An Insight on Functioning Pancreatic Neuroendocrine Neoplasms
Abstract
:1. Introduction
2. The Molecular Landscape of Familiar and Sporadic PanNENs
3. Focus on Functioning PanNENs
3.1. Insulinoma
3.2. Gastrinoma
3.3. Glucagonoma
3.4. Somatostatinoma
3.5. VIPoma
3.6. Serotonin-Producing Neuroendocrine Tumor
3.7. ACTH-Producing Neuroendocrine Tumor
4. Molecular Alterations in Functioning PanNENs
5. The Therapeutical Options for Functioning PanNENs
6. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mafficini, A.; Scarpa, A. Genetics and Epigenetics of Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr. Rev. 2019, 40, 506–536. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. Ann. Endocrinol. 2019, 80, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Strosberg, J.R. Gastroenteropancreatic Neuroendocrine Tumors. CA Cancer J. Clin. 2018, 68, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Hallet, J.; Law, C.H.L.; Cukier, M.; Saskin, R.; Liu, N.; Singh, S. Exploring the rising incidence of neuroendocrine tumors: A population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer 2015, 121, 589–597. [Google Scholar] [CrossRef]
- Ito, T.; Igarashi, H.; Jensen, R.T. Pancreatic neuroendocrine tumors: Clinical features, diagnosis and medical treatment: Advances. Best Pract. Res. Clin. Gastroenterol. 2012, 26, 737–753. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kim, M.S.; Kim, K.S.; Song, K.B.; Lee, S.H.; Hwang, D.W.; Kim, K.P.; Kim, H.J.; Yu, E.; Kim, S.C.; et al. Clinicopathologic and prognostic significance of multiple hormone expression in pancreatic neuroendocrine tumors. Am. J. Surg. Pathol. 2015, 39, 592–601. [Google Scholar] [CrossRef]
- Zhang, J.; Francois, R.; Iyer, R.; Seshadri, M.; Zajac-Kaye, M.; Hochwald, S.N. Current understanding of the molecular biology of pancreatic neuroendocrine tumors. J. Natl. Cancer Inst. 2013, 105, 1005–1017. [Google Scholar] [CrossRef] [Green Version]
- WHO Classification of Tumours Editorial Board. Digestive System Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019. [Google Scholar]
- Heetfeld, M.; Chougnet, C.N.; Olsen, I.H.; Rinke, A.; Borbath, I.; Crespo, G.; Barriuso, J.; Pavel, M.; O’Toole, D.; Walter, T. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr.-Relat. Cancer 2015, 22, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Rindi, G.; Klersy, C.; Albarello, L.; Baudin, E.; Bianchi, A.; Buchler, M.W.; Caplin, M.; Couvelard, A.; Cros, J.; De Herder, W.W.; et al. Competitive Testing of the WHO 2010 versus the WHO 2017 Grading of Pancreatic Neuroendocrine Neoplasms: Data from a Large International Cohort Study. Neuroendocrinology 2018, 107, 375–386. [Google Scholar] [CrossRef]
- Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 152–160. [Google Scholar] [CrossRef]
- Pea, A.; Hruban, R.H.; Wood, L.D. Genetics of pancreatic neuroendocrine tumors: Implications for the clinic. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, N.; Shah, R.; Stadler, Z.; Mukherjee, S.; Chou, J.; Untch, B.; Li, J.; Kelly, V.; Osoba, M.; Saltz, L.B.; et al. Real-Time Genomic Characterization of Metastatic Pancreatic Neuroendocrine Tumors Has Prognostic Implications and Identifies Potential Germline Actionability. JCO Precis. Oncol. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Corbo, V.; Dalai, I.; Scardoni, M.; Barbi, S.; Beghelli, S.; Bersani, S.; Albarello, L.; Doglioni, C.; Schott, C.; Capelli, P.; et al. MEN1 in pancreatic endocrine tumors: Analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr.-Relat. Cancer 2010, 17, 771–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Corrigendum: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 550, 548. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, T.; Beyens, M.; Boons, G.; Schepers, A.; Kamp, K.; Biermann, K.; Pauwels, P.; De Herder, W.W.; Hofland, L.J.; Peeters, M.; et al. Hotspot DAXX, PTCH2 and CYFIP2 mutations in pancreatic neuroendocrine neoplasms. Endocr.-Relat. Cancer 2019, 26, 1–12. [Google Scholar] [CrossRef]
- Jiao, Y.; Shi, C.; Edil, B.H.; De Wilde, R.F.; Klimstra, D.S.; Maitra, A.; Schulick, R.D.; Tang, L.H.; Wolfgang, C.L.; Choti, M.A.; et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011, 331, 1199–1203. [Google Scholar] [CrossRef] [Green Version]
- Williamson, L.M.; Steel, M.; Grewal, J.K.; Thibodeau, M.L.; Zhao, E.Y.; Loree, J.M.; Yang, K.C.; Gorski, S.M.; Mungall, A.J.; Mungall, K.L.; et al. Genomic characterization of a well-differentiated grade 3 pancreatic neuroendocrine tumor. Cold Spring Harb. Mol. Case Stud. 2019, 5, a003814. [Google Scholar] [CrossRef]
- Van Riet, J.; van de Werken, H.J.G.; Cuppen, E.; Eskens, F.A.L.M.; Tesselaar, M.; van Veenendaal, L.M.; Klümpen, H.J.; Dercksen, M.W.; Valk, G.D.; Lolkema, M.P.; et al. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat. Commun. 2021, 12, 4612. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, S.; Liu, C.; Yang, J.; Lin, Q.; Zheng, S.; Chen, C.; Zhou, Q.; Chen, R. Single-cell RNA sequencing reveals spatiotemporal heterogeneity and malignant progression in pancreatic neuroendocrine tumor. Int. J. Biol. Sci. 2021, 17, 3760–3775. [Google Scholar] [CrossRef]
- Öhlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017, 214, 579–596. [Google Scholar] [CrossRef]
- Kasajima, A.; Konukiewitz, B.; Schlitter, A.M.; Weichert, W.; Klöppel, G. An analysis of 130 neuroendocrine tumors G3 regarding prevalence, origin, metastasis, and diagnostic features. Virchows Arch. Int. J. Pathol. 2022, 480, 359–368. [Google Scholar] [CrossRef]
- Pelosi, G.; Bianchi, F.; Dama, E.; Metovic, J.; Barella, M.; Sonzogni, A.; Albini, A.; Papotti, M.; Gong, Y.; Vijayvergia, N. A Subset of Large Cell Neuroendocrine Carcinomas in the Gastroenteropancreatic Tract May Evolve from Pre-existing Well-Differentiated Neuroendocrine Tumors. Endocr. Pathol. 2021, 32, 396–407. [Google Scholar] [CrossRef]
- Pelosi, G.; Bianchi, F.; Dama, E.; Simbolo, M.; Mafficini, A.; Sonzogni, A.; Pilotto, S.; Harari, S.; Papotti, M.; Volante, M.; et al. Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: Innovative findings skipping the current pathogenesis paradigm. Virchows Arch. Int. J. Pathol. 2018, 472, 567–577. [Google Scholar] [CrossRef]
- Hijioka, S.; Hosoda, W.; Matsuo, K.; Ueno, M.; Furukawa, M.; Yoshitomi, H.; Kobayashi, N.; Ikeda, M.; Ito, T.; Nakamori, S.; et al. Rb Loss and KRAS Mutation Are Predictors of the Response to Platinum-Based Chemotherapy in Pancreatic Neuroendocrine Neoplasm with Grade 3: A Japanese Multicenter Pancreatic NEN-G3 Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 4625–4632. [Google Scholar] [CrossRef] [Green Version]
- Konukiewitz, B.; Jesinghaus, M.; Steiger, K.; Schlitter, A.M.; Kasajima, A.; Sipos, B.; Zamboni, G.; Weichert, W.; Pfarr, N.; Klöppel, G. Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3. Hum. Pathol. 2018, 77, 70–79. [Google Scholar] [CrossRef]
- Venizelos, A.; Elvebakken, H.; Perren, A.; Nikolaienko, O.; Deng, W.; Lothe, I.M.B.; Couvelard, A.; Hjortland, G.O.; Sundlov, A.; Svensson, J.; et al. The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocr.-Relat. Cancer 2021, 29, 1–14. [Google Scholar] [CrossRef]
- Busico, A.; Maisonneuve, P.; Prinzi, N.; Pusceddu, S.; Centonze, G.; Garzone, G.; Pellegrinelli, A.; Giacomelli, L.; Mangogna, A.; Paolino, C.; et al. Gastroenteropancreatic High-Grade Neuroendocrine Neoplasms: Histology and Molecular Analysis, Two Sides of the Same Coin. Neuroendocrinology 2020, 110, 616–629. [Google Scholar] [CrossRef]
- Vijayvergia, N.; Boland, P.M.; Handorf, E.; Gustafson, K.S.; Gong, Y.; Cooper, H.S.; Sheriff, F.; Astsaturov, I.; Cohen, S.J.; Engstrom, P.F. Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: A Fox Chase Cancer Center Pilot Study. Br. J. Cancer 2016, 115, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Yachida, S.; Vakiani, E.; White, C.M.; Zhong, Y.; Saunders, T.; Morgan, R.; De Wilde, R.F.; Maitra, A.; Hicks, J.; DeMarzo, A.M.; et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am. J. Surg. Pathol. 2012, 36, 173–184. [Google Scholar] [CrossRef]
- Pavel, M.; Öberg, K.; Falconi, M.; Krenning, E.P.; Sundin, A.; Perren, A.; Berruti, A. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef]
- Uccella, S.; La Rosa, S.; Metovic, J.; Marchiori, D.; Scoazec, J.Y.; Volante, M.; Mete, O.; Papotti, M. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr. Pathol. 2021, 32, 192–210. [Google Scholar] [CrossRef]
- Sadanandam, A.; Wullschleger, S.; Lyssiotis, C.A.; Grötzinger, C.; Barbi, S.; Bersani, S.; Körner, J.; Wafy, I.; Mafficini, A.; Lawlo, R.T.; et al. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. Cancer Discov. 2015, 5, 1296–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.C.; Kalloger, S.E.; Aird, J.J.; Lee, M.K.C.; Rushton, C.; Mungall, K.L.; Mungall, A.J.; Gao, D.; Chow, C.; Xu, J.; et al. Proteotranscriptomic classification and characterization of pancreatic neuroendocrine neoplasms. Cell Rep. 2021, 37, 109817. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Simbolo, M.; Bilotta, M.; Mafficini, A.; Luchini, C.; Furlan, D.; Inzani, F.; Petrone, G.; Bonvissuto, D.; Rosa, S.L.; Schinzari, G.; et al. Gene expression profiling of pancreas neuroendocrine tumors with different ki67-based grades. Cancers 2021, 13, 2054. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Kim, H.; Huang, R.; Lu, W.; Tang, M.; Shi, F.; Yang, D.; Zhang, X.; Huang, J.; Liu, D.; et al. The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation. Cell Stem Cell 2015, 17, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.M.; Rozenblatt-Rosen, O.; Milne, T.A.; Copeland, T.D.; Levine, S.S.; Lee, J.C.; Hayes, D.N.; Shanmugam, K.S.; Bhattacharjee, A.; Biondi, C.A.; et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 2004, 13, 587–597. [Google Scholar] [CrossRef]
- Li, J.; Duns, G.; Westers, H.; Sijmons, R.; Van Den Berg, A.; Kok, K. SETD2: An epigenetic modifier with tumor suppressor functionality. Oncotarget 2016, 7, 50719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klieser, E.; Urbas, R.; Stättner, S.; Primavesi, F.; Jäger, T.; Dinnewitzer, A.; Mayr, C.; Kiesslich, T.; Holzmann, K.; Fazio, P.D.; et al. Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome. Hum. Pathol. 2017, 65, 41–52. [Google Scholar] [CrossRef]
- Conemans, E.B.; Lodewijk, L.; Moelans, C.B.; Offerhaus, G.J.A.; Pieterman, C.R.C.; Morsink, F.H.; Dekkers, O.M.; De Herder, W.W.; Hermus, A.R.; Van Der Horst-Schrivers, A.N.; et al. DNA methylation profiling in MEN1-related pancreatic neuroendocrine tumors reveals a potential epigenetic target for treatment. Eur. J. Endocrinol. 2018, 179, 153–160. [Google Scholar] [CrossRef]
- Crabtree, J.S. Epigenetic Regulation in Gastroenteropancreatic Neuroendocrine Tumors. Frontiers in Oncology 2022, 12, 901435. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Jia, Y.; Yu, Z.; House, M.G.; Esteller, M.; Brock, M.V.; Herman, J.G. Epigenetic Changes Associated with Neoplasms of the Exocrine and Endocrine Pancreas. Discov. Med. 2014, 17, 67. [Google Scholar] [PubMed]
- Larsson, C. Epigenetic Aspects on Therapy Development for Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology 2013, 97, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Giusti, F.; Brandi, M.L. Epigenetic-based targeted therapies for well-differentiated pancreatic neuroendocrine tumors: Recent advances and future perspectives. Expert Rev. Endocrinol. Metab. 2021, 16, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Tirosh, A.; Killian, J.K.; Petersen, D.; Zhu, Y.J.; Walker, R.L.; Blau, J.E.; Nilubol, N.; Patel, D.; Agarwal, S.K.; Weinstein, L.S.; et al. Distinct DNA Methylation Signatures in Neuroendocrine Tumors Specific for Primary Site and Inherited Predisposition. J. Clin. Endocrinol. Metab. 2020, 105, 3285–3294. [Google Scholar] [CrossRef]
- Di Domenico, A.; Pipinikas, C.P.; Maire, R.S.; Bräutigam, K.; Simillion, C.; Dettmer, M.S.; Vassella, E.; Thirlwell, C.; Perren, A.; Marinoni, I. Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression. Commun. Biol. 2020, 3, 740. [Google Scholar] [CrossRef]
- Lakis, V.; Lawlor, R.T.; Newell, F.; Patch, A.M.; Mafficini, A.; Sadanandam, A.; Koufariotis, L.T.; Johnston, R.L.; Leonard, C.; Wood, S.; et al. DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Commun. Biol. 2021, 4, 155. [Google Scholar] [CrossRef]
- Simon, T.; Riemer, P.; Jarosch, A.; Detjen, K.; Di Domenico, A.; Bormann, F.; Menne, A.; Khouja, S.; Monjé, N.; Childs, L.H.; et al. DNA methylation reveals distinct cells of origin for pancreatic neuroendocrine carcinomas and pancreatic neuroendocrine tumors. Genome Med. 2022, 14, 24. [Google Scholar] [CrossRef]
- Ali, A.S.; Perren, A.; Lindskog, C.; Welin, S.; Sorbye, H.; Grönberg, M.; Janson, E.T. Candidate protein biomarkers in pancreatic neuroendocrine neoplasms grade 3. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Maiorano, B.A.; Schinzari, G.; Chiloiro, S.; Visconti, F.; Milardi, D.; Bianchi, A. Proteomics of Pancreatic Neuroendocrine Tumors: A Systematic Review. Protein Pept. Lett. 2020, 27, 1276–1287. [Google Scholar] [CrossRef]
- Pedraza-Arevalo, S.; Alors-Pérez, E.; Blázquez-Encinas, R.; Herrera-Martínez, A.D.; Jiménez-Vacas, J.M.; Fuentes-Fayos, A.C.; Reyes, Ó.; Ventura, S.; Sánchez-Sánchez, R.; Ortega-Salas, R.; et al. Spliceosomic dysregulation unveils NOVA1 as a candidate actionable therapeutic target in pancreatic neuroendocrine tumors. Transl. Res. 2023, 251, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Igarashi, H.; Nakamura, K.; Sasano, H.; Okusaka, T.; Takano, K.; Komoto, I.; Tanaka, M.; Imamura, M.; Jensen, R.T.; et al. Epidemiological trends of pancreatic and gastrointestinal neuroendocrine tumors in Japan: A nationwide survey analysis. J. Gastroenterol. 2015, 50, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltola, E.; Hannula, P.; Huhtala, H.; Metso, S.; Sand, J.; Laukkarinen, J.; Tiikkainen, M.; Sirén, J.; Soinio, M.; Nuutila, P.; et al. Long-term morbidity and mortality in patients diagnosed with an insulinoma. Eur. J. Endocrinol. 2021, 185, 577. [Google Scholar] [CrossRef]
- Grant, C.S. Insulinoma. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 783–798. [Google Scholar] [CrossRef]
- Mele, C.; Mencarelli, M.; Caputo, M.; Mai, S.; Pagano, L.; Aimaretti, G.; Scacchi, M.; Falchetti, A.; Marzullo, P. Phenotypes Associated with MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front. Endocrinol. 2020, 11, 874. [Google Scholar] [CrossRef] [PubMed]
- Okabayashi, T.; Shima, Y.; Sumiyoshi, T.; Kozuki, A.; Ito, S.; Ogawa, Y.; Kobayashi, M.; Hanazaki, K. Diagnosis and management of insulinoma. World J. Gastroenterol. 2013, 19, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Cryer, P.E.; Axelrod, L.; Grossman, A.B.; Heller, S.R.; Montori, V.M.; Seaquist, E.R.; Service, F.J.; Endocrine, S. Evaluation and management of adult hypoglycemic disorders: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2009, 94, 709–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Gao, H.; Wang, G.; Yin, L.; Xu, W.; Peng, Y.; Wu, J.; Jiang, K.; Miao, Y. A meta-analysis of Prognostic factor of Pancreatic neuroendocrine neoplasms. Sci. Rep. 2018, 8, 7271. [Google Scholar] [CrossRef] [Green Version]
- Marinoni, I.; Kurrer, A.S.; Vassella, E.; Dettmer, M.; Rudolph, T.; Banz, V.; Hunger, F.; Pasquinelli, S.; Speel, E.J.; Perren, A. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 2014, 146, 453–460. [Google Scholar] [CrossRef]
- Veltroni, A.; Cosaro, E.; Spada, F.; Fazio, N.; Faggiano, A.; Colao, A.; Pusceddu, S.; Zatelli, M.C.; Campana, D.; Piovesan, A.; et al. Clinico-pathological features, treatments and survival of malignant insulinomas: A multicenter study. Eur. J. Endocrinol. 2020, 182, 439–446. [Google Scholar] [CrossRef]
- Anlauf, M.; Garbrecht, N.; Henopp, T.; Schmitt, A.; Schlenger, R.; Raffel, A.; Krausch, M.; Gimm, O.; Eisenberger, C.F.; Knoefel, W.T.; et al. Sporadic versus hereditary gastrinomas of the duodenum and pancreas: Distinct clinico-pathological and epidemiological features. World J. Gastroenterol. 2006, 12, 5440–5446. [Google Scholar] [CrossRef] [PubMed]
- Klöppel, G.; Anlauf, M. Gastrinoma—Morphological aspects. Wien. Klin. Wochenschr. 2007, 119, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.E.; Elvevi, A.; Citterio, D.; Coppa, J.; Invernizzi, P.; Mazzaferro, V.; Massironi, S. Gastrinoma and Zollinger Ellison syndrome: A roadmap for the management between new and old therapies. World J. Gastroenterol. 2021, 27, 5890–5907. [Google Scholar] [CrossRef] [PubMed]
- Nikou, G.C.; Toubanakis, C.; Nikolaou, P.; Giannatou, E.; Marinou, K.; Safioleas, M.; Karamanolis, D. Gastrinomas associated with MEN-1 syndrome: New insights for the diagnosis and management in a series of 11 patients. Hepato-Gastroenterology 2005, 52, 1668–1676. [Google Scholar] [PubMed]
- Fave, G.D.; O’Toole, D.; Sundin, A.; Taal, B.; Ferolla, P.; Ramage, J.K.; Ferone, D.; Ito, T.; Weber, W.; Zheng-Pei, Z.; et al. ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 2016, 103, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.A.; Fraker, D.L.; Alexander, H.R.; Gibril, F.; Liewehr, D.J.; Venzon, D.J.; Jensen, R.T. Surgery increases survival in patients with gastrinoma. Ann. Surg. 2006, 244, 410–418. [Google Scholar] [CrossRef]
- van Beek, D.J.; Nell, S.; Pieterman, C.R.C.; de Herder, W.W.; van de Ven, A.C.; Dekkers, O.M.; van der Horst-Schrivers, A.N.; Drent, M.L.; Bisschop, P.H.; Havekes, B.; et al. Prognostic factors and survival in MEN1 patients with gastrinomas: Results from the DutchMEN study group (DMSG). J. Surg. Oncol. 2019, 120, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zheng, S.; Yang, G.; Xiong, G.; Cao, Z.; Feng, M.; Zhang, T.; Zhao, Y. Glucagonoma and the glucagonoma syndrome. Oncol. Lett. 2018, 15, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Eisner, M.P.; Leary, C.; Dagohoy, C.; Phan, A.; Rashid, A.; Hassan, M.; Evans, D.B. Population-based study of islet cell carcinoma. Ann. Surg. Oncol. 2007, 14, 3492–3500. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Song, X.; Liu, X.; Ji, Z.; Ranasinha, N.; Wu, J.; Miao, Y. Glucagonoma and Glucagonoma Syndrome: One Center’s Experience of Six Cases. J. Pancreat. Cancer 2018, 4, 11–16. [Google Scholar] [CrossRef]
- Kindmark, H.; Sundin, A.; Granberg, D.; Dunder, K.; Skogseid, B.; Janson, E.T.; Welin, S.; Öberg, K.; Eriksson, B. Endocrine pancreatic tumors with glucagon hypersecretion: A retrospective study of 23 cases during 20 years. Med. Oncol. 2007, 24, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Soga, J.; Yakuwa, Y. Glucagonomas/diabetico-dermatogenic syndrome (DDS): A statistical evaluation of 407 reported cases. J. Hepato-Biliary-Pancreat. Surg. 1998, 5, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Eldor, R.; Glaser, B.; Fraenkel, M.; Doviner, V.; Salmon, A.; Gross, D.J. Glucagonoma and the glucagonoma syndrome—Cumulative experience with an elusive endocrine tumour. Clin. Endocrinol. 2011, 74, 593–598. [Google Scholar] [CrossRef]
- Mastoraki, A.; Schizas, D.; Papoutsi, E.; Ntella, V.; Kanavidis, P.; Sioulas, A.; Tsoli, M.; Charalampopoulos, G.; Vailas, M.; Felekouras, E. Clinicopathological Data and Treatment Modalities for Pancreatic Somatostatinomas. In Vivo 2020, 34, 3573–3582. [Google Scholar] [CrossRef] [PubMed]
- Garbrecht, N.; Anlauf, M.; Schmitt, A.; Henopp, T.; Sipos, B.; Raffel, A.; Eisenberger, C.F.; Knoefel, W.T.; Pavel, M.; Fottner, C.; et al. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: Incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr.-Relat. Cancer 2008, 15, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, A.; Hammad, N.; Vakhariya, C.; Raphael, M. Somatostatinoma Presented as Double-Duct Sign. Case Rep. Gastrointest. Med. 2019, 2019, 9506405. [Google Scholar] [CrossRef]
- Krausz, Y.; Freedman, N.; Rubinstein, R.; Lavie, E.; Orevi, M.; Tshori, S.; Salmon, A.; Glaser, B.; Chisin, R.; Mishani, E.; et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: Comparison with ¹¹¹In-DTPA-octreotide (OctreoScan®). Mol. Imaging Biol. 2011, 13, 583–593. [Google Scholar] [CrossRef]
- Soga, J.; Yakuwa, Y. Somatostatinoma/inhibitory syndrome: A statistical evaluation of 173 reported cases as compared to other pancreatic endocrinomas. J. Exp. Clin. Cancer Res. CR 1999, 18, 13–22. [Google Scholar]
- Cavalli, T.; Giudici, F.; Santi, R.; Nesi, G.; Brandi, M.L.; Tonelli, F. Ventricular fibrillation resulting from electrolyte imbalance reveals vipoma in MEN1 syndrome. Fam. Cancer 2016, 15, 645–649. [Google Scholar] [CrossRef] [Green Version]
- Brugel, M.; Walter, T.; Goichot, B.; Smith, D.; Lepage, C.; Cao, C.D.; Hautefeuille, V.; Rebours, V.; Cadiot, G.; de Mestier, L. Efficacy of treatments for VIPoma: A GTE multicentric series. Pancreatology 2021, 21, 1531–1539. [Google Scholar] [CrossRef]
- Nikou, G.C.; Toubanakis, C.; Nikolaou, P.; Giannatou, E.; Safioleas, M.; Mallas, E.; Polyzos, A. VIPomas: An update in diagnosis and management in a series of 11 patients. Hepato-Gastroenterology 2005, 52, 1259–1265. [Google Scholar] [PubMed]
- Qu, Y.; Li, H.; Wang, X.; Chen, Y.; Guo, Q.; Pei, Y.; Du, J.; Dou, J.; Ba, J.; Lv, Z.; et al. Clinical Characteristics and Management of Functional Pancreatic Neuroendocrine Neoplasms: A Single Institution 20-Year Experience with 286 Patients. Int. J. Endocrinol. 2020, 2020, 1030518. [Google Scholar] [CrossRef] [PubMed]
- Azizian, A.; König, A.; Hartmann, A.; Schuppert, F.; Seif Amir Hosseini, A.; Kitz, J.; Ghadimi, M. Surgical treatment of metastatic VIPoma: A case report. Ther. Adv. Gastroenterol. 2021, 14, 17562848211051132. [Google Scholar] [CrossRef]
- Xiang, G.; Liu, X.; Tan, C.; Zhang, H.; Mai, G.; Zheng, Z. Diagnosis and treatment of VIPoma: A case report and literature review in China. Pancreas 2012, 41, 806–807. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Fujimori, N.; Matsumoto, K.; Ohno, A.; Teramatsu, K.; Takamatsu, Y.; Takeno, A.; Ueda, K.; Oono, T.; Ito, T.; et al. A clinical analysis on functioning pancreatic neuroendocrine tumors (focusing on VIPomas): A single-center experience. Endocr. J. 2022, 69, 1201–1209, EJ22-0111. [Google Scholar] [CrossRef]
- Roland, C.L.; Bian, A.; Mansour, J.C.; Yopp, A.C.; Balch, G.C.; Sharma, R.; Xie, X.J.; Schwarz, R.E. Survival impact of malignant pancreatic neuroendocrine and islet cell neoplasm phenotypes. J. Surg. Oncol. 2012, 105, 595–600. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, S.; Franzi, F.; Albarello, L.; Schmitt, A.; Bernasconi, B.; Tibiletti, M.G.; Finzi, G.; Placidi, C.; Perren, A.; Capella, C. Serotonin-producing enterochromaffin cell tumors of the pancreas: Clinicopathologic study of 15 cases and comparison with intestinal enterochromaffin cell tumors. Pancreas 2011, 40, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003, 97, 934–959. [Google Scholar] [CrossRef]
- Milanetto, A.C.; Fassan, M.; David, A.; Pasquali, C. Serotonin-Secreting Neuroendocrine Tumours of the Pancreas. J. Clin. Med. 2020, 9, 1363. [Google Scholar] [CrossRef]
- Subash, N.; Papali, M.M.; Bahadur, K.P.; Avanthika, C.; Jhaveri, S.; Thannir, S.; Joshi, M.; Valisekka, S.S. Recent Advances in the Diagnosis and Management of Carcinoid Syndrome. Disease-a-Month 2022, 68, 101304. [Google Scholar] [CrossRef]
- McCall, C.M.; Shi, C.; Klein, A.P.; Konukiewitz, B.; Edil, B.H.; Ellison, T.A.; Wolfgang, C.L.; Schulick, R.D.; Klöppel, G.; Hruban, R.H. Serotonin expression in pancreatic neuroendocrine tumors correlates with a trabecular histologic pattern and large duct involvement. Hum. Pathol. 2012, 43, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Soga, J. Carcinoids of the pancreas: An analysis of 156 cases. Cancer 2005, 104, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.; Kim, S.H.; Jeong, H.S.; Rhee, Y.; Lee, W.J.; Kang, C.M. ACTH-producing neuroendocrine tumor of the pancreas: A case report and literature review. Ann. Hepato-Biliary-Pancreat. Surg. 2017, 21, 61. [Google Scholar] [CrossRef] [Green Version]
- Davi, M.V.; Cosaro, E.; Piacentini, S.; Reimondo, G.; Albiger, N.; Arnaldi, G.; Faggiano, A.; Mantovani, G.; Fazio, N.; Piovesan, A.; et al. Prognostic factors in ectopic Cushing’s syndrome due to neuroendocrine tumors: A multicenter study. Eur. J. Endocrinol. 2017, 176, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, R.; O’Reilly, E.M.; Blumgart, L.; Shia, J.; Abou-Alfa, G.K. Pancreatic islet cell carcinoma presenting with concurrent Cushing’s and Zollinger-Ellison syndromes: Case series and literature review. Eur. J. Gastroenterol. Hepatol. 2010, 22, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Hatipoglu, B.A. Cushing’s syndrome. J. Surg. Oncol. 2012, 106, 565–571. [Google Scholar] [CrossRef]
- Nakaoka, K.; Hashimoto, S.; Kawabe, N.; Kuzuya, T.; Yamada, S.; Sawaki, A.; Funasaka, K.; Nagasaka, M.; Nakagawa, Y.; Miyahara, R.; et al. A rare case of pancreatic neuroendocrine neoplasm causing Cushing’s syndrome. Clin. J. Gastroenterol. 2022, 15, 256–262. [Google Scholar] [CrossRef]
- Maragliano, R.; Vanoli, A.; Albarello, L.; Milione, M.; Basturk, O.; Klimstra, D.S.; Wachtel, A.; Uccella, S.; Vicari, E.; Milesi, M.; et al. ACTH-secreting pancreatic neoplasms associated with Cushing syndrome: Clinicopathologic study of 11 cases and review of the literature. Am. J. Surg. Pathol. 2015, 39, 374–382. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, Z.; Li, L.; Jiang, X.; Shan, A.; Cai, J.; Peng, Y.; Li, Y.; Jiang, X.; Huang, X.; et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat. Commun. 2013, 4, 2810. [Google Scholar] [CrossRef] [Green Version]
- Cromer, M.K.; Choi, M.; Nelson-Williams, C.; Fonseca, A.L.; Kunstman, J.W.; Korah, R.M.; Overton, J.D.; Mane, S.; Kenneyg, B.; Malchoff, C.D.; et al. Neomorphic effects of recurrent somatic mutations in Yin Yang 1 in insulin-producing adenomas. Proc. Natl. Acad. Sci. USA 2015, 112, 4062–4067. [Google Scholar] [CrossRef] [Green Version]
- Jyotsna, V.P.; Malik, E.; Birla, S.; Sharma, A. Novel MEN 1 gene findings in rare sporadic insulinoma—A case control study. BMC Endocr. Disord. 2015, 15, 44. [Google Scholar] [CrossRef]
- Marini, F.; Giusti, F.; Tonelli, F.; Brandi, M.L. Pancreatic Neuroendocrine Neoplasms in Multiple Endocrine Neoplasia Type 1. Int. J. Mol. Sci. 2021, 22, 4041. [Google Scholar] [CrossRef]
- Brandi, M.L.; Agarwal, S.K.; Perrier, N.D.; Lines, K.E.; Valk, G.D.; Thakker, R.V. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr. Rev. 2021, 42, 133–170. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, W.J.; Jia, Y.X.; Yuan, H.; Wu, P.F.; Ge, W.L.; Meng, L.D.; Huang, X.M.; Shen, P.; Yang, T.Y.; et al. Effect of the transcription factor YY1 on the development of pancreatic endocrine and exocrine tumors: A narrative review. Cell Biosci. 2021, 11, 86. [Google Scholar] [CrossRef]
- Zhan, H.X.; Cong, L.; Zhao, Y.P.; Zhang, T.P.; Chen, G.; Zhou, L.; Guo, J.C. Activated mTOR/P70S6K signaling pathway is involved in insulinoma tumorigenesis. J. Surg. Oncol. 2012, 106, 972–980. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Y.C.; Li, W.S.; Du, Y. The role of mTOR and phospho-p70S6K in pathogenesis and progression of gastric carcinomas: An immunohistochemical study on tissue microarray. J. Exp. Clin. Cancer Res. 2009, 28, 152. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Qiao, S.; Li, F.; Wang, W.; Jiang, R.; Wu, H.; Chen, H.; Liu, L.; Peng, J.; Wang, J.; et al. Whole-genome sequencing reveals distinct genetic bases for insulinomas and non-functional pancreatic neuroendocrine tumours: Leading to a new classification system. Gut 2020, 69, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bender, A.; Wang, P.; Karakose, E.; Inabnet, W.B.; Libutti, S.K.; Arnold, A.; Lambertini, L.; Stang, M.; Chen, H.; et al. Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nat. Commun. 2017, 8, 767. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.M.; Liu, T.H.; Chen, Y.J.; Jiang, W.J.; Qian, J.M.; Lu, X.; Gao, J.; Wu, S.F.; Sang, X.T.; Chen, J. Chromosome 1q loss of heterozygosity frequently occurs in sporadic insulinomas and is associated with tumor malignancy. Int. J. Cancer 2005, 117, 234–240. [Google Scholar] [CrossRef]
- Jonkers, Y.M.H.; Claessen, S.M.H.; Veltman, J.A.; Geurts Van Kessel, A.; Dinjens, W.N.M.; Skogseid, B.; Ramaekers, F.C.S.; Speel, E.J.M. Molecular parameters associated with insulinoma progression: Chromosomal instability versus p53 and CK19 status. Cytogenet. Genome Res. 2006, 115, 289–297. [Google Scholar] [CrossRef]
- Iacovazzo, D.; Flanagan, S.E.; Walker, E.; Quezado, R.; De Sousa Barros, F.A.; Caswell, R.; Johnson, M.B.; Wakeling, M.; Brändle, M.; Guo, M.; et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc. Natl. Acad. Sci. USA 2018, 115, 1027–1032. [Google Scholar] [CrossRef]
- Diedisheim, M.; Dermine, S.; Jouinot, A.; Septier, A.; Gaujoux, S.; Dousset, B.; Cadiot, G.; Larger, E.; Bertherat, J.; Scharfmann, R.; et al. Prognostic transcriptome classes of duodenopancreatic neuroendocrine tumors. Endocr.-Relat. Cancer 2021, 28, 563–571. [Google Scholar] [CrossRef]
- How-Kit, A.; Dejeux, E.; Dousset, B.; Renault, V.; Baudry, M.; Terris, B.; Tost, J. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics 2015, 7, 1245–1258. [Google Scholar] [CrossRef]
- Karakose, E.; Wang, H.; Inabnet, W.; Thakker, R.V.; Libutti, S.; Fernandez-Ranvier, G.; Suh, H.; Stevenson, M.; Kinoshita, Y.; Donovan, M.; et al. Aberrant methylation underlies insulin gene expression in human insulinoma. Nat. Commun. 2020, 11, 5210. [Google Scholar] [CrossRef]
- Goebel, S.U.; Heppner, C.; Burns, A.L.; Marx, S.J.; Spiegel, A.M.; Zhuang, Z.; Lubensky, I.A.; Gibril, F.; Jensen, R.T.; Serrano, J. Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J. Clin. Endocrinol. Metab. 2000, 85, 116–123. [Google Scholar] [CrossRef]
- Kawamura, J.; Shimada, Y.; Komoto, I.; Okamoto, H.; Itami, A.; Doi, R.; Fujimoto, K.; Kosugi, S.; Imamura, M. Multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas in Japan. Oncol. Rep. 2005, 14, 47–52. [Google Scholar]
- Chen, Y.-J.; Vortmeyer, A.; Zhuang, Z.; Huang, S.; Jensen, R.T. Loss of heterozygosity of chromosome 1q in gastrinomas: Occurrence and prognostic significance. Cancer Res. 2003, 63, 817–823. [Google Scholar]
- Yu, F.; Jensen, R.T.; Lubensky, I.A.; Mahlamaki, E.H.; Zheng, Y.L.; Herr, A.M.; Ferrin, L.J. Survey of genetic alterations in gastrinomas. Cancer Res. 2000, 60, 5536–5542. [Google Scholar]
- Alrhmoun, S.; Sennikov, S. The Role of Tumor-Associated Antigen HER2/neu in Tumor Development and the Different Approaches for Using It in Treatment: Many Choices and Future Directions. Cancers 2022, 14, 6173. [Google Scholar] [CrossRef]
- Zhao, R.; Choi, B.Y.; Lee, M.H.; Bode, A.M.; Dong, Z. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine 2016, 8, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; Goebel, S.U.; Peghini, P.L.; Lubensky, I.A.; Gibril, F.; Jensen, R.T. Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J. Clin. Endocrinol. Metab. 2000, 85, 4146–4156. [Google Scholar] [CrossRef] [PubMed]
- Bergman, L.; Boothroyd, C.; Palmer, J.; Grimmond, S.; Walters, M.; Teh, B.; Shepherd, J.; Hartley, L.; Hayward, N. Identification of somatic mutations of the MEN1 gene in sporadic endocrine tumours. Br. J. Cancer 2000, 83, 1003–1008. [Google Scholar] [CrossRef]
- Chen, X.; Sun, S.; Wang, C.; Chen, D.; Chen, H.; Ran, X. Novel mutation 928G>C of MEN1 gene in a familial multiple endocrine neoplasia type 1 case (MEN1) with co-existence of insulinoma and glucagonoma1. J. Diabetes 2015, 7, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Usui, T.; Nakajima, A.; Mochida, Y.; Saito, S.; Nambu, T.; Kato, T.; Matsuda, Y.; Yonemitsu, S.; Muro, S.; et al. A Novel Missense Mutation of the MEN1 Gene in a Patient with Multiple Endocrine Neoplasia Type 1 with Glucagonoma and Obesity. Intern. Med. 2015, 54, 2475–2481. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A.; Ogasawara, T.; Fujii, Y.; Kaneko, H.; Nakayama, A.; Higuchi, S.; Hashimoto, N.; Miyabayashi, Y.; Fujimoto, M.; Komai, E.; et al. Glucagonoma with Necrolytic Migratory Erythema: Metabolic Profile and Detection of Biallelic Inactivation of DAXX Gene. J. Clin. Endocrinol. Metab. 2018, 103, 2417–2423. [Google Scholar] [CrossRef]
- Dyer, M.A.; Qadeer, Z.A.; Valle-Garcia, D.; Bernstein, E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb. Perspect. Med. 2017, 7, a026567. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.C.; Kidd, M.; Modlin, I.M.; Cohen, P.; Dina, R.; Drymousis, P.; Vlavianos, P.; Kloppel, G.; Frilling, A. Glucagon receptor gene mutations with hyperglucagonemia but without the glucagonoma syndrome. World J. Gastrointest. Surg. 2015, 7, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Görtz, B.; Roth, J.; Krähenmann, A.; De Krijger, R.R.; Muletta-Feurer, S.; Rütimann, K.; Saremaslani, P.; Speel, E.J.M.; Heitz, P.U.; Komminoth, P. Mutations and Allelic Deletions of the MEN1 Gene Are Associated with a Subset of Sporadic Endocrine Pancreatic and Neuroendocrine Tumors and Not Restricted to Foregut Neoplasms. Am. J. Pathol. 1999, 154, 429. [Google Scholar] [CrossRef] [Green Version]
- Buffet, A.; Smati, S.; Mansuy, L.; Ḿnara, Ḿ.; Lebras, M.; Heymann, M.F.; Simian, C.; Favier, J.; Murat, A.; Cariou, B.; et al. Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome. J. Clin. Endocrinol. Metab. 2014, 99, E369–E373. [Google Scholar] [CrossRef] [Green Version]
- Därr, R.; Nambuba, J.; Del Rivero, J.; Janssen, I.; Merino, M.; Todorovic, M.; Balint, B.; Jochmanova, I.; Prchal, J.T.; Lechan, R.M.; et al. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr.-Relat. Cancer 2016, 23, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Pacak, K.; Jochmanova, I.; Prodanov, T.; Yang, C.; Merino, M.J.; Fojo, T.; Prchal, J.T.; Tischler, A.S.; Lechan, R.M.; Zhuang, Z. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 1690–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigerup, C.; Pahlman, S.; Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 2016, 164, 152–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, S.; Kupka, S.; Königsrainer, I.; Northoff, H.; Sotlar, K.; Bock, T.; Kandolf, R.; Traub, F.; Königsrainer, A.; Zieker, D. MSH2 and CXCR4 involvement in malignant VIPoma. World J. Surg. Oncol. 2012, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Depoilly, T.; Leroux, R.; Andrade, D.; Nicolle, R.; Dioguardi Burgio, M.; Marinoni, I.; Dokmak, S.; Ruszniewski, P.; Hentic, O.; Paradis, V.; et al. Immunophenotypic and molecular characterization of pancreatic neuroendocrine tumors producing serotonin. Mod. Pathol. 2022, 35, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Syed, V. TGF-beta Signaling in Cancer. J. Cell Biochem. 2016, 117, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jin, J.; Xie, J.; Ye, L.; Su, T.; Jiang, L.; Zhou, W.; Jiang, Y.; Wu, L.; Wang, T.; et al. The Clinical Features and Molecular Mechanisms of ACTH-secreting Pancreatic Neuroendocrine Tumors. J. Clin. Endocrinol. Metab. 2020, 105, 3449–3458. [Google Scholar] [CrossRef]
- Jensen, R.T.; Cadiot, G.; Brandi, M.L.; de Herder, W.W.; Kaltsas, G.; Komminoth, P.; Scoazec, J.Y.; Salazar, R.; Sauvanet, A.; Kianmanesh, R.; et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: Functional pancreatic endocrine tumor syndromes. Neuroendocrinology 2012, 95, 98–119. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.-Y.; Gong, Y.-F.; Zhuang, H.-K.; Zhou, Z.-X.; Huang, S.-Z.; Zou, Y.-P.; Huang, B.-W.; Sun, Z.-H.; Zhang, C.-Z.; Tang, Y.-Q.; et al. Pancreatic neuroendocrine tumors: A review of serum biomarkers, staging, and management Conflict-of-interest statement: Open-Access. World J. Gastroenterol. 2020, 26, 2305. [Google Scholar] [CrossRef]
- Scott, A.T.; Howe, J.R. Evaluation and Management of Neuroendocrine Tumors of the Pancreas. Surg. Clin. N. Am. 2019, 99, 793–814. [Google Scholar] [CrossRef]
- Yin, F.; Wu, Z.H.; Lai, J.P. New insights in diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. World J. Gastroenterol. 2022, 28, 1751–1767. [Google Scholar] [CrossRef]
- Palmieri, L.J.; Dermine, S.; Barre, A.; Dhooge, M.; Brezault, C.; Cottereau, A.S.; Coriat, R. Medical Treatment of Advanced Pancreatic Neuroendocrine Neoplasms. J. Clin. Med. 2020, 9, 1860. [Google Scholar] [CrossRef] [PubMed]
- Falconi, M.; Eriksson, B.; Kaltsas, G.; Bartsch, D.K.; Capdevila, J.; Caplin, M.; Kos-Kudla, B.; Kwekkeboom, D.; Rindi, G.; Kloppel, G.; et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016, 103, 153–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Lee, L.; Jensen, R.T. Treatment of symptomatic neuroendocrine tumor syndromes: Recent advances and controversies. Expert Opin. Pharmacother. 2016, 17, 2191–2205. [Google Scholar] [CrossRef] [Green Version]
- Akirov, A.; Larouche, V.; Alshehri, S.; Asa, S.L.; Ezzat, S. Treatment Options for Pancreatic Neuroendocrine Tumors. Cancers 2019, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Kulke, M.H.; Horsch, D.; Caplin, M.E.; Anthony, L.B.; Bergsland, E.; Oberg, K.; Welin, S.; Warner, R.R.; Lombard-Bohas, C.; Kunz, P.L.; et al. Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome. J. Clin. Oncol. 2017, 35, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Rinke, A.; Müller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Wolin, E.M.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.R.; Ramage, J.; et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Dev. Ther. 2015, 9, 5075–5086. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Jensen, R.T. Perspectives on the current pharmacotherapeutic strategies for management of functional neuroendocrine tumor syndromes. Expert Opin. Pharmacother. 2021, 22, 685–693. [Google Scholar] [CrossRef]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.R.; Fine, R.L.; Choi, J.; Nasir, A.; Coppola, D.; Chen, D.T.; Helm, J.; Kvols, L. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 2011, 117, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Hofland, J.; Kaltsas, G.; de Herder, W.W. Advances in the Diagnosis and Management of Well-Differentiated Neuroendocrine Neoplasms. Endocr. Rev. 2020, 41, 371–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.E.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Strosberg, J.R.; Caplin, M.E.; Kunz, P.L.; Ruszniewski, P.B.; Bodei, L.; Hendifar, A.; Mittra, E.; Wolin, E.M.; Yao, J.C.; Pavel, M.E.; et al. 177 Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): Final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 1752–1763. [Google Scholar] [CrossRef]
- Bongiovanni, A.; Nicolini, S.; Ibrahim, T.; Foca, F.; Sansovini, M.; Di Paolo, A.; Grassi, I.; Liverani, C.; Calabrese, C.; Ranallo, N.; et al. (177)Lu-DOTATATE Efficacy and Safety in Functioning Neuroendocrine Tumors: A Joint Analysis of Phase II Prospective Clinical Trials. Cancers 2022, 14, 6022. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, T.; Tian, X.; Li, W.; Zhao, R.; Yang, W.; Gao, Q.; Li, T.; Shim, J.H.; Zhang, C.; et al. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy. Front. Immunol. 2021, 12, 1372. [Google Scholar] [CrossRef]
- Bösch, F.; Brüwer, K.; Altendorf-Hofmann, A.; Auernhammer, C.J.; Spitzweg, C.; Westphalen, C.B.; Boeck, S.; Schubert-Fritschle, G.; Werner, J.; Heinemann, V.; et al. Immune checkpoint markers in gastroenteropancreatic neuroendocrine neoplasia. Endocr.-Relat. Cancer 2019, 26, 293–301. [Google Scholar] [CrossRef]
- Kim, S.T.; Ha, S.Y.; Lee, S.; Ahn, S.; Lee, J.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Kim, K.M.; et al. The Impact of PD-L1 Expression in Patients with Metastatic GEP-NETs. J. Cancer 2016, 7, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Al-Toubah, T.; Cives, M.; Strosberg, J. Novel immunotherapy strategies for treatment of neuroendocrine neoplasms. Transl. Gastroenterol. Hepatol. 2020, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.; Kee, D.; Markman, B.; Michael, M.; Underhill, C.; Carlino, M.S.; Jackett, L.; Lum, C.; Scott, C.; Nagrial, A.; et al. Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4454–4459. [Google Scholar] [CrossRef]
- Young, K.; Lawlor, R.T.; Ragulan, C.; Patil, Y.; Mafficini, A.; Bersani, S.; Antonello, D.; Mansfield, D.; Cingarlini, S.; Landoni, L.; et al. Original research: Immune landscape, evolution, hypoxia-mediated viral mimicry pathways and therapeutic potential in molecular subtypes of pancreatic neuroendocrine tumours. Gut 2021, 70, 1904. [Google Scholar] [CrossRef]
- Kole, C.; Charalampakis, N.; Vailas, M.; Tolia, M.; Sotiropoulou, M.; Tsakatikas, S.; Kouris, N.I.; Tsoli, M.; Koumarianou, A.; Karamouzis, M.V.; et al. Immunotherapy for gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): A 2021 update. Cancer Immunol. Immunother. CII 2022, 71, 761–768. [Google Scholar] [CrossRef]
- Prisciandaro, M.; Antista, M.; Raimondi, A.; Corti, F.; Morano, F.; Centonze, G.; Sabella, G.; Mangogna, A.; Randon, G.; Pagani, F.; et al. Biomarker Landscape in Neuroendocrine Tumors With High-Grade Features: Current Knowledge and Future Perspective. Front. Oncol. 2022, 12, 780716. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.P.; Shapira-Frommer, R.; Bergsland, E.; Shah, M.; Fakih, M.; Takahashi, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin. Cancer Res. 2020, 26, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; He, X.; Zhang, X.; Wu, Y.; Xing, B.; Knowles, A.; Shan, Q.; Miller, S.; Hojnacki, T.; Ma, J.; et al. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nat. Cancer 2022, 3, 581–594. [Google Scholar] [CrossRef]
- Chung, E.M.; Travis, M.D.; Conran, R.M. Pancreatic tumors in children: Radiologic-pathologic correlation. Radiographics 2006, 26, 1211–1238. [Google Scholar] [CrossRef]
- Khanna, G.; O’Dorisio, S.M.; Menda, Y.; Kirby, P.; Kao, S.; Sato, Y. Gastroenteropancreatic neuroendocrine tumors in children and young adults. Pediatr. Radiol. 2008, 38, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, T.B.; Lopes, J.M.; Soares, P.; Vinagre, J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr.-Relat. Cancer 2022, 29, R191–R208. [Google Scholar] [CrossRef]
- Chiu, C.W.; Nozawa, H.; Hanahan, D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 4425–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietras, K.; Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 939–952. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.J.; Yuan, Z.; Adem, A.; Geha, R.; Vrikshajanani, C.; Koba, W.; Fine, E.; Hughes, D.T.; Schmid, H.A.; Libutti, S.K. Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery 2012, 152, 1068–1077. [Google Scholar] [CrossRef] [Green Version]
- Vijayakurup, V.; Maeng, K.; Lee, H.S.; Meyer, B.; Burkett, S.; Nawab, A.; Dougherty, M.W.; Jobin, C.; Mahmud, I.; Garrett, T.J.; et al. Thymidylate synthase accelerates Men1-mediated pancreatic tumor progression and reduces survival. JCI Insight 2022, 7. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M.; Kumar, N.; Herring, B.; Tan, C.; Guenter, R.; Telange, R.; Howse, W.; Viol, F.; McCaw, T.R.; Bickerton, H.H.; et al. Cdk5 drives formation of heterogeneous pancreatic neuroendocrine tumors. Oncogenesis 2021, 10, 83. [Google Scholar] [CrossRef]
- Pelengaris, S.; Khan, M.; Evan, G.I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002, 109, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.B.; Reens, J.; Brocklehurst, S.R.; Betts, C.J.; Bickerton, S.; Bigley, A.L.; Jenkins, R.P.; Whalley, N.M.; Morgan, D.; Smith, D.M. Islets of Langerhans from prohormone convertase-2 knockout mice show alpha-cell hyperplasia and tumorigenesis with elevated alpha-cell neogenesis. Int. J. Exp. Pathol. 2014, 95, 29–48. [Google Scholar] [CrossRef]
- Wong, C.; Tang, L.H.; Davidson, C.; Vosburgh, E.; Chen, W.; Foran, D.J.; Notterman, D.A.; Levine, A.J.; Xu, E.Y. Two well-differentiated pancreatic neuroendocrine tumor mouse models. Cell Death Differ. 2020, 27, 269–283. [Google Scholar] [CrossRef] [Green Version]
- April-Monn, S.L.; Wiedmer, T.; Skowronska, M.; Maire, R.; Schiavo Lena, M.; Trippel, M.; Di Domenico, A.; Muffatti, F.; Andreasi, V.; Capurso, G.; et al. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021, 111, 273–287. [Google Scholar] [CrossRef]
- Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020, 183, 1420–1435.e21. [Google Scholar] [CrossRef]
- Bodei, L.; Kidd, M.S.; Singh, A.; van der Zwan, W.A.; Severi, S.; Drozdov, I.A.; Malczewska, A.; Baum, R.P.; Kwekkeboom, D.J.; Paganelli, G.; et al. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: The NETest. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 895–906. [Google Scholar] [CrossRef]
- Malczewska, A.; Procner, A.; Walter, A.; Kusnierz, K.; Zajecki, W.; Aslanian, H.; Kos-Kudla, B. The NETest liquid biopsy is diagnostic for gastric neuroendocrine tumors: Observations on the blood-based identification of microscopic and macroscopic residual diseaseOK. BMC Gastroenterol. 2020, 20, 235. [Google Scholar] [CrossRef] [PubMed]
- Malczewska, A.; Witkowska, M.; Wójcik-Giertuga, M.; Kuśnierz, K.; Bocian, A.; Walter, A.; Rydel, M.; Robek, A.; Pierzchała, S.; Malczewska, M.; et al. Prospective Evaluation of the NETest as a Liquid Biopsy for Gastroenteropancreatic and Bronchopulmonary Neuroendocrine Tumors: An ENETS Center of Excellence Experience. Neuroendocrinology 2021, 111, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Kidd, M.; Falconi, M.; Filosso, P.L.; Frilling, A.; Malczewska, A.; Toumpanakis, C.; Valk, G.; Pacak, K.; Bodei, L.; et al. A multigenomic liquid biopsy biomarker for neuroendocrine tumor disease outperforms CgA and has surgical and clinical utility. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Kidd, M.; Oberg, K.; Falconi, M.; Filosso, P.L.; Frilling, A.; Malczewska, A.; Salem, R.; Toumpanakis, C.; Laskaratos, F.M.; et al. Early Identification of Residual Disease After Neuroendocrine Tumor Resection Using a Liquid Biopsy Multigenomic mRNA Signature (NETest). Ann. Surg. Oncol. 2021, 28, 7506–7517. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Jann, H.; Prasad, V.; Drozdov, I.; Modlin, I.M.; Kidd, M. NET Blood Transcript Analysis Defines the Crossing of the Clinical Rubicon: When Stable Disease Becomes Progressive. Neuroendocrinology 2017, 104, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Malczewska, A.; Oberg, K.; Kos-Kudla, B. NETest is superior to chromogranin A in neuroendocrine neoplasia: A prospective ENETS CoE analysis. Endocr. Connect. 2021, 10, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Partelli, S.; Andreasi, V.; Muffatti, F.; Schiavo Lena, M.; Falconi, M. Circulating Neuroendocrine Gene Transcripts (NETest): A Postoperative Strategy for Early Identification of the Efficacy of Radical Surgery for Pancreatic Neuroendocrine Tumors. Ann. Surg. Oncol. 2020, 27, 3928–3936. [Google Scholar] [CrossRef] [PubMed]
- Marotta, V.; Zatelli, M.C.; Sciammarella, C.; Ambrosio, M.R.; Bondanelli, M.; Colao, A.; Faggiano, A. Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: More flaws than fame. Endocr.-Relat. Cancer 2018, 25, R11–R29. [Google Scholar] [CrossRef] [Green Version]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic—Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef]
- Boons, G.; Vandamme, T.; Peeters, M.; Beyens, M.; Driessen, A.; Janssens, K.; Zwaenepoel, K.; Roeyen, G.; Van Camp, G.; De Beeck, K.O. Cell-free DNA from metastatic pancreatic neuroendocrine tumor patients contains tumor-specific mutations and copy number variations. Front. Oncol. 2018, 8, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riviere, P.; Fanta, P.T.; Ikeda, S.; Baumgartner, J.; Heestand, G.M.; Kurzrock, R. The mutational landscape of gastrointestinal malignancies as reflected by circulating tumor DNA. Mol. Cancer Ther. 2018, 17, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrock, A.B.; Pavlick, D.; Klempner, S.J.; Chung, J.H.; Forcier, B.; Welsh, A.; Young, L.; Leyland-Jones, B.; Bordoni, R.; Carvajal, R.D.; et al. Hybrid capture–based genomic profiling of circulating tumor DNA from patients with advanced cancers of the gastrointestinal tract or anus. Clin. Cancer Res. 2018, 24, 1881–1890. [Google Scholar] [CrossRef] [Green Version]
- Smolkova, B.; Kataki, A.; Earl, J.; Ruz-Caracuel, I.; Cihova, M.; Urbanova, M.; Buocikova, V.; Tamargo, S.; Rovite, V.; Niedra, H.; et al. Liquid biopsy and preclinical tools for advancing diagnosis and treatment of patients with pancreatic neuroendocrine neoplasms. Crit. Rev. Oncol. Hematol. 2022, 180, 103865. [Google Scholar] [CrossRef] [PubMed]
Genomic Landscape | |||
---|---|---|---|
Classification | Differentiation | Gene Mutations | References |
PanNET G1/G2 | well-differentiated | MEN1, DAXX/ATRX, PTEN, TSC2, MUTYH, CHEK2, BRCA2, SETD2, ARID1A, MLL3, SMARCA4, TERT, EWSR fusions, PTEN, TSC1, DEPDC5 | [15,17] |
PanNET G3 | well-differentiated | MEN1, ATRX/DAXX, TP53, CDKN2A, ARID1A, LRP1B, APC | [25,26,27] |
PanNEC | poorly differentiated | KRAS, TP53, BRAF, RB1, APC, MYC, ARID1A, ATM, KDM5A, ESR1, CDKN2A, ARID1A, LRP1B | [25,26,27,29,30] |
Transcriptomic Landscape | |||
Classification | Subgroups | Molecular Findings | References |
Sadanandam et al. (2015); Scarpa et al. (2017) | islet/insulinoma | expression of insulinoma-associated genes | [15,33] |
MLP | expression of stroma-, hypoxia- and pancreatic progenitor-specific genes | ||
intermediate subtype | MEN1, DAXX/ATRX mutations | ||
Yang et al. (2021) | proliferative | enrichment of MYC targets, G2M checkpoint, E2F targets | [34] |
stromal/mesenchymal | Hippo signaling pathway activation | ||
alpha cell-like | high expression of ARX and mitochondrial proteins, enriched by oxidative phosphorylation-related genes associated with frequent mutations in MEN1, DAXX or ATRX | ||
PDX1-high | high expression levels of PDX1 associated with mutations in CTNNB1, HRAS, NRAS, KRAS, RET | ||
Epigenetic Landscape | |||
Classification | Subgroups | Molecular Findings | References |
Di Domenico et al. (2020) | α-like | MEN1 mutations, high expression of ARX | [47] |
intermediate | MEN1 and/or DAXX/ATRX mutations with increased CNV, positive mostly for ARX or negative for both ARX/PDX1 | ||
β-like | MEN1/DAXX/ATRX wild-type, high expression of PDX1 | ||
Lakis et al. (2021) | T1 | MEN1/DAXX/ATRX wild-type | [48] |
T2 | ATRX, DAXX, MEN1 mutations and recurrent chromosomal losses | ||
T3 | MEN1 mutation and recurrent loss of chromosome 11 |
Tumor Types | Syndrome Related | Clinical Presentations | Molecular Alterations | References |
---|---|---|---|---|
Insulinoma | 10% [56] | hypoglycemic symptoms | YY1, MEN1, mTOR/P70S6K activation, LOH chromosome 1q, MAFA, epigenetic dysregulation (INS/IGF2 locus, CDNK1C, MEN1, KDM6A, MLL3/KMT2C, YY1, KDM5B, and SMARCC1) | [100,101,102,103,106,110,112,114,115] |
Gastrinoma | 25–30% [65] | esophageal symptoms, abdominal pain and diarrhea | MEN1, deletions in chromosome 1q, amplification of the HER-2/neu or chromosome 9p, deletion of the p16/MTS1 or chromosome 3p, hypomethylated genes (metalloproteinases and serpin), methylation of CDKN2A | [114,116,117,118,119,122] |
Glucagonoma | <3% [56] | skin rash, diabetes mellitus and weight loss | MEN1 E179V and two novel MEN1 mutations (G310R and M561R9), biallelic inactivation of DAXX, glucagon receptor gene mutations | [123,124,125,126,128] |
Somatostatinoma | 45% [138] | diabetes/glucose intolerance, cholelithiasis and diarrhea/steatorrhea | MEN1, HIF2A | [129,130,131,132] |
VIPoma | 5% [80] | watery diarrhea, hypokalemia, hypochlorhydria/ achlorhydria and acidosis | MEN1, MSH2 | [129,134] |
Serotonin-producing tumors | Rare (N/A) [138] | abdominal pain, diarrhea, weight loss and flushing | Low mutation drivers, TGF-β pathway activation signatures associated with extracellular matrix remodeling | [135] |
ACTH-producing tumors | Rare (N/A) [138] | weight gain, central obesity, insulin resistance and glucose hypersensitivity | Hypomethylation in pro-opiomelanocortin promoter | [137] |
Mouse Models | Mechanism | References |
---|---|---|
RIP-Tag | The RIP1-Tag2 line develops insulinomas and was generated by cloning a known oncogenic driver (SV40) downstream of the rat insulin promoter for expression in β-islet cell. This model was served to demonstrate new therapeutics, such as sunitinib and mTOR inhibitors. | [172,173] |
Menin-deficient mice | The menin-deficient mice developed PanNENs and it was widely used to test the efficiency of several treatments, including pasireotide). | [174] |
hTS/Men1−/− | Thymidylate synthase (TS) plays a crucial role in the early stages of DNA biosynthesis and its inhibition causes DNA damage. Elevated TS showed a pro-tumorigenic role in PanNETs. To better investigate these findings, a mouse model was generated where TS overexpression cooperates with Men1 inactivation in pancreatic islet cells (hTS/Men1−/−). This new mouse model showed that TS overexpression cooperates with Men1 deletion and favors the progression of PanNET and is associated with reduced survival rate. | [175] |
INS-p25OE | This is a dox-inducible and conditional mouse model in which activation of the Cdk5 pathway in β-islet cells ensures to obtain a heterogenous series of tumors, both functioning (mostly insulinoma) and non-functioning PanNENs. | [176] |
pIns-c-MycERTAM/RIP-Bcl-xL | To explore the consequences of activation of c-Myc when apoptosis is suppressed, a double transgenic model crossing a mice model of switchable c-Myc expression in pancreatic β cells under the control of an insulin promoter (pIns) and a mice model expressing Bcl-xL, under the direction of the rat insulin promoter (RIP7) has been generated. Bcl-xL suppresses the mitochondrial apoptotic pathway, thereby blocking the Myc-induced apoptotic pathway. This model developed rapidly angiogenic, invasive islet tumors. | [177] |
Pc2 −/− | Prohormone convertase-2 (Pc2) is an enzyme that plays an important role in the first step of glucagon synthesis. The Pc2 knockout (Pc2 −/−) mice developed an inability to covert proglucagon into glucagon, reduced plasma glucose, hyperplasia and tumor affecting α-cells. In conclusion, the blockage of the glucagon signal results in tumorigenesis. | [178] |
MPR (Men1flox/flox Ptenflox/flox RIP-Cre) and MPM (Men1flox/flox Ptenflox/flox MIP-Cre) | Using the Cre-LoxP system, two mice models with insulin-specific biallelic inactivation of Men1 and Pten were generated. The Cre in the MPR mouse model was driven by the transgenic rat insulin 2 promoter, while in the MPM mouse model was driven by the knock-in mouse insulin 1 promoter. These models developed rapidly more aggressive G1/G2 PanNETs. Accordingly, mTOR inhibition with rapamycin delayed the growth of PanNETs in both models. | [179] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevere, M.; Gkountakos, A.; Martelli, F.M.; Scarpa, A.; Luchini, C.; Simbolo, M. An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines 2023, 11, 303. https://doi.org/10.3390/biomedicines11020303
Bevere M, Gkountakos A, Martelli FM, Scarpa A, Luchini C, Simbolo M. An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines. 2023; 11(2):303. https://doi.org/10.3390/biomedicines11020303
Chicago/Turabian StyleBevere, Michele, Anastasios Gkountakos, Filippo Maria Martelli, Aldo Scarpa, Claudio Luchini, and Michele Simbolo. 2023. "An Insight on Functioning Pancreatic Neuroendocrine Neoplasms" Biomedicines 11, no. 2: 303. https://doi.org/10.3390/biomedicines11020303
APA StyleBevere, M., Gkountakos, A., Martelli, F. M., Scarpa, A., Luchini, C., & Simbolo, M. (2023). An Insight on Functioning Pancreatic Neuroendocrine Neoplasms. Biomedicines, 11(2), 303. https://doi.org/10.3390/biomedicines11020303