BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Samples
2.2. RNA and DNA Isolation
2.3. BRAF Mutational Analysis
2.4. Reverse Transcription and Quantitative Real-Time PCR for BANCR
2.5. Reverse Transcription and Quantitative Real-Time PCR for miR-203a-3p and miR-204-3p
2.6. Bioinformatic Analysis
2.7. Statistical Data Analysis
3. Results
3.1. The Expression of miR-203a-3p and miR-204-3p in the BRAFV600E-Positive and BRAFV600E-Negative PTC
3.2. Correlation of miR-203a-3p and miR-204-3p Expression with Clinicopathological Parameters of the BRAFV600E-Positive and BRAFV600E-Negative PTC
3.3. Bioinformatic Analysis and Prediction of Interaction between miR-203a-3p/miR-204-3p and BANCR
3.4. Mutual Expression of miRs (miR-203a-3p or miR-204-3p) and BANCR with the Occurrence of the BRAFV600E Mutation and Extrathyroidal Invasion of PTC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Fukushima, M.; Higashiyama, T.; Miya, A. Overall Survival of Papillary Thyroid Carcinoma Patients: A Single-Institution Long-Term Follow-Up of 5897 Patients. World J. Surg. 2018, 42, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Chmielik, E.; Rusinek, D.; Oczko-Wojciechowska, M.; Jarzab, M.; Krajewska, J.; Czarniecka, A.; Jarzab, B. Heterogeneity of Thyroid Cancer. Pathobiology 2018, 85, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 2005, 12, 245–262. [Google Scholar] [CrossRef]
- Tufano, R.P.; Teixeira, G.V.; Bishop, J.; Carson, K.A.; Xing, M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: A systematic review and meta-analysis. Medicine 2012, 91, 274–286. [Google Scholar] [CrossRef]
- Russo, M.; Malandrino, P.; Nicolosi, M.L.; Manusia, M.; Marturano, I.; Trovato, M.A.; Pellegriti, G.; Frasca, F.; Vigneri, R. The BRAF(V600E) mutation influences the short- and medium-term outcomes of classic papillary thyroid cancer, but is not an independent predictor of unfavorable outcome. Thyroid 2014, 24, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaeian, H.; Peiling Yang, S.; Tay, Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers 2020, 12, 3264. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef]
- Yang, M.; Tian, J.; Guo, X.; Yang, Y.; Guan, R.; Qiu, M.; Li, Y.; Sun, X.; Zhen, Y.; Zhang, Y.; et al. Long noncoding RNAs are aberrantly expressed in human papillary thyroid carcinoma. Oncol. Lett. 2016, 12, 544–552. [Google Scholar] [CrossRef]
- Flockhart, R.J.; Webster, D.E.; Qu, K.; Mascarenhas, N.; Kovalski, J.; Kretz, M.; Khavari, P.A. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012, 22, 1006–1014. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Q.; Zhao, Y.; Chen, J.; Wang, S.; Hu, J.; Sun, Y. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol. Lett. 2014, 8, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Qu, N.; Shi, R.-L.; Guo, K.; Ma, B.; Cao, Y.-M.; Xiang, J.; Lu, Z.-W.; Zhu, Y.-X.; Li, D.-S.; et al. BRAF-activated LncRNA functions as a tumor suppressor in papillary thyroid cancer. Oncotarget 2017, 8, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Hussen, B.M.; Azimi, T.; Abak, A.; Hidayat, H.J.; Taheri, M.; Ghafouri-Fard, S. Role of lncRNA BANCR in Human Cancers: An Updated Review. Front. Cell Dev. Biol. 2021, 9, 689992. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, S.; Šelemetjev, S.; Đorić, I.; Rončević, J.; Miljuš, J.J.; Živaljević, V.; Denčić, T.I. Elevated BANCR expression levels have different effects on papillary thyroid carcinoma progression depending on the presence of the BRAFV600E mutation. Eur. J. Surg. Oncol. 2020, 46, 1835–1842. [Google Scholar] [CrossRef]
- Farazi, T.A.; Hoell, J.I.; Morozov, P.; Tuschl, T. MicroRNAs in human cancer. Adv. Exp. Med. Biol. 2013, 774, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Fuziwara, C.S.; Kimura, E.T. MicroRNAs in thyroid development, function and tumorigenesis. Mol. Cell Endocrinol. 2017, 456, 44–50. [Google Scholar] [CrossRef]
- Dai, Q.; Li, J.; Zhou, K.; Liang, T. Competing endogenous RNA: A novel posttranscriptional regulatory dimension associated with the progression of cancer. Oncol. Lett. 2015, 10, 2683–2690. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, S.M.; Chen, Z.H.; Huv, S.X.; Huang, K.; Huang, B.J.; Du, J.L.; Huang, C.M.; Peng, L.; Jian, Z.X.; et al. MiR-204 regulates HMGA2 expression and inhibits cell proliferation in human thyroid cancer. Cancer Biomark. 2015, 15, 535–542. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Li, X.; Ma, J.; Shi, C.; Zhu, H.; Xi, Q.; Zhang, J.; Zhao, X.; Gu, M. MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 2015, 457, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, S.; Dobrijević, Z.; Šelemetjev, S.; Đorić, I.; Janković Miljuš, J.; Živaljević, V.; Išić Denčić, T. MiR-203a-3p, miR-204-3p, miR-222-3p as useful diagnostic and prognostic tool for thyroid neoplasia spectrum. Endocrine 2023, 79, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yang, D.; Liu, Y.; Wang, Y.; Lin, T.; Li, Y.; Yang, S.; Zhang, W.; Zhang, R. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging 2018, 10, 2062–2078. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Zheng, Y.; Ma, S.; Xing, Q.; Wang, X.; Yang, B.; Yin, G.; Guan, F. BANCR contributes to the growth and invasion of melanoma by functioning as a competing endogenous RNA to upregulate Notch2 expression by sponging miR 204. Int. J. Oncol. 2017, 51, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.X.; Wang, R.R.; Liu, N.; Liu, C. Dysregulation of miR-204-3p Driven by the Viability and Motility of Retinoblastoma via Wnt/β-catenin Pathway In Vitro and In Vivo. Pathol. Oncol. Res. 2020, 26, 549–1558. [Google Scholar] [CrossRef]
- LiVolsi, V.A.; Albores-Saavedra, J.; Asa, S.L.; Baloch, Z.W.; Sobrinho-Simões, M.; Wenig, B.; DeLellis, R.A.; Cady, B.; Mazzaferri, E.L.; Hay, I.; et al. Papillary carcinoma. In World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Endocrine Organs; DeLellis, R.A., Lloyd, R., Heitz, P.U., Eng, C., Eds.; IARC Press: Lyon, France, 2004; pp. 50–66. [Google Scholar]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010; pp. 87–96. [Google Scholar]
- Basolo, F.; Torregrossa, L.; Giannini, R.; Miccoli, M.; Lupi, C.; Sensi, E.; Berti, P.; Elisei, R.; Vitti, P.; Baggiani, A.; et al. Correlation between BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: Analysis of 1060 cases. J. Clin. Endocrinol. Metab. 2010, 95, 4197–4205. [Google Scholar] [CrossRef]
- Ito, Y.; Kudo, T.; Kobayashi, K.; Miya, A.; Ichihara, K.; Miyauchi, A. Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: Analysis of 5,768 patients with average 10-year follow-up. World J. Surg. 2012, 36, 1274–1278. [Google Scholar] [CrossRef]
- Išić Denčić, T.; Bartolome, A.; Šelemetjev, S.; Đorić, I.; Tatić, S.; Živaljević, V.; Cvejić, D. High expression and localization of β-catenin and epidermal growth factor receptor identify high-risk papillary thyroid carcinoma patients. Exp. Mol. Pathol. 2018, 105, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, X.; Fu, X.; Yan, W.; Lin, F.; Kuang, P.; Luo, Y.; Lin, E.; Hong, X.; Wu, G. Long non-coding RNA BANCR regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK signaling pathway. Oncol. Rep. 2018, 40, 859–866. [Google Scholar] [CrossRef]
- Shi, C.; Cao, J.; Shi, T.; Liang, M.; Ding, C.; Lv, Y.; Zhang, W.; Li, C.; Gao, W.; Wu, G.; et al. BRAFV600E mutation, BRAF-activated long non-coding RNA, and miR-9 expression in papillary thyroid carcinoma, and their association with clinicopathological features. World J. Surg. Oncol. 2020, 18, 145. [Google Scholar] [CrossRef]
Method | Primer | Sequence |
---|---|---|
MASA | BRAF-fw_a (for wild type) | 5′-GTGATTTTGGTCTAGCTACAGT-3′ |
BRAF-fw_b (for BRAFV600E) | 5′-GTGATTTTGGTCTAGCTACAGA-3′ | |
BRAF-rv | 5′-GGCCAAAAATTTAATCAGTGGA-3′ | |
RT-PCR | miR-u6-RT | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACG ACAAAAATATGG-3′ |
miR-203a-3p-RT | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACG ACCTAGTG-3′ | |
miR-204-3p-RT | 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACG ACACGTCC-3′ | |
qPCR | BANCR-fw | 5′-ACAGGACTCCATGGCAAACG-3′ |
BANCR-rv | 5′-ATGAAGAAAGCCTGGTGCAGT-3′ | |
GAPDH-fw | 5′-GAAGGTGAAGGTCGGAGT-3′ | |
GAPDH-rv | 5′-GAAGATGGTGATGGGATTTC-3′ | |
universal miR-rv | 5′-CCAGTGCAGGGTCCGAGGTAT-3′ | |
miR-U6-fw | 5′-GCGGTCGCAAGGATGACACG-3′ | |
miR-203a-3p-fw | 5′-CGGCGGTGTGAAATGTTTAGGAC-3′ | |
miR-204-3p-fw | 5′-GCGGTGCUGGGAAGGCAAAG-3′ |
Tissue | miR | N | Mean | SD | Min | Max | Percentiles | ||
---|---|---|---|---|---|---|---|---|---|
25th | 50th (Median) | 75th | |||||||
NMT adjacent to the BRAFV600E-positive PTC | miR-203a-3p | 55 | 0.0062 | 0.0079 | 0.0001 | 0.0499 | 0.0017 | 0.0041 | 0.0068 |
miR-204-3p | 55 | 0.0029 | 0.0071 | 0.0001 | 0.0400 | 0.0006 | 0.0014 | 0.0022 | |
BRAFV600E-positive PTC | miR-203a-3p | 55 | 0.0048 | 0.0070 | 0.0001 | 0.0408 | 0.0007 | 0.0021 | 0.0061 |
miR-204-3p | 55 | 0.0013 | 0.0023 | 0.00003 | 0.0140 | 0.0002 | 0.0005 | 0.0013 | |
NMT adjacent to the BRAFV600E-negative PTC | miR-203a-3p | 21 | 0.0046 | 0.0046 | 0.0002 | 0.0186 | 0.0015 | 0.0036 | 0.0053 |
miR-204-3p | 21 | 0.0013 | 0.0010 | 0.0000 | 0.0031 | 0.0004 | 0.0012 | 0.0024 | |
BRAFV600E-negative PTC | miR-203a-3p | 21 | 0.0044 | 0.0065 | 0.00002 | 0.0238 | 0.0004 | 0.0020 | 0.0048 |
miR-204-3p | 21 | 0.0166 | 0.0717 | 0.0002 | 0.3294 | 0.00027 | 0.0006 | 0.0012 |
Sample | Parameter | Age | Size | DTI | Ei | ID | Lnm | pT | pTNM | |
---|---|---|---|---|---|---|---|---|---|---|
BRAFV600E-negative PTC | miR-203a-3p expression | r | −0.320 | 0.278 | −0.092 | 0.030 | −0.430 | 0.023 | 0.154 | −0.108 |
p | 0.157 | 0.223 | 0.692 | 0.897 | 0.052 | 0.921 | 0.504 | 0.642 | ||
N | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | ||
miR-204-3p expression | r | 0.031 | 0.119 | −0.393 | −0.452 * | −0.552 ** | −0.266 | −0.463 * | −0.306 | |
p | 0.893 | 0.608 | 0.078 | 0.040 | 0.010 | 0.244 | 0.034 | 0.177 | ||
N | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | ||
BRAFV600E-positive PTC | miR-203a-3p expression | r | 0.131 | −0.217 | 0.311 * | 0.282 * | 0.020 | −0.090 | 0.049 | 0.104 |
p | 0.342 | 0.112 | 0.021 | 0.037 | 0.885 | 0.515 | 0.721 | 0.448 | ||
N | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | ||
miR-204-3p expression | r | −0.140 | 0.000 | −0.078 | 0.052 | −0.090 | −0.172 | −0.094 | −0.057 | |
p | 0.307 | 1.000 | 0.570 | 0.708 | 0.513 | 0.210 | 0.493 | 0.677 | ||
N | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 |
PTC | Parameter | Extrathyroidal Invasion (Number of Cases) | p Value | |
---|---|---|---|---|
No | Yes | |||
BRAFV600E negative | miR-203a-3p low and BANCR downregulated | 5 | 1 | 0.378 |
miR-203a-3p low or BANCR downregulated | 7 | 2 | ||
miR-203a-3p high and BANCR upregulated | 3 | 3 | ||
miR-204-3p high and BANCR downregulated | 6 | 0 | 0.033 * | |
miR-204-3p low or BANCR upregulated | 7 | 2 | ||
miR-204-3p low and BANCR upregulated | 2 | 4 | ||
BRAFV600E positive | miR-203a-3p low and BANCR downregulated | 18 | 1 | 0.009 ** |
miR-203a-3p high or BANCR upregulated | 19 | 13 | ||
miR-203a-3p high and BANCR upregulated | 4 | 0 | ||
miR-204-3p high and BANCR downregulated | 16 | 7 | 0.763 | |
miR-204-3p low or BANCR upregulated | 22 | 6 | ||
miR-204-3p low and BANCR upregulated | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, S.; Šelemetjev, S.; Đorić, I.; Janković Miljuš, J.; Tatić, S.; Živaljević, V.; Išić Denčić, T. BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients. Biomedicines 2023, 11, 3338. https://doi.org/10.3390/biomedicines11123338
Stojanović S, Šelemetjev S, Đorić I, Janković Miljuš J, Tatić S, Živaljević V, Išić Denčić T. BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients. Biomedicines. 2023; 11(12):3338. https://doi.org/10.3390/biomedicines11123338
Chicago/Turabian StyleStojanović, Stefana, Sonja Šelemetjev, Ilona Đorić, Jelena Janković Miljuš, Svetislav Tatić, Vladan Živaljević, and Tijana Išić Denčić. 2023. "BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients" Biomedicines 11, no. 12: 3338. https://doi.org/10.3390/biomedicines11123338
APA StyleStojanović, S., Šelemetjev, S., Đorić, I., Janković Miljuš, J., Tatić, S., Živaljević, V., & Išić Denčić, T. (2023). BRAFV600E, BANCR, miR-203a-3p and miR-204-3p in Risk Stratification of PTC Patients. Biomedicines, 11(12), 3338. https://doi.org/10.3390/biomedicines11123338