Cervical Sagittal Balance: Impact on Clinical Outcomes and Subsidence in Anterior Cervical Discectomy and Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedure and Implants
2.3. Radiological Assessment and Subsidence Criteria
2.4. Clinical Assessment
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. CSB Parameters
3.2. Clinical Outcomes
3.3. Subsidence
4. Discussion
4.1. Cervical Sagittal Balance and Subsidence
4.2. Cervical Sagittal Balance and Clinical Outcomes
4.3. Study Limitations and Prospectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrey, C.; Roussouly, P.; Perrin, G.; Le Huec, J.C. Sagittal Balance Disorders in Severe Degenerative Spine. Can We Identify the Compensatory Mechanisms? Eur. Spine J. 2011, 20, 626. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.C.; Thompson, W.; Mohsinaly, Y.; Barrey, C.; Faundez, A. Sagittal Balance of the Spine. Eur. Spine J. 2019, 28, 1889–1905. [Google Scholar] [CrossRef] [PubMed]
- Barrey, C.; Jund, J.; Noseda, O.; Roussouly, P. Sagittal Balance of the Pelvis-Spine Complex and Lumbar Degenerative Diseases. A Comparative Study about 85 Cases. Eur. Spine J. 2007, 16, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Zaidman, N.; De Witte, O. Cervical Sagittal Balance: A Predictor of Neck Pain after Anterior Cervical Spine Surgery? Br. J. Neurosurg. 2020, 37, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Ling, F.P.; Chevillotte, T.; Leglise, A.; Thompson, W.; Bouthors, C.; Le Huec, J.C. Which Parameters Are Relevant in Sagittal Balance Analysis of the Cervical Spine? A Literature Review. Eur. Spine J. 2018, 27, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.D.; Harrison, D.E.; Janik, T.J.; Cailliet, R.; Ferrantelli, J.R.; Haas, J.W.; Holland, B. Modeling of the Sagittal Cervical Spine as a Method to Discriminate Hypolordosis: Results of Elliptical and Circular Modeling in 72 Asymptomatic Subjects, 52 Acute Neck Pain Subjects, and 70 Chronic Neck Pain Subjects. Spine 2004, 29, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, H.; Yang, H.; Pi, B. Relationship Between Sagittal Balance and Axial Symptoms in Patients with Cervical Spondylotic Myelopathy Treated with Anterior Cervical Discectomy and Fusion. J. Investig. Surg. 2020, 33, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.C.; Demezon, H.; Aunoble, S. Sagittal Parameters of Global Cervical Balance Using EOS Imaging: Normative Values from a Prospective Cohort of Asymptomatic Volunteers. Eur. Spine J. 2015, 24, 63–71. [Google Scholar] [CrossRef]
- Diebo, B.G.; Challier, V.; Henry, J.K.; Oren, J.H.; Spiegel, M.A.; Vira, S.; Tanzi, E.M.; Liabaud, B.; Lafage, R.; Protopsaltis, T.S.; et al. Predicting Cervical Alignment Required to Maintain Horizontal Gaze Based on Global Spinal Alignment. Spine 2016, 41, 1795–1800. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, W.K.; Li, M.; Wang, S.B.; Sun, Y.; Jiang, L.; Wei, F.; Liu, X.G.; Zeng, L.; Liu, Z.J. Analysis of Cervical and Global Spine Alignment under Roussouly Sagittal Classification in Chinese Cervical Spondylotic Patients and Asymptomatic Subjects. Eur. Spine J. 2015, 24, 1265–1273. [Google Scholar] [CrossRef]
- Obermueller, T.; Wagner, A.; Kogler, L.; Joerger, A.K.; Lange, N.; Lehmberg, J.; Meyer, B.; Shiban, E. Radiographic Measurements of Cervical Alignment, Fusion and Subsidence after ACDF Surgery and Their Impact on Clinical Outcome. Acta Neurochir. 2020, 162, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Sartori, M.; Griffoni, C.; Valacco, M.; Tedesco, G.; Davassi, P.F.; Gasbarrini, A.; Fini, M.; Barbanti Brodano, G. Complications in Spinal Fusion Surgery: A Systematic Review of Clinically Used Cages. J. Clin. Med. 2022, 11, 6279. [Google Scholar] [CrossRef] [PubMed]
- Godlewski, B.; Bebenek, A.; Dominiak, M.; Karpinski, G.; Cieslik, P.; Pawelczyk, T. Subsidence Following Cervical Discectomy and Implant-to-Bone Ratio. BMC Musculoskelet. Disord. 2022, 23, 750. [Google Scholar] [CrossRef] [PubMed]
- Noordhoek, I.; Koning, M.T.; Jacobs, W.C.H.; Vleggeert-Lankamp, C.L.A. Incidence and Clinical Relevance of Cage Subsidence in Anterior Cervical Discectomy and Fusion: A Systematic Review. Acta Neurochir. 2018, 160, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Godlewski, B.; Bebenek, A.; Dominiak, M.; Karpinski, G.; Cieslik, P.; Pawelczyk, T. PEEK versus Titanium-Coated PEEK Cervical Cages: Fusion Rate. Acta Neurochir. 2022, 164, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.; Cheong, C.K.; Hey, H.W.D. Titanium (Ti) Cages May Be Superior to Polyetheretherketone (PEEK) Cages in Lumbar Interbody Fusion: A Systematic Review and Meta-Analysis of Clinical and Radiological Outcomes of Spinal Interbody Fusions Using Ti versus PEEK Cages. Eur. Spine J. 2021, 30, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, H.; Hoshino, M.; Omori, K.; Matsuzaki, H.; Nemoto, Y.; Tsuruta, T.; Yamasaki, K. Factors Influencing Interbody Cage Subsidence Following Anterior Cervical Discectomy and Fusion. Clin. Spine Surg. 2019, 32, 297–302. [Google Scholar] [CrossRef]
- Barsa, P.; Suchomel, P. Factors Affecting Sagittal Malalignment Due to Cage Subsidence in Standalone Cage Assisted Anterior Cervical Fusion. Eur. Spine J. 2007, 16, 1395–1400. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.S.; Sung, S.K.; Son, D.W.; Lee, S.W.; Song, G.S. A Lower T1 Slope as a Predictor of Subsidence in Anterior Cervical Discectomy and Fusion with Stand-Alone Cages. J. Korean Neurosurg. Soc. 2017, 60, 567–576. [Google Scholar] [CrossRef]
- Arumalla, K.; Bansal, H.; Jadeja, J.; Batish, A.; Deora, H.; Tripathi, M.; Mohindra, S.; Behari, S. Anterior Approach to the Cervical Spine: Elegance Lies in Its Simplicity. Asian J. Neurosurg. 2021, 16, 669–684. [Google Scholar] [CrossRef]
- Karikari, I.O.; Jain, D.; Owens, T.R.; Gottfried, O.; Hodges, T.R.; Nimjee, S.M.; Bagley, C.A. Impact of Subsidence on Clinical Outcomes and Radiographic Fusion Rates in Anterior Cervical Discectomy and Fusion: A Systematic Review. J. Spinal Disord. Tech. 2014, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.A.; Lambert, B.S.; Boutris, N.; McCulloch, P.C.; Robbins, A.B.; Moreno, M.R.; Harris, J.D. Validation of Digital Visual Analog Scale Pain Scoring with a Traditional Paper-Based Visual Analog Scale in Adults. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2018, 2, e088. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H.; Mior, S. The Neck Disability Index: A Study of Reliability and Validity. J. Manip. Physiol. Ther. 1991, 14, 409–415. [Google Scholar]
- Jackson, R.P.; McManus, A.C. Radiographic Analysis of Sagittal Plane Alignment and Balance in Standing Volunteers and Patients with Low Back Pain Matched for Age, Sex, and Size. A Prospective Controlled Clinical Study. Spine 1994, 19, 1611–1618. [Google Scholar] [CrossRef]
- Legaye, J.; Duval-Beaupère, G.; Hecquet, J.; Marty, C. Pelvic Incidence: A Fundamental Pelvic Parameter for Three-Dimensional Regulation of Spinal Sagittal Curves. Eur. Spine J. 1998, 7, 99–103. [Google Scholar] [CrossRef]
- Vedantam, R.; Lenke, L.G.; Keeney, J.A.; Bridwell, K.H. Comparison of Standing Sagittal Spinal Alignment in Asymptomatic Adolescents and Adults. Spine 1998, 23, 211–215. [Google Scholar] [CrossRef]
- Lecoq, C.; Jacquemier, M.; Dutour, O.; Jouve, J.; Garron, E.; Bollini, G. [Sagittal equilibrium of the pelvis: Analysis of the inclination of the ischio-pubic ramus from the horizontal]. Rev. Chir. Orthop. Reparatrice Appar. Mot. 2000, 86, 390–395. [Google Scholar]
- Ten Have, H.A.M.J.; Eulderink, F. Degenerative Changes in the Cervical Spine and Their Relationship to Its Mobility. J. Pathol. 1980, 132, 133–159. [Google Scholar] [CrossRef]
- Oe, S.; Yamato, Y.; Togawa, D.; Kurosu, K.; Mihara, Y.; Banno, T.; Yasuda, T.; Kobayashi, S.; Hasegawa, T.; Matsuyama, Y. Preoperative T1 Slope More Than 40° as a Risk Factor of Correction Loss in Patients with Adult Spinal Deformity. Spine 2016, 41, e1168–e1176. [Google Scholar] [CrossRef]
- Park, S.M.; Song, K.S.; Park, S.H.; Kang, H.; Daniel Riew, K. Does Whole-Spine Lateral Radiograph with Clavicle Positioning Reflect the Correct Cervical Sagittal Alignment? Eur. Spine J. 2015, 24, 57–62. [Google Scholar] [CrossRef]
- Hey, H.W.D.; Lau, E.T.C.; Wong, G.C.; Tan, K.A.; Liu, G.K.P.; Wong, H.K. Cervical Alignment Variations in Different Postures and Predictors of Normal Cervical Kyphosis. Spine 2017, 42, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Jalai, C.M.; Passias, P.G.; Lafage, V.; Smith, J.S.; Lafage, R.; Poorman, G.W.; Diebo, B.; Liabaud, B.; Neuman, B.J.; Scheer, J.K.; et al. A Comparative Analysis of the Prevalence and Characteristics of Cervical Malalignment in Adults Presenting with Thoracolumbar Spine Deformity Based on Variations in Treatment Approach over 2 Years. Eur. Spine J. 2016, 25, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Wang, J.; Tuchman, A.; Wang, J.; Fu, C.; Hsieh, P.C.; Buser, Z.; Wang, J.C. Influence of T1 Slope on the Cervical Sagittal Balance in Degenerative Cervical Spine. Spine 2016, 41, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Poblete, J.; Martinez-Anda, J.J.; Rebollar-Mendoza, A.A.; Castro-Moreno, Y.; Torne, R.; Reyes, L.; Fuster, S.; Tornero, E.; Arch-Tirado, E.; de Leo-Vargas, R.; et al. Clinical and Radiological Outcome in a Series of Patients Treated by Anterior Cervical Discectomy and Fusion: Retrospective Controlled Study with 2 Different Stand-Alone Cages. Int. J. Spine Surg. 2022, 16, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Kelly, M.P.; Lee, D.H.; Min, W.K.; Rahman, R.K.; Riew, K.D. Sagittal Alignment as a Predictor of Clinical Adjacent Segment Pathology Requiring Surgery after Anterior Cervical Arthrodesis. Spine J. 2014, 14, 1228–1234. [Google Scholar] [CrossRef]
- Teo, A.Q.A.; Thomas, A.C.; Hey, H.W.D. Sagittal Alignment of the Cervical Spine: Do We Know Enough for Successful Surgery? J. Spine Surg. 2020, 6, 124. [Google Scholar] [CrossRef]
- Tang, J.A.; Scheer, J.K.; Smith, J.S.; Deviren, V.; Bess, S.; Hart, R.A.; Lafage, V.; Shaffrey, C.I.; Schwab, F.; Ames, C.P. The Impact of Standing Regional Cervical Sagittal Alignment on Outcomes in Posterior Cervical Fusion Surgery. Neurosurgery 2012, 71, 662–669. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Age, y, mean (range) (SD) | 51, (31–73) (10, 24) |
≥60 y, n (%) | 19 (20%) |
Gender: female, n (%) | 67 (71%) |
Type of spinal fusion: | |
Single-level, n (%) | 30 (32%) |
Double-level, n (%) | 65 (68%) |
C3/C4, n | 2 (2.1%) |
C4/C5, n | 0 (0%) |
C5/C6, n | 26 (28.4%) |
C6/C7, n | 2 (2.1%) |
C3–C5, n | 4 (4.2%) |
C4–C6, n | 15 (15.8%) |
C5–C7, n | 46 (48.4%) |
Implant material: | |
PEEK, n (%) | 57 (60%) |
TC-PEEK, n (%) | 38 (40%) |
Parameter | Description |
---|---|
C2–C7 saggital vertical axis (cSVA) | The distance from the posterior superior corner of C7 to the plumbline from the centroid of C2. |
Spinocranial angle (SCA) | The angle is measured as the deviation between the slope of C7 and the straight line that connects the midpoint of the C7 end plate to the midpoint of the sella turcica. |
C7 slope | The angle between a horizontal line and the superior endplate of C7. |
C2–C7 lordosis | The angle between the C2 and C7 lower endplates. |
Segmental angle | The Cobb’s angle between the lower endplates of the fused vertebrae. |
Parameter | Preoperative a | Postoperative b | After 12 mo Follow-Up c | ∆ pre-12 m d | |
---|---|---|---|---|---|
C2–C7 SVA [mm] | Mean: | 23.5 (SD ± 11.5) | 26 (SD ± 10.6) | 22.3 (SD ± 10.7) | 5.8 (SD ± 5.7) |
Median: | 22 | 24.4 | 22.4 | - | |
SCA [°] | Mean: | 81 (SD ± 9.8) | 79.5 (SD ± 7.3) | 79.9 (SD ± 8.3) | 7.1 (SD ± 5.1) |
Median: | 79.8 | 79.9 | 79.7 | - | |
C2–C7 lordosis [°] | Mean: | 9.5 (SD ± 10.7) | 9.9 (SD ± 8.7) | 10.9 (SD ± 8.7) | 7 (SD ± 7.8) |
Median: | 8.6 | 8.3 | 9.6 | - | |
C7 slope [°] | Mean: | 20.5 (SD ± 7.7) | 22.6 (SD ± 7.4) | 20.3 (SD ± 7.2) | 5.1 (SD ± 3.7) |
Median: | 21 | 21.5 | 19.7 | - | |
Segmental angle [°] | Mean: | 6.2 (SD ± 6.1) | 7.3 (SD ± 7.4) | 6.1 (SD ± 6.5) | 4.9 (SD ± 5.1) |
Median: | 5.5 | 6 | 5.6 | - |
NDI ≤ 14 pts | VAS < 1 pts | |||||||
---|---|---|---|---|---|---|---|---|
N of Patients (%): | 78 (82.1%) | 17 (17.9%) | 16 (16.8%) | 79 (83.2%) | ||||
Yes | No | p Value a | Yes | No | p Value a | |||
SVA 12 M [mm] | Mean: | 12 M | 22.6 | 21.9 | 0.3223 | 23 | 19.5 | 0.3204 |
∆: | 5.4 | 7.4 | 0.2112 | 6.0 | 5.7 | 0.4210 | ||
SCA 12 M [°] | 12 M: | 80.2 | 79.3 | 0.4809 | 84 | 79 | 0.0307 | |
∆ | 7.4 | 6.2 | 0.4777 | 8.6 | 6.9 | 0.3059 | ||
C2–C7 lordosis 12 M [°] | 12 M: | 10.33 | 10.8 | 0.7635 | 8.8 | 9.7 | 0.6678 | |
∆ | 5.8 | 7.7 | 0.7310 | 8.5 | 6.6 | 0.2221 | ||
C7 slope 12 M [°] | 12 M: | 19 | 22 | 0.0406 | 18.1 | 20.9 | 0.1339 | |
∆ | 5.4 | 4.1 | 0.0522 | 6.8 | 4.7 | 0.0453 | ||
Segmental angle 12 M [°] | 12 M: | 6.8 | 3.8 | 0.0417 | 4.9 | 5.7 | 0.5224 | |
∆ | 5.1 | 4.7 | 0.7832 | 5.5 | 4.6 | 0.5812 |
Preoperative | Postoperative | After Follow-Up | |||||
---|---|---|---|---|---|---|---|
Parameter | Subsidence | Mean | p Value | Mean | p Value | Mean | p Value |
C2–C7 SVA [mm] | Yes | 26.03 | 0.0478 a | 27.80 | 0.0491 a | 23.09 | 0.4722 b |
No | 21.79 | 0.0182 c | 24.94 | 0.0449 c | 21.81 | 0.3499 c | |
SCA [°] | Yes | 81.39 | 0.7687 b | 79.38 | 0.8089 b | 79.95 | 0.9969 b |
No | 80.78 | 0.8476 c | 79.75 | 0.4435 c | 79.95 | 0.4758 c | |
C2–C7 lordosis [°] | Yes | 9.30 | 0.8197 a | 9.03 | 0.5818 a | 10.64 | 0.6134 a |
No | 9.69 | 0.5080 c | 10.49 | 0.8073 c | 11.05 | 0.9191 c | |
C7 slope [°] | Yes | 21.07 | 0.5388 b | 22.64 | 0.9589 b | 20.37 | 0.9565 a |
No | 20.07 | 0.5080 c | 22.56 | 0.7244 c | 20.29 | 0.7051 c | |
Segmental (Cobb) angle [°] | Yes | 5.82 | 0.8405 a | 6.02 | 0.0406 a | 7.39 | 0.0072 a |
No | 6.43 | 0.4745 c | 8.22 | 0.1738 c | 4.12 | 0.0144 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bębenek, A.; Dominiak, M.; Godlewski, B. Cervical Sagittal Balance: Impact on Clinical Outcomes and Subsidence in Anterior Cervical Discectomy and Fusion. Biomedicines 2023, 11, 3310. https://doi.org/10.3390/biomedicines11123310
Bębenek A, Dominiak M, Godlewski B. Cervical Sagittal Balance: Impact on Clinical Outcomes and Subsidence in Anterior Cervical Discectomy and Fusion. Biomedicines. 2023; 11(12):3310. https://doi.org/10.3390/biomedicines11123310
Chicago/Turabian StyleBębenek, Adam, Maciej Dominiak, and Bartosz Godlewski. 2023. "Cervical Sagittal Balance: Impact on Clinical Outcomes and Subsidence in Anterior Cervical Discectomy and Fusion" Biomedicines 11, no. 12: 3310. https://doi.org/10.3390/biomedicines11123310
APA StyleBębenek, A., Dominiak, M., & Godlewski, B. (2023). Cervical Sagittal Balance: Impact on Clinical Outcomes and Subsidence in Anterior Cervical Discectomy and Fusion. Biomedicines, 11(12), 3310. https://doi.org/10.3390/biomedicines11123310