High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Thyroid Cancer Incidence in Southeast Tuscany
3.2. Clinical and Pathological Features of TC Patients (n = 226) Living in Grosseto Province
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grani, G.; Sponziello, M.; Pecce, V.; Ramundo, V.; Durante, C. Contemporary Thyroid Nodule Evaluation and Management. J. Clin. Endocrinol. Metab. 2020, 105, 2869–2883. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Da, D.; Zheng, M. Hyperfunctioning thyroid carcinoma: A systematic review. Mol. Clin. Oncol. 2019, 11, 535–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorusso, L.; Cappagli, V.; Valerio, L.; Giani, C.; Viola, D.; Puleo, L.; Gambale, C.; Minaldi, E.; Campopiano, M.; Matrone, A.; et al. Thyroid Cancers: From Surgery to Current and Future Systemic Therapies through Their Molecular Identities. Int. J. Mol. Sci. 2021, 22, 3117. [Google Scholar] [CrossRef] [PubMed]
- AJCC Cancer Staging Manual; Springer: New York, NY, USA, 2017; Available online: https://link.springer.com/book/9783319406176 (accessed on 1 May 2022).
- Tuttle, R.M.; Alzahrani, A.S. Risk Stratification in Differentiated Thyroid Cancer: From Detection to Final Follow-Up. J. Clin. Endocrinol. Metab. 2019, 104, 4087–4100. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Viola, D.; Elisei, R. Management of Medullary Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 285–301. [Google Scholar] [CrossRef]
- Deng, Y.; Li, H.; Wang, M.; Li, N.; Tian, T.; Wu, Y.; Xu, P.; Yang, S.; Zhai, Z.; Zhou, L.; et al. Global Burden of Thyroid Cancer From 1990 to 2017. JAMA Netw. Open 2020, 3, e208759. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Maso, L.D. Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis. N. Engl. J. Med. 2016, 375, 614–617. [Google Scholar] [CrossRef]
- Li, M.; Maso, L.D.; Vaccarella, S. Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 2020, 8, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Udelsman, R.; Zhang, Y. The Epidemic of Thyroid Cancer in the United States: The Role of Endocrinologists and Ultrasounds. Thyroid 2014, 24, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013, 2013, 965212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Pfeiffer, R.M.; Sosa, J.A.; Shiels, M.S. Impact of Overweight and Obesity on US Papillary Thyroid Cancer Incidence Trends (1995–2015). Gynecol. Oncol. 2020, 112, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Megwalu, U.C.; Moon, P.K. Thyroid Cancer Incidence and Mortality Trends in the United States: 2000–2018. Thyroid 2022, 32, 560–570. [Google Scholar] [CrossRef]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef]
- Davies, L.; Morris, L.; Hankey, B. Increases in Thyroid Cancer Incidence and Mortality. JAMA 2017, 318, 389–390. [Google Scholar] [CrossRef]
- Marcello, M.A.; Malandrino, P.; Almeida, J.; Martins, M.B.; Cunha, L.L.; Bufalo, N.E.; Pellegriti, G.; Ward, L.S. The influence of the environment on the development of thyroid tumors: A new appraisal. Endocr. Relat. Cancer 2014, 21, T235–T254. [Google Scholar] [CrossRef]
- Lise, M.; Franceschi, S.; Buzzoni, C.; Zambon, P.; Falcini, F.; Crocetti, E.; Serraino, D.; Iachetta, F.; Zanetti, R.; Vercelli, M.; et al. Changes in the Incidence of Thyroid Cancer Between 1991 and 2005 in Italy: A Geographical Analysis. Thyroid 2012, 22, 27–34. [Google Scholar] [CrossRef]
- Maso, L.D.; Panato, C.; Franceschi, S.; Serraino, D.; Buzzoni, C.; Busco, S.; Ferretti, S.; Torrisi, A.; Falcini, F.; Zorzi, M.; et al. The impact of overdiagnosis on thyroid cancer epidemic in Italy, 1998–2012. Eur. J. Cancer 2018, 94, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Pellegriti, G.; De Vathaire, F.; Scollo, C.; Attard, M.; Giordano, C.; Arena, S.; Dardanoni, G.; Frasca, F.; Malandrino, P.; Vermiglio, F.; et al. Papillary Thyroid Cancer Incidence in the Volcanic Area of Sicily. Gynecol. Oncol. 2009, 101, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Arpat 2015 n°129. Available online: www.arpat.toscana.it (accessed on 1 May 2022).
- Bellani, S. Update of Heat Flow Data in the Geothermal Areas of Tuscany, Italy. GRC Trans. 2018, 42, 861–870. [Google Scholar]
- Brogi, A.; Lazzarotto, A.; Liotta, D.; Ranalli, G. Crustal structures in the geothermal areas of southern Tuscany (Italy): Insights from the CROP 18 deep seismic reflection lines. J. Volcanol. Geotherm. Res. 2005, 148, 60–80. [Google Scholar] [CrossRef]
- Pasquetti, F.; Vaselli, O.; Zanchetta, G.; Nisi, B.; Lezzerini, M.; Bini, M.; Mele, D. Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations. Water 2020, 12, 1998. [Google Scholar] [CrossRef]
- Vaselli, O.; Higueras, P.; Nisi, B.; Maria Esbrì, J.; Cabassi, J.; Martinez-Coronado, A.; Tassi, F.; Rappuoli, D. Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): A geochemical survey prior the reclamation project. Environ. Res. 2013, 125, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A. Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy). Environ. Sci. Poll. Res. 2014, 21, 5575–5585. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Świerczek, L.; Cieślik, B.; Matysiak, A.; Konieczka, P. Determination of heavy metals in eyeshadows from China. Monatsh Chem. 2019, 150, 1675–1680. [Google Scholar] [CrossRef] [Green Version]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Ali Shah, S.M.; et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability 2022, 14, 161. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef] [PubMed]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The Health Effects of Aluminum Exposure. Dtsch. Arztebl. Int. 2017, 114, 653–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasprzak, K.S. Possible Role of Oxidative Damage in Metal-Induced Carcinogenesis. Cancer Investig. 1995, 13, 411–430. [Google Scholar] [CrossRef]
- Chen, Q.Y.; DesMarais, T.; Costa, M. Metals and Mechanisms of Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 537–554. [Google Scholar] [CrossRef]
- Zhu, Y.; Costa, M. Metals and molecular carcinogenesis. Carcinogenesis 2020, 41, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Bacci, E.; Gaggi, C.; Lanzillotti, E.; Ferrozzi, S.; Valli, L. Geothermal power plants at Mt. Amiata (Tuscany-Italy): Mercury and hydrogen sulphide deposition revealed by vegetation. Chemosphere 2000, 40, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, P.; Rimondi, V.; Chiarantini, L.; Colica, A.; Benvenuti, M.; Costagliola, P.; Ruggieri, G. Mercury Dispersion through Streams Draining The Mt. Amiata District, Southern Tuscany, Italy. Procedia Earth Planet. Sci. 2017, 17, 468–471. [Google Scholar] [CrossRef]
- Nuvolone, D.; Stoppa, G.; Petri, D.; Profili, F.; Bartolacci, S.; Monnini, M.; Crocetti, M.; Voller, F. Geotermia e Salute in Toscana; Florence, Italy, 2021; Volume 1–3, Available online: https://www.ars.toscana.it/2-articoli/4688-geotermia-e-salute-in-toscana-rapporto-2021.html (accessed on 27 July 2022).
- Benedetti, M.; Zona, A.; Contiero, P.; D’Armiento, E.; Iavarone, I.; Airtum Working Group. Incidence of Thyroid Cancer in Italian Contaminated Sites. Int. J. Environ. Res. Public Health 2020, 18, 191. [Google Scholar] [CrossRef]
- Malandrino, P.; Russo, M.; Ronchi, A.; Minoia, C.; Cataldo, D.; Regalbuto, C.; Giordano, C.; Attard, M.; Squatrito, S.; Trimarchi, F.; et al. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine 2016, 53, 471–479. [Google Scholar] [CrossRef]
- Gianì, F.; Masto, R.; Trovato, M.A.; Malandrino, P.; Russo, M.; Pellegriti, G.; Vigneri, P.; Vigneri, R. Heavy Metals in the Environment and Thyroid Cancer. Cancers 2021, 13, 4052. [Google Scholar] [CrossRef]
- Malandrino, P.; Russo, M.; Ronchi, A.; Moretti, F.; Gianì, F.; Vigneri, P.; Masucci, R.; Pellegriti, G.; Belfiore, A.; Vigneri, R. Concentration of Metals and Trace Elements in the Normal Human and Rat Thyroid: Comparison with Muscle and Adipose Tissue and Volcanic Versus Control Areas. Thyroid 2020, 30, 290–299. [Google Scholar] [CrossRef]
- Macedo, S.; Teixeira, E.; Gaspar, T.B.; Boaventura, P.; Soares, M.A.; Miranda-Alves, L.; Soares, P. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review. Environ. Res. 2022, 218, 114869. [Google Scholar] [CrossRef]
- Goralczyk, K. A Review of the Impact of Selected Anthropogenic Chemicals from the Group of Endocrine Disruptors on Human Health. Toxics 2021, 9, 146. [Google Scholar] [CrossRef]
- Clausing, P.; Robinson, C.; Burtscher-Schaden, H. Pesticides and public health: An analysis of the regulatory approach to assessing the carcinogenicity of glyphosate in the European Union. J. Epidemiol. Community Health 2018, 72, 668–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-building syndrome. Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Lipinski, B. Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis. Med. Hypotheses 2018, 110, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Gianì, F.; Masto, R.; Trovato, M.A.; Franco, A.; Pandini, G.; Vigneri, R. Thyroid Stem Cells But Not Differentiated Thyrocytes Are Sensitive to Slightly Increased Concentrations of Heavy Metals. Front. Endocrinol. 2021, 12, 652675. [Google Scholar] [CrossRef]
- Hadjipanagiotou, C.; Christou, A.; Zissimos, A.M.; Chatzitheodoridis, E.; Varnavas, S.P. Contamination of stream waters, sediments, and agricultural soil in the surroundings of an abandoned copper mine by potentially toxic el-ements and associated environmental and potential human health-derived risks: A case study from Agrokipia, Cyprus. Environ Sci. Pollut. Res. Int. 2020, 27, 41279–41298. [Google Scholar] [CrossRef]
- Chiarantini, L.; Rimondi, V.; Bardelli, F.; Benvenuti, M.; Cosio, C.; Costagliola, P.; Di Benedetto, F.; Lattanzi, P.; Sarret, G. Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ. Pollut. 2017, 227, 83–88. [Google Scholar] [CrossRef]
- Forte, I.M.; Indovina, P.; Costa, A.; Iannuzzi, C.A.; Costanzo, L.; Marfella, A.; Montagnaro, S.; Botti, G.; Bucci, E.; Giordano, A. Blood screening for heavy metals and organic pollutants in cancer patients exposed to toxic waste in southern Italy: A pilot study. J. Cell Physiol. 2020, 235, 5213–5222. [Google Scholar] [CrossRef]
MALES | FEMALES | |
---|---|---|
GROSSETO * | ||
Cases | 76 | 159 |
Crude IR (95% CI) | 17.77 (10.70–27.75) | 34.46 (24.41–46.72) |
EU-standardized IR (95% CI) | 17.66 (12.46–19.89) | 34.16 (28.36–39.43) |
SIR vs. Italy (95% CI) | 1.52 (1.17–1.95) | 0.95 (0.79–1.14) |
AREZZO * | ||
Cases | 62 | 158 |
Crude IR (95% CI) | 9.32 (5.27–15.25) | 22.41 (15.97–30.57) |
EU-standardized IR (95% CI) | 8.58 (6.48–10.88) | 22.20 (19.05 –26.36) |
SIR vs. Italy (95% CI) | 0.92 (0.70–1.18) | 0.79 (0.67–0.92) |
SIR vs. Grosseto (95% CI) | 0.53 (0.40–0.68) | 0.66 (0.56–0.77) |
SIENA * | ||
Cases | 44 | 142 |
Crude IR (95% CI) | 8.58 (4.28–15.35) | 22.53 (17.83–35.42) |
EU-standardized IR (95% CI) | 8.51 (15.86–10.94) | 25.30 (20.86–29.43) |
SIR vs. Italy (95% CI) | 0.84 (0.61–1.14) | 0.90 (0.76–1.06) |
SIR vs. Grosseto (95% CI) | 0.49 (0.35–0.65) | 0.75 (0.63–0.88) |
ITALY ** | ||
Crude IR | 10.1 | 28.2 |
Parameters | Number of Patients |
---|---|
Cancer histotypes: n (%) | |
Papillary | 208 (92) |
Follicular | 8 (3.5) |
Medullary | 7 (3.1) |
Anaplastic/Undifferentiated | 3 (1.4) |
Variants of PTC n (%) | |
Classical | 48/176 (27.3) |
Follicular | 63/176 (35.8) |
Tall cell | 35/176 (19.9) |
Solid | 25/176 (14.2) |
Diffuse Sclerosing | 5/176 (2.8) |
Type of surgery: n (%) | |
Total thyroidectomy | 218 (96.4) |
Hemithyroidectomy | 8 (35) |
Location of surgery: n (%) | |
Grosseto | 30 (13.3) |
Pisa | 172 (76.1) |
Siena | 13 (5.7) |
Others | 11 (4.9) |
Diameter of the tumor: (cm) | |
Mean ± SD | 1.7 ± 1.4 |
Range | 0.1–12 |
Median | 1.4 |
Tumor extension: n (%) ** (TNM 8th Edition). | |
T1a | 65 (28.7) |
T1b | 75 (33.2) |
T2 | 33 (14.6) |
T3 | 51 (22.6) |
T4 | 2 (0.9) |
Lymph-node metastases: n (%) | |
Yes | 33 (14.6) |
Distant metastases: n (%) | |
Yes | 3 (1.3) |
Bilaterality: n (%) | |
Yes | 103 (45.6) |
Multicentricity: n (%) | |
Yes | 105 (46.5) |
Parameters | Amiata Mountain (n = 16) (%) | Grosseto Zone (n = 120) (%) | Albegna Hills (n = 21) (%) | Orbetello Lacuna (n = 21) (%) | Metal Hills District (n = 48) (%) | p |
---|---|---|---|---|---|---|
Age at diagnosis (yrs) | 0.06 | |||||
Mean ± SD | 49.6 ± 12.9 | 53 ± 13.7 | 47 ± 19.1 | 55.7 ± 10.8 | 47.7 ± 14.4 | |
Range | 22–70 | 23–84 | 33–74 | 8–76 | 22–85 | |
Median | 47 | 52 | 59.5 | 50.5 | 48 | |
Sex | 0.6 | |||||
Males | 4 (25) | 34 (28.3) | 6 (28.6) | 9 (42.8) | 17 (35.4) | |
females | 12 (75) | 86 (71.7) | 15 (71.4) | 12 (57.2) | 31 (64.6) | |
Histotypes: n (%) | 0.9 | |||||
Papillary | 15 (93.7) | 109 (90.9) | 20 (95.2) | 20 (95.2) | 44 (91.8) | |
Follicular | 1 (6.3) | 5 (4.1) | 0 | 1 (4.8) | 1 (2.0) | |
Medullary | 0 | 4 (3.3) | 1 (4.8) | 0 | 2 (4.2) | |
Anaplastic/Undifferentiated | 0 | 2 (1.7) | 0 | 0 | 1 (2.0) | |
Variants of PTC n (%) | 0.3 | |||||
Classical | 1/13 (7.7) | 29/94 (30.8) | 4/16 (25) | 3/16 (18.8) | 11/37 (29.7) | |
Follicular | 6/13 (46.1) | 34/94 (36.2) | 3/16 (18.8) | 8/16 (50) | 12/37 (32.4) | |
Tall cell | 3/13 (23.1) | 18/94 (19.1) | 7/16 (43.8) | 2/16 (12.4) | 5/37 (13.6) | |
Solid | 2/13 (15.4) | 12/94 (12.8) | 1/16 (6.2) | 3/16 (18.8) | 7/37 (18.9) | |
Diffuse Sclerosing | 1/13 (7.7) | 1/94 (1.1) | 1/16 (6.2) | 0 | 2/37 (5.4) | |
Diameter of tumor: (cm) | 0.7 | |||||
Mean ± SD | 1.8 ± 1.3 | 1.7 ± 1.3 | 1.5 ± 0.8 | 1.4 ± 0.8 | 1.7 ± 1.4 | |
Range | 0.2–5 | 0.1–6 | 0.2–3 | 0.2–3.5 | 0.1–8 | |
Median | 1.5 | 1.4 | 1.5 | 1.5 | 1.3 | |
Tumor extension: n (%) * | 0.5 | |||||
T1a | 5 (31.2) | 36 (30) | 5 (23.8) | 5 (23.8) | 14 (29.2) | |
T1b | 2 (12.5) | 38 (31.7) | 9 (42.9) | 11 (52.4) | 15 (31.2) | |
T2 | 4 (25) | 14 (11.7) | 5 (23.8) | 3 (14.3) | 7 (14.6) | |
T3 | 5 (31.3) | 31 (25.8) | 2 (9.5) | 2 (9.5) | 11 (22.9) | |
T4 | 0 | 1 (0.8) | 0 | 0 | 1 (2.1) | |
Lymph-node metastases: n (%) | 0.2 | |||||
Yes | 3 (18.7) | 14 (11.7) | 6 (28.6) | 4 (19) | 7 (14.6) | |
No | 13 (81.3) | 106 (88.3) | 15 (71.4) | 17 (80.9) | 41 (85.4) | |
Distant metastases: n (%) | 0.8 | |||||
Yes | 0 | 2 (1.7) | 0 | 0 | 1 (2.1) | |
No | 16 (100) | 118 (98.3) | 21 (100) | 21 (100) | 47 (97.9) | |
Bilaterality: n (%) | 0.3 | |||||
Yes | 7 (43.7) | 57 (47.5) | 9 (42.8) | 13 (61.9) | 17 (35.4) | |
No | 9 (56.3) | 63 (52.5) | 12 (57.2) | 8 (38.1) | 31 (64.6) | |
Multicentricity: n (%) | 0.3 | |||||
Yes | 7 (43.7) | 56 (46.7 | 9 (42.8) | 14 (66.7) | 19 (39.6) | |
No | 9 (56.3) | 64 (53.3) | 12 (57.2) | 7 (33.3) | 29 (60.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capezzone, M.; Tosti Balducci, M.; Morabito, E.M.; Durante, C.; Piacentini, P.; Torregrossa, L.; Materazzi, G.; Giubbolini, G.; Mancini, V.; Rossi, M.; et al. High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution. Biomedicines 2023, 11, 298. https://doi.org/10.3390/biomedicines11020298
Capezzone M, Tosti Balducci M, Morabito EM, Durante C, Piacentini P, Torregrossa L, Materazzi G, Giubbolini G, Mancini V, Rossi M, et al. High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution. Biomedicines. 2023; 11(2):298. https://doi.org/10.3390/biomedicines11020298
Chicago/Turabian StyleCapezzone, Marco, Massimo Tosti Balducci, Eugenia Maria Morabito, Cosimo Durante, Paolo Piacentini, Liborio Torregrossa, Gabriele Materazzi, Giacomo Giubbolini, Virginia Mancini, Maja Rossi, and et al. 2023. "High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution" Biomedicines 11, no. 2: 298. https://doi.org/10.3390/biomedicines11020298
APA StyleCapezzone, M., Tosti Balducci, M., Morabito, E. M., Durante, C., Piacentini, P., Torregrossa, L., Materazzi, G., Giubbolini, G., Mancini, V., Rossi, M., Alessandri, M., & Cartocci, A. (2023). High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution. Biomedicines, 11(2), 298. https://doi.org/10.3390/biomedicines11020298