Lactate: The Fallacy of Oversimplification
Abstract
:1. Introduction
2. Main Text
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Seligmann, H.; Halkin, H.; Rauchfleisch, S.; Kaufmann, N.; Tal, R.; Motro, M.; Vered, Z.; Ezra, D. Thiamine deficiency in patients with congestive heart failure receiving long-term furosemide therapy: A pilot study. Am. J. Med. 1991, 91, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.D.; Woods, H.F. Lactic acidosis revisited. Diabetes 1983, 32, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Rishu, A.H.; Khan, R.; Al-Dorzi, H.M.; Tamim, H.M.; Al-Qahtani, S.; Al-Ghamdi, G.; Arabi, Y.M. Even mild hyperlactatemia is associated with increased mortality in critically ill patients. Crit. Care 2013, 17, R197. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Weil, M.H.; Afifi, A.A. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 1970, 41, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Boekstegers, P.; Weidenhöfer, S.; Kapsner, T.; Werdan, K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit. Care Med. 1994, 22, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Sair, M.; Etherington, P.J.; Peter Winlove, C.; Evans, T.W. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit. Care Med. 2001, 29, 1343–1349. [Google Scholar] [CrossRef]
- Levy, B.; Gibot, S.; Franck, P.; Cravoisy, A.; Bollaert, P.-E. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: A prospective study. Lancet 2005, 365, 871–875. [Google Scholar] [CrossRef]
- Opdam, H.; Bellomo, R. Oxygen Consumption and Lactate Release by the Lung after Cardiopulmonary Bypass and during Septic Shock. Crit. Care Resusc. 1999. Available online: https://pubmed.ncbi.nlm.nih.gov/16599894/ (accessed on 20 February 2023).
- Kellum, J.A.; Kramer, D.J.; Lee, K.; Mankad, S.; Bellomo, R.; Pinsky, M.R. Release of lactate by the lung in acute lung injury. Chest 1997, 111, 1301–1305. [Google Scholar] [CrossRef]
- De Backer, D.; Creteur, J.; Silva, E.; Vincent, J.L. The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit. Care Med. 2001, 29, 256–261. [Google Scholar] [CrossRef]
- Spronk, P.E.; Zandstra, D.F.; Ince, C. Bench-to-bedside review: Sepsis is a disease of the microcirculation. Crit. Care 2004, 8, 462–468. [Google Scholar] [CrossRef]
- Singer, M. Critical illness and flat batteries. Crit. Care 2017, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Singer, M. Mitochondrial function in sepsis: Acute phase versus multiple organ failure. Crit. Care Med. 2007, 35, S441–S448. [Google Scholar] [CrossRef] [PubMed]
- Van Wyngene, L.; Vandewalle, J.; Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: Therapeutic targets at last? EMBO Mol. Med. 2018, 10, e8712. [Google Scholar] [CrossRef]
- Nuzzo, E.; Berg, K.M.; Andersen, L.W.; Balkema, J.; Montissol, S.; Cocchi, M.N.; Liu, X.; Donnino, M.W. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with sepsis. A prospective observational trial. Ann. Am. Thorac. Soc. 2015, 12, 1662–1666. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, N.; Constantin-Teodosiu, D.; Murton, A.J.; Gardiner, S.M.; Bennett, T.; Layfield, R.; Greenhaff, P.L. Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats. J. Physiol. 2008, 586, 1767–1775. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Nagaraja, N.V.; Hutson, A.D. Efficacy of dichloroacetate as a lactate-lowering drug. J. Clin. Pharmacol. 2003, 43, 683–691. [Google Scholar] [CrossRef]
- Totaro, R.J.; Raper, R.F. Epinephrine-induced lactic acidosis following cardiopulmonary bypass. Crit. Care Med. 1997, 25, 1693–1699. [Google Scholar] [CrossRef]
- Xue, J.; Mannem, S.; Al Jandeel, A.; Ruvo, A.; Levi, D. Epinephrine causes severe lactic acidosis in a patient with shellfish-induced anaphylaxis. Chest 2020, 157, A7. [Google Scholar] [CrossRef]
- Sauer, C.M.; Gómez, J.; Botella, M.R.; Ziehr, D.R.; Oldham, W.M.; Gavidia, G.; Rodríguez, A.; Elbers, P.; Girbes, A.; Bodi, M.; et al. Understanding critically ill sepsis patients with normal serum lactate levels: Results from U.S. and European ICU cohorts. Sci. Rep. 2021, 11, 20076. [Google Scholar] [CrossRef]
- Manoj Kumar, R.M.; Narayanan, N.K.; Raghunath, K.J.; Rajagopalan, S. Composite pheochromocytoma presenting as severe lactic acidosis and back pain: A case report. Indian J. Nephrol. 2019, 29, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, G.J.; Rodrigo, C. Elevated plasma lactate level associated with high dose inhaled albuterol therapy in acute severe asthma. Emerg. Med. J. 2005, 22, 404–408. [Google Scholar] [CrossRef] [PubMed]
- de Ridder, S.; Kuijpers, P.; Crijns, H. Lactate: Panicking doctor or panicking patient? BMJ Case Rep. 2010, 2010, 2319. [Google Scholar] [CrossRef] [PubMed]
- Blohm, E.; Lai, J.; Neavyn, M. Drug-induced hyperlactatemia. Clin. Toxicol. 2017, 55, 869–878. [Google Scholar] [CrossRef]
- Contenti, J.; Occelli, C.; Corraze, H.; Lemoël, F.; Levraut, J. Long-term β-blocker therapy decreases blood lactate concentration in severely septic patients. Crit. Care Med. 2015, 43, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Emmett, M.; Szerlip, H.; Sterns, R.H.; Forman, J.P. Causes of Lactic Acidosis. UpToDate. 2023. Available online: https://www.uptodate.com/contents/causes-of-lactic-acidosis (accessed on 5 May 2023).
- Kraut, J.A.; Madias, N.E. Lactic acidosis. N. Engl. J. Med. 2014, 371, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Vasques, F.; Camporota, L.; Meessen, J.; Romitti, F.; Pasticci, I.; Duscio, E.; Vassalli, F.; Forni, L.G.; Payen, D.; et al. Understanding lactatemia in human sepsis. Potential impact for early management. Am. J. Respir. Crit. Care Med. 2019, 200, 582–589. [Google Scholar] [CrossRef]
- Qian, Q. Reply to Robergs et al. Physiology 2018, 33, 13. [Google Scholar] [CrossRef]
- Burnell, J.M.; Scribner, B.H.; Uyeno, B.T.; Villamil, M.F. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J. Clin. Investig. 1956, 35, 935–939. [Google Scholar] [CrossRef]
- Fulop, M. Serum potassium in lactic acidosis and ketoacidosis. N. Engl. J. Med. 1979, 300, 1087–1089. [Google Scholar] [CrossRef]
- Aronson, P.S.; Giebisch, G. Effects of pH on potassium: New explanations for old observations: New explanations for old observations. J. Am. Soc. Nephrol. 2011, 22, 1981–1989. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R. Bench-to-bedside review: Lactate and the kidney. Crit. Care 2002, 6, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.-J.; Zhang, Z.; Bakker, J. Early lactate clearance-guided therapy in patients with sepsis: A meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015, 41, 1862–1863. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Quintairos e Silva, A.; Couto, L.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.; Kelly, A.-M.; Brown, J.; Robertson, M. Agreement between arterial and central venous values for pH, bicarbonate, base excess, and lactate. Emerg. Med. J. 2006, 23, 622–624. [Google Scholar] [CrossRef]
- Jones, A.E.; Leonard, M.M.; Hernandez-Nino, J.; Kline, J.A. Determination of the effect of in vitro time, temperature, and tourniquet use on whole blood venous point-of-care lactate concentrations. Acad. Emerg. Med. 2007, 14, 587–591. [Google Scholar] [CrossRef]
- Sagar, A.S.; Jimenez, C.A.; Mckelvy, B.J. Lactate gap as a tool in identifying ethylene glycol poisoning. BMJ Case Rep. 2018, 2018, bcr-2018. [Google Scholar] [CrossRef]
- Matejovic, M.; Radermacher, P.; Fontaine, E. Lactate in shock: A high-octane fuel for the heart? Intensive Care Med. 2007, 33, 406–408. [Google Scholar] [CrossRef]
- Beadle, R.M.; Frenneaux, M. Modification of myocardial substrate utilisation: A new therapeutic paradigm in cardiovascular disease. Heart 2010, 96, 824–830. [Google Scholar] [CrossRef] [PubMed]
- van Hall, G. Lactate kinetics in human tissues at rest and during exercise: Tissue lactate kinetics. Acta Physiol. 2010, 199, 499–508. [Google Scholar] [CrossRef]
- Nalos, M.; Leverve, X.; Huang, S.; Weisbrodt, L.; Parkin, R.; Seppelt, I.; Ting, I.; Mclean, A.S. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: A pilot randomised controlled clinical trial. Crit. Care 2014, 18, R48. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. The science and translation of lactate shuttle theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Boysen, S.R.; Dorval, P. Effects of rapid intravenous 100% L-isomer lactated Ringer’s administration on plasma lactate concentrations in healthy dogs: In vivo effects of lactated Ringer’s in healthy dogs. J. Vet. Emerg. Crit. Care 2014, 24, 571–577. [Google Scholar] [CrossRef]
- Connor, H.; Woods, H.F. Quantitative aspects of L(+)-lactate metabolism in human beings. In Ciba Foundation Symposium 87—Metabolic Acidosis; Wiley: Hoboken, NJ, USA, 1982; pp. 214–234. [Google Scholar] [CrossRef]
- Caldarini, M.I.; Pons, S.; D’Agostino, D.; Depaula, J.A.; Greco, G.; Negri, G.; Ascione, A.; Bustos, D. Abnormal fecal flora in a patient with short bowel syndrome: Anin vitro study on effect of pH ond-lactic acid production. Dig. Dis. Sci. 1996, 41, 1649–1652. [Google Scholar] [CrossRef]
- Bongaerts, G.; Tolboom, J.; Naber, T.; Bakkeren, J.; Severijnen, R.; Willems, H. D-lactic acidemia and aciduria in pediatric and adult patients with short bowel syndrome. Clin. Chem. 1995, 41, 107–110. [Google Scholar] [CrossRef]
- Uribarri, J.; Oh, M.S.; Carroll, H.J. D-lactic acidosis: A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine. Medicine 1998, 77, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y.-T.; Tsai, W.-C.; Yang, S.-P. A life-threatening double gap metabolic acidosis. Am. J. Emerg. Med. 2008, 26, 385.e5–385.e6. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zello, G.A.; Randell, E.; Adeli, K.; Krahn, J.; Meng, Q.H. Closing the anion gap: Contribution of d-lactate to diabetic ketoacidosis. Clin. Chim. Acta 2011, 412, 286–291. [Google Scholar] [CrossRef]
increased pyruvate production | non-specific glycolysis stimulation | respiratory alkalosis, catecholamines (mainly epinephrine), inhaled beta-agonists, pheochromocytoma | |
malignancy-associated metabolic disturbances (Warburg effect) | leukemia, lymphoma, or, less often, solid malignancies | ||
other causes influencing the redox potential of the cell | alcoholism, diabetic ketoacidosis | ||
decreased pyruvate utilization | hypoxia-related hyperlactatemia (type A hyperlactatemia) | crossing of an anaerobic threshold in skeletal muscle | intensive muscle activity, generalized convulsions, hypothermic shivering |
insufficient load of oxygen in blood | hypoxemic hypoxia, profound anemia, CO intoxication | ||
insufficient perfusion | shock, regional ischemia (i.e., mesenteric ischemia), cardiac arrest, microvascular shunting | ||
pyruvate-dehydrogenase dysfunction | thiamine deficiency (beriberi), inherited enzymatic dysfunction | ||
mitochondrial dysfunction | drugs (propofol, linezolid, metformin, etc.), inherited disorders, cyanide intoxication, sepsis | ||
altered clearance of lactate | liver failure, renal failure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, J.; Radej, J.; Horak, J.; Karvunidis, T.; Valesova, L.; Kriz, M.; Matejovic, M. Lactate: The Fallacy of Oversimplification. Biomedicines 2023, 11, 3192. https://doi.org/10.3390/biomedicines11123192
Müller J, Radej J, Horak J, Karvunidis T, Valesova L, Kriz M, Matejovic M. Lactate: The Fallacy of Oversimplification. Biomedicines. 2023; 11(12):3192. https://doi.org/10.3390/biomedicines11123192
Chicago/Turabian StyleMüller, Jiri, Jaroslav Radej, Jan Horak, Thomas Karvunidis, Lenka Valesova, Miroslav Kriz, and Martin Matejovic. 2023. "Lactate: The Fallacy of Oversimplification" Biomedicines 11, no. 12: 3192. https://doi.org/10.3390/biomedicines11123192
APA StyleMüller, J., Radej, J., Horak, J., Karvunidis, T., Valesova, L., Kriz, M., & Matejovic, M. (2023). Lactate: The Fallacy of Oversimplification. Biomedicines, 11(12), 3192. https://doi.org/10.3390/biomedicines11123192