Modification of Peripheral Blood Flow and Angiogenesis by CO2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Induction of Diabetes and Hind Limb Ischemia
2.2. CO2-Enriched Water-Bath Therapy
2.3. Measurements of Blood Flow
2.4. Assessment of Angiogenesis
2.5. Serum Analysis
2.6. Data Analysis
3. Results
3.1. Characteristics of Animal Models with or without CO2 Therapy
3.2. Influence of CO2 Therapy on Blood Flow
3.3. Influence of CO2 Therapy on Angiogenesis in Skeletal Muscle
3.4. Effects of CO2 Therapy on Plasma Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edgar, L.; Akbar, N.; Braithwaite, A.T.; Krausgruber, T.; Gallart-Ayala, H.; Bailey, J.; Corbin, A.L.; Khoyratty, T.E.; Chai, J.T.; Alkhalil, M.; et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 2021, 144, 961–982. [Google Scholar] [CrossRef]
- American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care 2003, 26, 3333–3341. [Google Scholar] [CrossRef]
- Kokkinidis, D.G.; Katamreddy, A.; Giannopoulos, G.; Schizas, G.; Georgopoulos, S.; Liakakos, T.; Armstrong, E.J.; Bakoyiannis, C. Risk models and scores in patients with peripheral artery disease and chronic limb-threatening ischemia: A comprehensive review. Curr. Pharm. Des. 2021, 27, 1277–1288. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Camargo, R.O.; Elimban, V.; Dhadial, R.S.; Xu, Y.-J. Role of skeletal muscle angiogenesis in peripheral artery disease. In Biochemical Basis and Therapeutic Implications of Angiogenesis; Mehta, J.L., Mathur, P., Dhalla, N.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 517–532. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef]
- Krishna, S.M.; Moxon, J.V.; Golledge, J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int. J. Mol. Sci. 2015, 16, 11294–11322. [Google Scholar] [CrossRef]
- Firnhaber, J.M.; Powell, C.S. Lower extremity peripheral artery disease: Diagnosis and treatment. Am. Fam. Physician 2019, 99, 362–369. [Google Scholar]
- Li, W.W.; Li, V.W.; Casey, R.; Tsakayannis, D.; Kruger, E.A.; Lee, A.; Sun, Y.-L.; Christopher, A.; Bonar, V.M.D.; Cornelius, S. Clinical trials of angiogenesis-based therapies: Overview and new guiding principles. In Angiogenesis: Models, Modulators, and Clinical Applications; Maragoudakis, M.E., Ed.; Springer: Boston, MA, USA, 1998; pp. 475–492. [Google Scholar]
- Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 2003, 9, 653–660. [Google Scholar] [CrossRef]
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef]
- Kehler, D.S.; Dhalla, N.S.; Duhamel, T.A. Biochemical mechanisms of exercise-induced angiogenesis. In Biochemical Basis and Therapeutic Implications of Angiogenesis; Mehta, J.L., Dhalla, N.S., Eds.; Springer: New York, NY, USA, 2013; pp. 181–206. [Google Scholar]
- Cooke, J.P.; Losordo, D.W. Modulating the vascular response to limb ischemia: Angiogenic and cell therapies. Circ. Res. 2015, 116, 1561–1578. [Google Scholar] [CrossRef]
- De Marchi, S.; Zecchetto, S.; Rigoni, A.; Prior, M.; Fondrieschi, L.; Scuro, A.; Rulfo, F.; Arosio, E. Propionyl-L-carnitine improves endothelial function, microcirculation and pain management in critical limb ischemia. Cardiovasc. Drugs Ther. 2012, 26, 401–408. [Google Scholar] [CrossRef]
- Hamburg, N.M.; Creager, M.A. Pathophysiology of intermittent claudication in peripheral artery disease. Circ. J. 2017, 81, 281–289. [Google Scholar] [CrossRef]
- Brown, P.K. Artificial Nauheim baths in chronic heart cases. Trans. Am. Climatol. Assoc. 1906, 22, 108–1168. [Google Scholar] [CrossRef]
- Swan, J.M. The influence of carbonated brine (Nauheim) baths on blood-pressure. Trans. Am. Climatol. Assoc. 1912, 28, 262–308. [Google Scholar] [CrossRef]
- Schott, A. Carbon-dioxide thermo-saline springs in the light of modern research. Proc. R. Soc. Med. 1928, 21, 589–597. [Google Scholar]
- Kälsch, J.; Pott, L.P.; Takeda, A.; Kumamoto, H.; Möllmann, D. Bathing in carbon dioxide-enriched water alters protein expression in keratinocytes of skin tissue in rats. Int. J. Biometeorol. 2017, 61, 739–746. [Google Scholar] [CrossRef]
- Hartmann, B.R.; Bassenge, E.; Hartmann, M. Effects of serial percutaneous application of carbon dioxide in intermittent claudication: Results of a controlled trial. Angiology 1997, 48, 957–963. [Google Scholar] [CrossRef]
- Hartmann, B.R.; Bassenge, E.; Pittler, M. Effect of carbon dioxide enriched water and fresh water on the cutaneous microcirculation and oxygentension in the skin of the foot. Angiology 1997, 48, 337–343. [Google Scholar] [CrossRef]
- Irie, H.; Tatsumi, T.; Takamiya, M.; Zen, K.; Takahashi, T.; Azuma, A.; Tateishi, K.; Nomura, T.; Hayashi, H.; Nakajima, N.; et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation 2005, 111, 1523–1529. [Google Scholar] [CrossRef]
- Pagourelias, E.D.; Zorou, P.G.; Tsaligopoulos, M.; Athyros, V.G.; Karagiannis, A.; Efthimiadis, G.K. Carbon dioxide balneotherapy and cardiovascular disease. Int. J. Biometeorol. 2011, 55, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Izumi, Y.; Yamaguchi, T.; Yamazaki, T.; Yamashita, N.; Nakamura, Y.; Shiota, M.; Tanaka, M.; Sano, S.; Osada-Oka, M.; Shimada, K.; et al. Percutaneous carbon dioxide treatment using a gas mist generator enhances the collateral blood flow in the ischemic hindlimb. J. Atheroscler. Thromb. 2015, 22, 38–51. [Google Scholar] [CrossRef]
- Xu, Y.J.; Elimban, V.; Dhalla, N.S. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis. Can. J. Physiol. Pharmacol. 2017, 95, 938–944. [Google Scholar] [CrossRef]
- Xu, Y.J.; Elimban, V.; Bhullar, S.K.; Dhalla, N.S. Effects of CO2 water-bath treatment on blood flow and angiogenesis in ischemic hind limb of diabetic rat. Can. J. Physiol. Pharmacol. 2018, 96, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Elimban, V.; Xu, Y.J.; Bhullar, S.K.; Dhalla, N.S. Temperature-dependent effects on CO2 water bath therapy induced changes in blood flow and vascularity in hind limb ischemia. Can. J. Physiol. Pharmacol. 2020, 98, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Rivers, R.J.; Meininger, C.J. The tissue response to hypoxia: How therapeutic carbon dioxide moves the response toward homeostasis and away from instability. Int. J. Mol. Sci. 2023, 24, 5181. [Google Scholar] [CrossRef] [PubMed]
- Tappia, P.S.; Hiebert, B.; Sanjanwala, R.; Komenda, P.; Sathianathan, C.; Arneja, A.S.; Ramjiawan, B. A novel bathing therapeutic approach for diabetic foot ulcers. Appl. Sci. 2021, 11, 8402. [Google Scholar] [CrossRef]
- Kawasaki, D.; Fujii, K.; Fukunaga, M.; Masutani, M.; Nakata, A.; Masuyama, T. Safety and efficacy of endovascular therapy with a simple homemade carbon dioxide delivery system in patients with ileofemoral artery diseases. Circ. J. 2012, 76, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Mendes, C.; de Arruda Martins, A.; Teivelis, M.P.; Kuzniec, S.; Nishinari, K.; Krutman, M.; Halpern, H.; Wolosker, N. Carbon dioxide is a cost-effective contrast medium to guide revascularization of TASC A and TASC B femoropopliteal occlusive disease. Ann. Vasc. Surg. 2014, 28, 1473–1478. [Google Scholar] [CrossRef]
- Fujihara, M.; Kawasaki, D.; Shintani, Y.; Fukunaga, M.; Nakama, T.; Koshida, R.; Higashimori, A.; Yokoi, Y. Endovascular therapy by CO2 angiography to prevent contrast-induced nephropathy in patients with chronic kidney disease: A prospective multicenter trial of CO2 angiography registry. Catheter. Cardiovasc. Interv. 2015, 85, 870–877. [Google Scholar] [CrossRef]
- Dewald, C.L.A.; Becker, L.S.; Maschke, S.K.; Meine, T.C.; Meyer, B.C.; Wacker, F.K.; Hinrichs, J.B. 2D-Perfusion angiography using carbon dioxide (CO2): A feasible tool to monitor immediate treatment response to endovascular therapy of peripheral arterial disease. Cardiovasc. Intervent. Radiol. 2021, 44, 635–644. [Google Scholar] [CrossRef]
- Zbroja, H.; Kowalski, M.; Lubkowska, A. The effect of dry carbon dioxide bathing on peripheral blood circulation measured by thermal imaging among patients with risk factors of PAD. Int. J. Environ. Res. Public Health 2021, 18, 1490. [Google Scholar] [CrossRef]
- Ganguly, P.K.; Taira, Y.; Elimban, V.; Roy, M.; Dhalla, N.S. Altered contractile proteins in skeletal muscle of the diabetic rat. Am. J. Physiol. 1987, 253, E395–E400. [Google Scholar] [CrossRef] [PubMed]
- Taira, Y.; Ganguly, P.K.; Panagia, V.; Dhalla, N.S. Increased SR phospholipid N-methylation in skeletal muscle of diabetic rats. Am. J. Physiol. 1988, 255, E347–E352. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, P.G.; Yang, H.T.; Terjung, R.L. Arteriogenesis and angiogenesisin rat ischemic hindlimb: Role of nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H2528–H2538. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Sugenoya, J.; Matsumoto, T.; Kato, M.; Sakakibara, H.; Nishiyama, T.; Inukai, Y.; Okagawa, T.; Ogata, A. Effects of repeated carbon dioxide-rich water bathing on core temperature, cutaneous blood flow and thermal sensation. Eur. J. Appl. Physiol. 2002, 87, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.K.; Madala, S.; Jones, A.D.; Caro, W.A.; Eberth, J.F.; Pham, T.T.; Taffet, G.E.; Hartley, C.J. Multichannel pulsed Doppler signal processing for vascular measurements in mice. Ultrasound Med. Biol. 2009, 35, 2042–2054. [Google Scholar] [CrossRef] [PubMed]
- Hartley, C.J.; Reddy, A.K.; Madala, S.; Entman, M.L.; Michael, L.H.; Taffet, G.E. Doppler velocity measurements from large and small arteries of mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H269–H278. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Mehrotra, R. Morphometric analysis of epithelial thickness and blood vessels in different grades of oral submucous fibrosis. Malays. J. Pathol. 2014, 36, 189–193. [Google Scholar] [PubMed]
- Ganguly, P.K.; Mathur, S.; Gupta, M.P.; Beamish, R.E.; Dhalla, N.S. Calcium pump activity of sarcoplasmic reticulum in diabetic rat skeletal muscle. Am. J. Physiol. 1986, 251, E515–E523. [Google Scholar] [CrossRef]
- Hashimoto, M.; Yamamoto, N. Decrease in heart rates by artificial CO2 hot spring bathing is inhibited by beta1-adrenoceptor blockade in anesthetized rats. J. Appl. Physiol. 2004, 96, 226–232. [Google Scholar] [CrossRef]
- Bolevich, S.; Kogan, A.H.; Zivkovic, V.; Djuric, D.; Novikov, A.A.; Vorobyev, S.I.; Jakovljevic, V. Protective role of carbon dioxide (CO2) in generation of reactive oxygen species. Mol. Cell. Biochem. 2016, 411, 317–330. [Google Scholar] [CrossRef]
- Dogliotti, G.; Galliera, E.; Iorio, E.; Di Valserra, M.D.B.; Solimene, U.; Corsi, M.M. Effect of immersion in CO2-enriched water on free radical release and total antioxidant status in peripheral arterial occlusive disease. Int. Angiol. 2011, 30, 12. [Google Scholar] [PubMed]
- Xu, Y.J.; Elimban, V.; Dhalla, N.S. Suppression of phosphorylated MAPK and caspase 3 by carbon dioxide. Mol. Cell. Biochem. 2017, 436, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, T.; Miyata, M.; Ikeda, Y.; Akasaki, Y.; Hamada, N.; Shirasawa, T.; Furusho, Y.; Tei, C. Waon therapy upregulates Hsp90 and leads to angiogenesis through the Akt-endothelial nitric oxide synthase pathway in mouse hindlimb ischemia. Circ. J. 2012, 76, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, S.H.; Millenaar, D.N.; Werner, C.; Schuh, L.; Degen, A.; Bettink, S.I.; Lipp, P.; van Rooijen, N.; Meyer, T.; Böhm, M.; et al. Exercise promotes collateral artery growth mediated by monocytic nitric oxide. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1862–1871. [Google Scholar] [CrossRef]
- Parfenova, H.; Shibata, M.; Zuckerman, S.; Leffler, C.W. CO2 and cerebral circulation in newborn pigs: Cyclic nucleotides and prostanoids in vascular regulation. Am. J. Physiol. 1994, 266, 1494–1501. [Google Scholar] [CrossRef]
Groups | Body Weight (g) | Heart Rate (beats/min) | R-R Interval (ms) | Creatine Kinase (U/L) |
---|---|---|---|---|
(a): Diabetic rats | ||||
No water bath | 407 ± 13 | 286 ± 12 | 211 ± 9 | 387 ± 36 |
Water bath − CO2 | 443 ± 11 | 295 ± 14 | 211 ± 9 | 397 ± 69 |
Water bath + CO2 | 426 ± 22 | 299 ± 15 | 205 ± 5 | 492 ± 77 |
(b): Diabetic-ischemic rats | ||||
No water bath | 383 ± 28 | 286 ± 13 | 213 ± 13 | 482 ± 92 |
Water bath − CO2 | 382 ± 21 | 292 ± 16 | 208 ± 11 | 398 ± 70 |
Water bath + CO2 | 422 ± 14 | 284 ± 8 | 213 ± 6 | 496 ± 66 |
Groups | Glucose (mM) | Cholesterol (mM) | Triglycerides (mM) | High Density Lipoproteins (U/L) |
---|---|---|---|---|
(a): Diabetic rats | ||||
No water bath | 34.2 ± 1.4 | 2.88 ± 0.31 | 9.51 ± 4.99 | 0.91 ± 0.20 |
Water bath − CO2 | 35.0 ± 1.2 | 2.28 ± 0.37 | 5.99 ±1.78 | 1.28 ± 0.11 |
Water bath + CO2 | 34.0 ± 0.2 | 2.98 ± 1.06 | 9.55 ± 4.11 | 1.30 ± 0.24 |
(b): Diabetic-ischemic rats | ||||
No water bath | 37.0 ± 1.9 | 2.78 ± 0.34 | 5.35 ± 3.84 | 1.60 ± 0.23 |
Water bath − CO2 | 38.8 ± 1.1 | 2.78 ± 0.44 | 6.34 ± 3.50 | 0.98 ± 0.19 |
Water bath + CO2 | 36.0 ± 1.9 | 2.10 ± 0.14 | 5.27 ± 1.94 | 1.30 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elimban, V.; Xu, Y.-J.; Bhullar, S.K.; Dhalla, N.S. Modification of Peripheral Blood Flow and Angiogenesis by CO2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia. Biomedicines 2023, 11, 3250. https://doi.org/10.3390/biomedicines11123250
Elimban V, Xu Y-J, Bhullar SK, Dhalla NS. Modification of Peripheral Blood Flow and Angiogenesis by CO2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia. Biomedicines. 2023; 11(12):3250. https://doi.org/10.3390/biomedicines11123250
Chicago/Turabian StyleElimban, Vijayan, Yan-Jun Xu, Sukhwinder K. Bhullar, and Naranjan S. Dhalla. 2023. "Modification of Peripheral Blood Flow and Angiogenesis by CO2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia" Biomedicines 11, no. 12: 3250. https://doi.org/10.3390/biomedicines11123250
APA StyleElimban, V., Xu, Y. -J., Bhullar, S. K., & Dhalla, N. S. (2023). Modification of Peripheral Blood Flow and Angiogenesis by CO2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia. Biomedicines, 11(12), 3250. https://doi.org/10.3390/biomedicines11123250