel Glycogen Synthase Kinase 3β (GSK-3β). Biomedicines 2023, 11, 2784. https://doi.org/10.3390/biomedicines11102784
Goyal S, Singh M, Thirumal D, Sharma P, Mujwar S, Mishra KK, Singh TG, Singh R, Singh V, Singh T, et al. In Silico Approaches to Developing Novel Glycogen Synthase Kinase 3β (GSK-3β). Biomedicines. 2023; 11(10):2784. https://doi.org/10.3390/biomedicines11102784
Chicago/Turabian StyleGoyal, Shuchi, Manjinder Singh, Divya Thirumal, Pratibha Sharma, Somdutt Mujwar, Krishna Kumar Mishra, Thakur Gurjeet Singh, Ravinder Singh, Varinder Singh, Tanveer Singh, and et al. 2023. "In Silico Approaches to Developing Novel Glycogen Synthase Kinase 3β (GSK-3β)" Biomedicines 11, no. 10: 2784. https://doi.org/10.3390/biomedicines11102784
APA StyleGoyal, S., Singh, M., Thirumal, D., Sharma, P., Mujwar, S., Mishra, K. K., Singh, T. G., Singh, R., Singh, V., Singh, T., & Ahmad, S. F. (2023). In Silico Approaches to Developing Novel Glycogen Synthase Kinase 3β (GSK-3β). Biomedicines, 11(10), 2784. https://doi.org/10.3390/biomedicines11102784