Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Ethics Statement
2.3. Identification of Lung Cancer Cases
2.4. Identification of Active Tuberculosis Cases
2.5. Patient Selection, Exclusion, and Grouping
2.6. Matched Comparison
2.7. Data Analysis
3. Results
3.1. Patient Recruitment
3.2. Comparisons of Variables between the LCTB-Rf and LCTB-R Groups
3.3. Multivariable Analysis for Two-Year Survival
3.4. Validation Using Matched Cohorts
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Health Promotion Administration, Ministry of Health and Welfare, Taiwan. Cancer Registry Annual Report, 2019, Taiwan. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=14913 (accessed on 30 August 2023).
- World Health Organization G, Switzerland. Global Tuberculosis Report. 2021. Available online: https://reliefweb.int/attachments/77a4cb2f-5d3d-30e7-bdae-b5ffa71e677f/9789240037021-eng.pdf (accessed on 30 August 2023).
- Taiwan Centers of Disease Control. Tuberculosis. Available online: https://www.cdc.gov.tw/En/Category/ListContent/bg0g_VU_Ysrgkes_KRUDgQ?uaid=0WialNbsh7SEGERJLa29FA (accessed on 30 August 2023).
- Hong, S.; Mok, Y.; Jeon, C.; Jee, S.H.; Samet, J.M. Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int. J. Cancer 2016, 139, 2447–2455. [Google Scholar] [CrossRef]
- Tamura, A. Tuberculosis and Lung Cancer. Kekkaku 2016, 91, 17–25. [Google Scholar]
- Menzies, D.; Benedetti, A.; Paydar, A.; Martin, I.; Royce, S.; Pai, M.; Vernon, A.; Lienhardt, C.; Burman, W. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: A systematic review and meta-analysis. PLoS Med. 2009, 6, e1000146. [Google Scholar] [CrossRef]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef] [PubMed]
- Williamson, B.; Dooley, K.E.; Zhang, Y.; Back, D.J.; Owen, A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob. Agents Chemother. 2013, 57, 6366–6369. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician 2007, 76, 391–396. [Google Scholar] [PubMed]
- Kanebratt, K.P.; Diczfalusy, U.; Bäckström, T.; Sparve, E.; Bredberg, E.; Böttiger, Y.; Andersson, T.B.; Bertilsson, L. Cytochrome P450 induction by rifampicin in healthy subjects: Determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol. Clin. Pharmacol. Ther. 2008, 84, 589–594. [Google Scholar] [CrossRef]
- Mittal, B.; Tulsyan, S.; Kumar, S.; Mittal, R.D.; Agarwal, G. Cytochrome P450 in Cancer Susceptibility and Treatment. Adv. Clin. Chem. 2015, 71, 77–139. [Google Scholar]
- Quintanilha, J.C.F.; de Sousa, V.M.; Visacri, M.B.; Amaral, L.S.; Santos, R.M.M.; Zambrano, T.; Salazar, L.A.; Moriel, P. Involvement of cytochrome P450 in cisplatin treatment: Implications for toxicity. Cancer Chemother. Pharmacol. 2017, 80, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Medina, P.J.; Adams, V.R. PD-1 Pathway Inhibitors: Immuno-Oncology Agents for Restoring Antitumor Immune Responses. Pharmacotherapy 2016, 36, 317–334. [Google Scholar] [CrossRef]
- Center for Disease Control, Executive Yuan, Taiwan (R.O.C.). Taiwan Guidelines for TB Diagnosis and Treatment, 5th ed.; Center for Disease Control, Executive Yuan, Taiwan (R.O.C.): Taipei, Taiwan, 2022.
- Hsu, J.C.; Wei, C.F.; Yang, S.C.; Lin, P.C.; Lee, Y.C.; Lu, C.Y. Lung cancer survival and mortality in Taiwan following the initial launch of targeted therapies: An interrupted time series study. BMJ Open 2020, 10, e033427. [Google Scholar] [CrossRef]
- Tsai, H.C.; Huang, J.Y.; Hsieh, M.Y.; Wang, B.Y. Survival of Lung Cancer Patients by Histopathology in Taiwan from 2010 to 2016: A Nationwide Study. J. Clin. Med. 2022, 11, 5503. [Google Scholar] [CrossRef] [PubMed]
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozeks, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 2016, 63, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Leung, C.C. Management of co-existent tuberculosis and lung cancer. Lung Cancer 2018, 122, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Backman, J.T.; Fromm, M.F.; Neuvonen, P.J.; Kivistö, K.T. Pharmacokinetic interactions with rifampicin: Clinical relevance. Clin. Pharmacokinet. 2003, 42, 819–850. [Google Scholar] [CrossRef] [PubMed]
- Kucharczuk, C.R.; Ganetsky, A.; Vozniak, J.M. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J. Adv. Pract. Oncol. 2018, 9, 189–200. [Google Scholar] [PubMed]
- Wei, N.; Zheng, B.; Que, W.; Zhang, J.; Liu, M. The association between proton pump inhibitor use and systemic anti-tumour therapy on survival outcomes in patients with advanced non-small cell lung cancer: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2022, 88, 3052–3063. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Cardona, A.; Nagarkar, D.R.; Scala, A.D.; Gandara, D.R.; Rittmeyer, A.; Albert, M.L.; Powles, T.; Kok, M.; Herrera, F.G. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: Pooled post hoc analyses of the OAK and POPLAR trials. Ann. Oncol. 2020, 31, 525–531. [Google Scholar] [CrossRef]
- Cheng, K.C.; Liao, K.F.; Lin, C.L.; Lai, S.W. Correlation of Proton Pump Inhibitors with Pulmonary Tuberculosis: A Case-Control Study in Taiwan. Front. Pharmacol. 2017, 8, 481. [Google Scholar] [CrossRef]
- Song, H.J.; Park, H.; Seo, H.J. Association between use of proton pump inhibitors and tuberculosis risk: A systematic review. Int. J. Tuberc. Lung Dis. 2019, 23, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.M.; Jiang, X.; Anggondowati, T.; Lin, G.; Ganti, A.K. Comorbidity and Survival in Lung Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.; Cheng, C.Y.; Hernandez-Villafuerte, K.; Schlander, M. Survival and comorbidities in lung cancer patients: Evidence from administrative claims data in Germany. Oncol. Res. 2022, 30, 173–185. [Google Scholar] [CrossRef] [PubMed]
Non-Rifamycin N = 127 | Rifamycin N = 127 | p-Value | |
---|---|---|---|
Age | 71.86 ± 9.61 | 71.5 ± 9.66 | 0.7673 |
Age Group | 0.4838 | ||
20–59 | 13 (10.24) | 19 (14.96) | |
60–75 | 58 (45.67) | 52 (40.94) | |
>75 | 56 (44.09) | 56 (44.09) | |
Gender | >0.9999 | ||
Female | 29 (22.83) | 29 (22.83) | |
Male | 98 (77.17) | 98 (77.17) | |
Medications | |||
CYP inducer | 10 (7.87) | 11 (8.66) | 0.8198 |
CYP inhibitor | 27 (21.26) | 22 (17.32) | 0.4266 |
P-gp inducer | 10 (7.87) | 5 (3.94) | 0.1832 |
P-gp inhibitor | 22 (14.19) | 16 (10.32) | 0.2434 |
PPI | 45 (35.43) | 38 (29.92) | 0.349 |
ALK TKI | |||
EGFR TKI | 20 (15.75) | 17 (13.39) | 0.5936 |
Lung cancer stages | >0.9999 | ||
Stage 1 & 2 | 9 (7.09) | 9 (7.09) | |
Stage 3 | 25 (19.69) | 25 (19.69) | |
Stage 4 | 89 (70.08) | 89 (70.08) | |
Unknow | 4 (3.15) | 4 (3.15) | |
Histology | 0.4679 | ||
Adenocarcinoma | 66 (51.97) | 67 (52.76) | |
Squamous cell carcinoma | 41 (32.28) | 35 (27.56) | |
Small cell carcinoma | 5 (3.94) | 12 (9.45) | |
Unclassified malignancy | 11 (8.66) | 10 (7.87) | |
Other histological types | 4 (3.15) | 3 (2.36) | |
BMI | 23.19 ± 3.74 | 22.16 ± 3.25 | 0.1741 |
Habit | |||
Smoking | 107 (84.25) | 113 (88.98) | 0.2689 |
Betel nut | 82 (64.57) | 92 (72.44) | 0.1768 |
Alcohol | 85 (66.93) | 95 (74.80) | 0.1673 |
Comorbidities | |||
Myocardial infarct | 12 (9.45) | 5 (3.94) | 0.0788 |
Congestive heart failure | 21 (16.54) | 8 (6.30) | 0.0103 |
Peripheral vascular disease | 5 (3.94) | 6 (4.72) | 0.7579 |
Cerebrovascular disease | 28 (22.05) | 28 (22.05) | >0.9999 |
Dementia | 6 (4.72) | 3 (2.36) | 0.3086 |
Chronic lung disease | 93 (73.23) | 75 (59.06) | 0.0170 |
Connective tissue disease | 4 (3.15) | 4 (3.15) | >0.9999 |
Ulcer | 63 (49.61) | 66 (51.97) | 0.7065 |
Chronic liver disease | 23 (18.11) | 19 (14.96) | 0.4993 |
Diabetes | 40 (31.50) | 23 (18.11) | 0.0135 |
Diabetes with end organ damage | 14 (11.02) | 5 (3.94) | 0.0318 |
Moderate or severe kidney disease | 12 (9.45) | 4 (3.15) | 0.0388 |
Death | 73 (57.48) | 78 (61.42) | 0.5228 |
Crude | p-Value | Adjusted | p-Value | |
---|---|---|---|---|
HRs | HRs | |||
Rifamycin vs. non-rifamycin | 0.95 (0.81–1.10) | 0.4800 | 1.00 (0.86–1.18) | 0.9538 |
Age | 1.00 (1.00–1.01) | 0.0377 | 1.01 (1.00–1.01) | 0.0353 |
Male vs. Female | 1.50 (1.31–1.73) | <0.0001 | 1.46 (1.27–1.69) | <0.0001 |
Medications | ||||
CYP inducer | 1.55 (1.28–1.87) | <0.0001 | 1.46 (1.17–1.84) | 0.0010 |
CYP inhibitor | 1.58 (1.36–1.84) | <0.0001 | 1.35 (1.15–1.58) | 0.0002 |
P-gp inducer | 1.30 (1.05–1.59) | 0.0143 | 1.04 (0.82–1.33) | 0.7465 |
P-gp inhibitor | 1.47 (1.22–1.77) | <0.0001 | 1.29 (1.06–1.58) | 0.0101 |
PPI | 1.37 (1.21–1.56) | <0.0001 | 1.31 (1.15–1.50) | 0.0001 |
EGFR TKI | 2.12 (1.83–2.45) | <0.0001 | 1.93 (1.66–2.25) | <0.0001 |
Lung cancer stages | ||||
Stage 1 & 2 | REF. | REF. | ||
Stage 3 | 2.87 (2.23–3.71) | <0.0001 | 2.58 (2.00–3.35) | <0.0001 |
Stage 4 | 2.85 (2.25–3.60) | <0.0001 | 2.48 (1.95–3.16) | <0.0001 |
Unknown | 1.93 (1.41–2.64) | <0.0001 | 1.90 (1.39–2.61) | 0.0001 |
Comorbidities | ||||
Myocardial infarct | 0.89 (0.68–1.17) | 0.4046 | 0.96 (0.73–1.27) | 0.7917 |
Congestive heart failure | 1.11 (0.89–1.38) | 0.3462 | 0.98 (0.77–1.24) | 0.8418 |
Peripheral vascular disease | 1.21 (0.89–1.64) | 0.2259 | 1.18 (0.86–1.62) | 0.2994 |
Cerebrovascular disease | 0.91 (0.77–1.07) | 0.2544 | 0.83 (0.69–0.99) | 0.0397 |
Dementia | 0.86 (0.60–1.25) | 0.4387 | 0.96 (0.65–1.42) | 0.8506 |
Chronic lung disease | 1.07 (0.95–1.21) | 0.2677 | 1.05 (0.92–1.20) | 0.5016 |
Connective tissue disease | 0.78 (0.47–1.29) | 0.3334 | 0.74 (0.44–1.24) | 0.2533 |
Ulcer | 0.95 (0.84–1.08) | 0.4598 | 0.98 (0.86–1.11) | 0.7145 |
Chronic liver disease | 0.90 (0.77–1.06) | 0.2238 | 0.98 (0.82–1.16) | 0.8068 |
Diabetes | 0.98 (0.85–1.13) | 0.8103 | 0.96 (0.81–1.13) | 0.6336 |
Diabetes with end organ damage | 0.92 (0.72–1.17) | 0.4805 | 0.90 (0.69–1.19) | 0.4739 |
Hemiplegia | 1.05 (0.64–1.72) | 0.8434 | 1.29 (0.77–2.15) | 0.3362 |
Moderate or severe kidney disease | 0.95 (0.74–1.22) | 0.7012 | 0.91 (0.70–1.18) | 0.4663 |
Moderate or severe liver disease | 0.69 (0.19–1.87) | 0.3801 | 0.56 (0.18–1.77) | 0.3250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Wei, Y.-F.; Shu, C.-C. Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis. Biomedicines 2023, 11, 3130. https://doi.org/10.3390/biomedicines11123130
Lee H-S, Wei Y-F, Shu C-C. Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis. Biomedicines. 2023; 11(12):3130. https://doi.org/10.3390/biomedicines11123130
Chicago/Turabian StyleLee, Ho-Sheng, Yu-Feng Wei, and Chin-Chung Shu. 2023. "Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis" Biomedicines 11, no. 12: 3130. https://doi.org/10.3390/biomedicines11123130
APA StyleLee, H. -S., Wei, Y. -F., & Shu, C. -C. (2023). Influence of Rifamycin on Survival in Patients with Concomitant Lung Cancer and Pulmonary Tuberculosis. Biomedicines, 11(12), 3130. https://doi.org/10.3390/biomedicines11123130