Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Nerve Dissection and Experimental Setup
2.3. Data Analysis
2.4. Statistics
3. Results
3.1. General Findings
3.2. Nerve Excitability Parameters
3.3. Compound Action Potential Parameters
3.4. Conduction Velocity Distribution Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalkiliç, N.; Pehlivan, F. Comparison of Fiber Diameter Distributions Deduced by Modeling Compound Action Potentials Recorded by Extracellular and Suction Techniques. Int. J. Neurosci. 2002, 112, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Yoon, S.J.; Lee, W.C.; Kim, J.K.; Shin, J.; Lee, S.; Lee, S.M. Protective Effect of GCSB-5, an Herbal Preparation, against Peripheral Nerve Injury in Rats. J. Ethnopharmacol. 2011, 136, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Krarup, C.; Moldovan, M. Nerve Conduction and Excitability Studies in Peripheral Nerve Disorders. Curr. Opin. Neurol. 2009, 22, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Gander, R.E.; Crichlow, E.C. Determination of Nerve Conduction Velocity Distribution from Sampled Compound Action Potential Signals. IEEE Trans. Biomed. Eng. 1996, 43, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Hirose, G.; Tsuchitani, Y.; Huang, J. A New Method for Estimation of Nerve Conduction Velocity Distribution in the Frequency Domain. Electroencephalogr. Clin. Neurophysiol. 1986, 63, 192–202. [Google Scholar] [CrossRef]
- Evans, G.R.D.; Brandt, K.; Niederbichler, A.D.; Chauvin, P.; Hermann, S.; Bogle, M.; Otta, L.; Wang, B.; Patrick, C.W. Clinical Long-Term in Vivo Evaluation of Poly(L-Lactic Acid) Porous Conduits for Peripheral Nerve Regeneration. J. Biomater. Sci. Polym. Ed. 2000, 11, 869–878. [Google Scholar] [CrossRef]
- Ngo, T.T.B.; Waggoner, P.J.; Romero, A.A.; Nelson, K.D.; Eberhart, R.C.; Smith, G.M. Poly(L-Lactide) Microfilaments Enhance Peripheral Nerve Regeneration across Extended Nerve Lesions. J. Neurosci. Res. 2003, 72, 227–238. [Google Scholar] [CrossRef]
- Widmer, M.S.; Gupta, P.K.; Lu, L.; Meszlenyi, R.K.; Evans, G.R.D.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C.W.; Mikos, A.G. Manufacture of Porous Biodegradable Polymer Conduits by an Extrusion Process for Guided Tissue Regeneration. Biomaterials 1998, 19, 1945–1955. [Google Scholar] [CrossRef]
- Beer, G.M.; Steurer, J.; Meyer, V.E. Standardizing Nerve Crushes with a Non-Serrated Clamp. J. Reconstr. Microsurg. 2001, 17, 531–534. [Google Scholar] [CrossRef]
- Renno, W.M.; Saleh, F.; Klepacek, I.; Al-Khaledi, G.; Ismael, H.; Asfar, S. Green Tea Pain Modulating Effect in Sciatic Nerve Chronic Constriction Injury Rat Model. Nutr. Neurosci. 2006, 9, 41–47. [Google Scholar] [CrossRef]
- Renno, W.M.; Al-Maghrebi, M.; Alshammari, A.; George, P. (−)-Epigallocatechin-3-Gallate (EGCG) Attenuates Peripheral Nerve Degeneration in Rat Sciatic Nerve Crush Injury. Neurochem. Int. 2013, 62, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Renno, W.M.; Khan, K.M.; Benov, L. Is There a Role for Neurotrophic Factors and Their Receptors in Augmenting the Neuroprotective Effect of (−)-Epigallocatechin-3-Gallate Treatment of Sciatic Nerve Crush Injury? Neuropharmacology 2016, 102, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Varejão, A.S.P.; Cabrita, A.M.; Meek, M.F.; Bulas-Cruz, J.; Melo-Pinto, P.; Raimondo, S.; Geuna, S.; Giacobini-Robecchi, M.G. Functional and Morphological Assessment of a Standardized Rat Sciatic Nerve Crush Injury with a Non-Serrated Clamp. J. Neurotrauma 2004, 21, 1652–1670. [Google Scholar] [CrossRef] [PubMed]
- Muller, F. The Nature and Mechanism of Superoxide Production by the Electron Transport Chain: Its Relevance to Aging. J. Am. Aging Assoc. 2000, 23, 227–253. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.-H.; Cai, Q. Mitochondrial Transport in Neurons: Impact on Synaptic Homeostasis and Neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Han, S.M.; Baig, H.S.; Hammarlund, M. Mitochondria Localize to Injured Axons to Support Regeneration. Neuron 2016, 92, 1308–1323. [Google Scholar] [CrossRef]
- Mehboob, I.; Nageshwar, M.; Kumar, M.P.; Reddy, K.P. Curcumin Enhances Nerve Regeneration and Functional Recovery of Peripheral Sciatic Nerve in Rats with Sciatic Nerve Cut and Crush Injury. J. Pharm. Sci. Res. 2023, 15, 991–995. [Google Scholar]
- Delibaş, B.; Kaplan, A.A.; Marangoz, A.H.; Eltahir, M.I.; Altun, G.; Kaplan, S. The Effect of Dietary Sesame Oil and Ginger Oil as Antioxidants in the Adult Rat Dorsal Root Ganglia after Peripheral Nerve Crush Injury. Int. J. Neurosci. 2022, 1–11. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, X.; Wang, L.; Zhang, Q.; Ma, W.; Huang, Z.; Bao, Y.; Zhong, L.; Sun, H.; Ding, F. Isoquercitrin Promotes Peripheral Nerve Regeneration through Inhibiting Oxidative Stress Following Sciatic Crush Injury in Mice. Ann. Transl. Med. 2019, 7, 680. [Google Scholar] [CrossRef]
- Yucel, M.; Aktas, O.Y.; Zengi, O.; Tas, A.; Tufan, A.; Eren, B.; Guzey, F.K. The Effect of Alpha-Lipoic Acid on Nerve Tissue Healing after Sciatic Nerve Crush Injury in Rats. Ann. Med. Res. 2023, 30, 684–691. [Google Scholar] [CrossRef]
- Smith, R.A.J.; Michael, P.M. Mitochondria-Targeted Antioxidants as Therapies. Discov. Med. 2011, 11, 106–114. [Google Scholar] [PubMed]
- Korshunova, G.A.; Shishkina, A.V.; Skulachev, M.V. Design, Synthesis, and Some Aspects of the Biological Activity of Mitochondria-Targeted Antioxidants. Biochemistry 2017, 82, 760–777. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [Google Scholar] [CrossRef] [PubMed]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal Prospects of Antioxidants: A Review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.F.; Kelso, G.F.; Blaikie, F.H.; James, A.M.; Cochemé, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.R.; Smith, R.A.J.; Murphy, M.P. Lipophilic Triphenylphosphonium Cations as Tools in Mitochondrial Bioenergetics and Free Radical Biology. Biochemistry 2005, 70, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, A.; Birgisdóttir, L.; Schäffer, J.; Meszaros, A.T.; Zavadskis, S.; Müllebner, A.; Hecker, M.; Duvigneau, J.C.; Sommer, N.; Kozlov, A.V. Systemic Effects of MitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants 2022, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Akkoca, A.; Büyükakilli, B.; Balli, E.; GültekiN, B.; Özbay, E.; Demirbağ, H.O.; Türkseven, Ç.H. Protective Effect of MitoTEMPO Against Cardiac Dysfunction Caused by Ischemia-Reperfusion: MCAO Stroke Model Study. Int. J. Neurosci. 2023, 1–12. [Google Scholar] [CrossRef]
- Tuncer, S.; Akkoca, A.; Celen, M.C.; Dalkilic, N. Can MitoTEMPO Protect Rat Sciatic Nerve against Ischemia-Reperfusion Injury? Naunyn Schmiedeberg’s Arch. Pharmacol. 2021, 394, 545–553. [Google Scholar] [CrossRef]
- Akkoca, A.; Celen, M.C.; Tuncer, S.; Dalkilic, N. Abdominal Ischemia-Reperfusion Induced Cardiac Dysfunction Can Be Prevented by MitoTEMPO. J. Investig. Surg. 2022, 35, 577–583. [Google Scholar] [CrossRef]
- Rodrigues, S.F.; Granger, D.N. Cerebral Microvascular Inflammation in DOCA Salt-Induced Hypertension: Role of Angiotensin II and Mitochondrial Superoxide. J. Cereb. Blood Flow Metab. 2012, 32, 368–375. [Google Scholar] [CrossRef]
- Ni, R.; Cao, T.; Xiong, S.; Ma, J.; Fan, G.-C.; Lacefield, J.C.; Lu, Y.; Le Tissier, S.; Peng, T. Therapeutic Inhibition of Mitochondrial Reactive Oxygen Species with Mito-TEMPO Reduces Diabetic Cardiomyopathy. Free Radic. Biol. Med. 2016, 90, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Irnich, W. The Terms “Chronaxie” and “Rheobase” Are 100 Years Old. PACE—Pacing Clin. Electrophysiol. 2010, 33, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Cummins, K.L.; Perkel, D.H.; Dorfman, L.J. Nerve Fiber Conduction-Velocity Distributions. I. Estimation Based on the Single-Fiber and Compound Action Potentials. Electroencephalogr. Clin. Neurophysiol 1979, 46, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Cummins, K.L.; Dorfman, L.J.; Perkel, D.H. Nerve Fiber Conduction-Velocity Distributions. II. Estimation Based on Two Compound Action Potentials. Electroencephalogr. Clin. Neurophysiol. 1979, 46, 647–658. [Google Scholar] [CrossRef]
- Huang, T.; Shen, J.; Bao, B.; Hu, W.; Sun, Y.; Zhu, T.; Lin, J.; Gao, T.; Li, X.; Zheng, X. Mitochondrial-Targeting Antioxidant MitoQ Modulates Angiogenesis and Promotes Functional Recovery after Spinal Cord Injury. Brain Res. 2022, 1786, 147902. [Google Scholar] [CrossRef]
- Toraman, M.; Külekçi Öztürk, S.; Uslu Coşkun, B.; Güneş, P. The Effects of 4-Aminopyridine and Methylprednisolone on Recovery of the Facial Nerve Crush Injury. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 3057–3063. [Google Scholar] [CrossRef]
- Tuncer, S.; Dalkilic, N.; Esen, H.H.; Avunduk, M.C. An Early Diagnostic Tool for Diabetic Neuropathy: Conduction Velocity Distribution. Muscle Nerve 2011, 43, 237–244. [Google Scholar] [CrossRef]
- Ramli, D.; Aziz, I.; Mohamad, M.; Abdulahi, D.; Sanusi, J. The Changes in Rats with Sciatic Nerve Crush Injury Supplemented with Evening Primrose Oil: Behavioural, Morphologic, and Morphometric Analysis. Evid. Based Complement. Altern. Med. 2017, 2017, 3476407. [Google Scholar] [CrossRef]
- He, Z.; Zhang, C.; Liang, J.-X.; Zheng, F.-F.; Qi, X.-Y.; Gao, F. Targeting Mitochondrial Oxidative Stress: Potential Neuroprotective Therapy for Spinal Cord Injury. JIN 2023, 22, 153. [Google Scholar] [CrossRef]
SHAM | MiP | MiT | CI | |
---|---|---|---|---|
τ (ms) | 0.56 ± 0.11 | 0.76 ± 0.11 | 0.46 ± 0.07 | 0.66 ± 0.06 |
P (V) | 3.18 ± 0.34 | 4.42 ± 0.38 | 3.50 ± 0.19 | 5.30 ± 0.76 |
R2 | 0.9943 | 0.9927 | 0.9855 | 0.9914 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celen, M.C.; Akkoca, A.; Tuncer, S.; Dalkilic, N.; Ilhan, B. Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Biomedicines 2023, 11, 3306. https://doi.org/10.3390/biomedicines11123306
Celen MC, Akkoca A, Tuncer S, Dalkilic N, Ilhan B. Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Biomedicines. 2023; 11(12):3306. https://doi.org/10.3390/biomedicines11123306
Chicago/Turabian StyleCelen, Murat Cenk, Ahmet Akkoca, Seckin Tuncer, Nizamettin Dalkilic, and Barkin Ilhan. 2023. "Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis" Biomedicines 11, no. 12: 3306. https://doi.org/10.3390/biomedicines11123306
APA StyleCelen, M. C., Akkoca, A., Tuncer, S., Dalkilic, N., & Ilhan, B. (2023). Protective vs. Therapeutic Effects of Mitochondria-Targeted Antioxidant MitoTEMPO on Rat Sciatic Nerve Crush Injury: A Comprehensive Electrophysiological Analysis. Biomedicines, 11(12), 3306. https://doi.org/10.3390/biomedicines11123306