Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology
Abstract
:1. Introduction
2. Methodology
3. Principles of TPE
4. Nanomembrane-Based TPE
- ➢ Weight 120 g, size 84 × 84 × 35 mm
- ➢ Amount of blood for venting the membrane is 15–20 mL
- ➢ Separation rate of plasma is 15 mL/min at a speed of blood flow of 70 mL/min
- ➢ Effective surface area 0.15 m2 and maximum working pressure up to 40 kPa (300 mmHg)
- ➢ Stable filtration process, thanks to the rigid protective filter coating
- ➢ Reduction of trauma to erythrocytes and other plasma elements
- ➢ Fulfills the requirement of the European Pharmacopoeia Commission and the Committee for Public Health of the European Council (EC Certificate No CQ102011-II)
- ➢ Reduced priming volume
- ➢ Reduced amount of plasma removed
- ➢ Lower infection and allergic risks
- ➢ Insignificant logistical requirement for transport
- ➢ Fast operation
5. TPE in Guillain-Barre Syndrome
6. TPE in Chronic Inflammatory Demyelinating Polyradiculoneuropathy
7. TPE in Neuromyelitis Optica Spectrum Disorder
8. TPE in Myasthenia Gravis
9. TPE in Multiple Sclerosis
10. The Role of Nanomembrane-Based TPE in Reducing Oxidative Stress
11. Cost-Effectiveness Considerations
12. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, W.F.; Rock, G.A.; Buskard, N.; Shumak, K.H.; LeBlond, P.; Anderson, D.; Sutton, D.M. Therapeutic Plasma Exchange: An Update from the Canadian Apheresis Group. Ann. Intern. Med. 1999, 131, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Gwathmey, K.; Balogun, R.A.; Burns, T. Neurologic indications for therapeutic plasma exchange: 2013 update. J. Clin. Apher. 2014, 29, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Kes, P.; Basić-Kes, V.; Basić-Jukić, N.; Demarin, V. Therapeutic plasma exchange in the neurologic intensive care setting recommendation for clinical practice. Acta Clin. Croat. 2012, 51, 137–153. [Google Scholar] [PubMed]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef]
- Batra, A.; Periyavan, S. Role of low plasma volume treatment on clinical efficacy of plasmapheresis in neuromyelitis optica. Asian J. Transfus. Sci. 2017, 11, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W.; Bucka, C.; Klingel, R. A randomized and controlled study comparing immunoadsorption and plasma exchange in myasthenic crisis. J. Clin. Apher. 2011, 26, 347–355. [Google Scholar] [CrossRef]
- Klingele, M.; Allmendinger, C.; Thieme, S.; Baerens, L.; Fliser, D.; Jan, B. Therapeutic apheresis within immune-mediated neurological disorders: Dosing and its effectiveness. Sci. Rep. 2020, 10, 7925. [Google Scholar] [CrossRef] [PubMed]
- Escolar, G.; Páez, A.; Cid, J. Conventional Therapeutic Plasma Exchange Versus Low Volume Plasma Exchange in Chronic Pathologies: Potential Benefit in Alzheimer’s Disease. Plasmatology 2022, 16, 26348535221131685. [Google Scholar] [CrossRef]
- Kolev, O.I.; Kenarov, P. Vestibular and ocular motor function prior to and after therapeutic apheresis with small plasmafilter in multiple sclerosis. J. Clin. Apher. 2016, 31, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.K.; Khadilkar, S.V.; Murthy, J.M. Treatment guidelines for Guillain-Barré Syndrome. Ann. Indian. Acad. Neurol. 2011, 14, S73–S81. [Google Scholar] [CrossRef]
- Batra, A.; Periyavan, S.; Bajpai, V. Plasmapheresis for Neuromyelitis Optica: A Review from the Transfusion Medicine Specialist’s Perspective. Neurology 2018, 6, 95–101. [Google Scholar] [CrossRef]
- Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Paricio, M.; Lorites, J.; Piñol-Ripoll, G.; Gámez, J.E.; Anaya, F.; et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study. Alzheimer’s Dement. 2020, 16, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Boada, M.; Martínez-Lage, P.; Serrano-Castro, P.; Costa, M.; Páez, A. Therapeutic plasma exchange with albumin: A new approach to treat Alzheimer’s disease. Expert Rev. Neurother. 2021, 21, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Hadem, J.; Schneider, A.; Manns, M.P.; Wiesner, O.; Schmidt, B.M.W.; Hoeper, M.M.; Busch, M.; David, S. Therapeutic plasma exchange in acute liver failure. J. Clin. Apher. 2019, 34, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Li, S.; Zhou, L.; Luo, L.; Yuan, L.; Duan, Z.; Xu, J.; Chen, Y. Therapeutic effect of double plasma molecular adsorption system and sequential half-dose plasma exchange in patients with HBV-related acute-on-chronic liver failure. J. Clin. Apher. 2019, 34, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Eapen, C.; Alexander, V.; Zachariah, U.; Goel, A.; Kandasamy, S.; Chacko, B.; Punitha, J.; Nair, S.; David, V.; Prabhu, S.; et al. Low-volume plasma exchange and low-dose steroid to treat secondary hemophagocytic lymphohistiocytosis: A potential treatment for severe COVID-19? Curr. Med Issues 2020, 18, 77–82. [Google Scholar] [CrossRef]
- Eapen, C.; Zachariah, U.; Kumar, S.E.; Alexander, V.; Patel, L.; Goel, A. Low-volume plasma exchange and low-dose steroid to treat severe liver injury. Gastroenterol. Hepatol. Endosc. Pract. 2021, 1, 47–54. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Wang, L.; Gao, H.; Chen, J.; Yuan, J.; Ouyang, Y.; Gao, Y.; Li, J.; Li, X.; et al. Efficacy and safety of combination treatment of double plasma molecular adsorption system and low volume plasma exchange for patients with hepatitis B virus related acute-on-chronic liver failure: A multicentre randomised controlled clinical trial. BMJ Open 2021, 11, e047690. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.E.; Goel, A.; Zachariah, U.; Nair, S.C.; David, V.G.; Varughese, S.; Gandhi, P.B.; Barpha, A.; Sharma, A.; Vijayalekshmi, B.; et al. Low Volume Plasma Exchange and Low Dose Steroid Improve Survival in Patients with Alcohol-Related Acute on Chronic Liver Failure and Severe Alcoholic Hepatitis–Preliminary Experience. J. Clin. Exp. Hepatol. 2022, 12, 372–378. [Google Scholar] [CrossRef]
- Lu, J.; Li, D.; Liu, Y.; Yuan, Y.; Duan, Z.; Li, W. Clinical efficacy of low-dose plasma exchange combined with double plasma molecular absorption system/hemoperfusion in treatment of acute-on-chronic liver failure. J. Clin. Hepatol. 2022, 38, 2526–2531. [Google Scholar] [CrossRef]
- Thomas, L.; Chandran, J.; Goel, A.; Jacob, E.; Chacko, B.; Subramani, K.; Agarwal, I.; Varughese, S.; David, V.G.; Daniel, D.; et al. Improving Transplant-free Survival with Low-volume Plasma Exchange to Treat Children with Rodenticide Induced Hepatotoxicity. J. Clin. Exp. Hepatol. 2022; in press. [Google Scholar] [CrossRef]
- Bacal, C.J.O.; Maina, J.W.; Nandurkar, H.H.; Khaleel, M.; Guijt, R.; Chang, Y.; Dwyer, K.M.; Dumée, L.F. Blood apheresis technologies–A critical review on challenges towards efficient blood separation and treatment. Mater. Adv. 2021, 2, 7210–7236. [Google Scholar] [CrossRef]
- Faria, M.; Moreira, C.; Eusébio, T.; Brogueira, P.; de Pinho, M.N. Hybrid flat sheet cellulose acetate/silicon dioxide ultrafiltration membranes for uremic blood purification. Cellulose 2020, 27, 3847–3869. [Google Scholar] [CrossRef]
- Said, N.; Abidin, M.N.Z.; Hasbullah, H.; Ismail, A.F.; Goh, P.S.; Othman, M.H.D.; Abdullah, M.S.; Ng, B.C.; Kadir, S.H.S.A.; Kamal, F. Polysulfone hemodialysis membrane incorporated with Fe2O3 for enhanced removal of middle molecular weight uremic toxin. Malays. J. Fundam. Appl. Sci. 2020, 16, 1–5. [Google Scholar] [CrossRef]
- Abidin, M.N.Z.; Goh, P.S.; Ismail, A.F.; Othman, M.H.D.; Hasbullah, H.; Said, N.; Kadir, S.H.S.A.; Kamal, F.; Abdullah, M.S.; Ng, B.C. Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes. Mater. Sci. Eng. C 2016, 68, 540–550. [Google Scholar] [CrossRef]
- Fahmi, M.Z.; Wathoniyyah, M.; Khasanah, M.; Rahardjo, Y.; Wafiroh, S.; Abdulloh. Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance. RSC Adv. 2018, 8, 931–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaleekkal, N.J.; Thanigaivelan, A.; Durga, M.; Girish, R.; Rana, D.; Soundararajan, P.; Mohan, D. Graphene Oxide Nanocomposite Incorporated Poly(ether imide) Mixed Matrix Membranes for in Vitro Evaluation of Its Efficacy in Blood Purification Applications. Ind. Eng. Chem. Res. 2015, 54, 7899–7913. [Google Scholar] [CrossRef]
- Voinov, V. Plasmapheresis in Treatment of Myasthenia Gravis. In Selected Topics in Myasthenia Gravis; Al-Zwaini, I.J., AL-Mayahi, A., Eds.; IntechOpen: London, UK, 2018; pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yamakova, Y.; Ilieva, V.A.; Petkov, R.; Yankov, G. Nanomembrane-Based Therapeutic Plasmapheresis after Non-Invasive Ventilation Failure for Treatment of a Patient with Acute Respiratory Distress Syndrome and Myasthenia Gravis: A Case Report. Blood Purif. 2019, 48, 382–384. [Google Scholar] [CrossRef]
- Kenarov, P.; Petrov, N.; Voinov, V.; Daskalov, M.; Anaya, F.; Russo, G.; Momchilova, A. A new approach using nanomembrane—Based therapeutic plasmapheresis for treatment of patients with multiple sclerosis. A case report. J. Pharmacol. Clin. Toxicol. 2014, 2, 1031. [Google Scholar]
- Alexandrov, A.; Vassileva, P.; Momchilova, A.; Tsonchev, Z.; Kirilova, Y.; Ivanova, R.; Sapundzhiev, P.; Petkova, D.; Tzoneva, R.; Daskalov, M.; et al. A new approach using nanomembrane-based therapeutic plasmapheresis for treatment of patients with multiple sclerosis and neuromyelitis optica. Comptes Rendus L’academie Bulg. Sci. 2016, 69, 373–384. [Google Scholar]
- Momchilova, A.; Tsonchev, Z.; Hadzhilazova, M.; Tzoneva, R.; Alexandrov, A.; Nikolakov, D.; Ilieva, V.; Pankov, R. Sphingolipid Metabolism Is Dysregulated in Erythrocytes from Multiple Sclerosis Patient. Comptes Rendus L’academie Bulg. Des Sci. 2020, 73, 426–432. [Google Scholar] [CrossRef]
- Slavic, V. Apheresis Procedure could Prevent Sequele of Hsv1 Encephalitis-Case Report. Ann. Antivir. Antiretrovir. 2020, 4, 10–13. [Google Scholar] [CrossRef]
- Schwartz, J.; Padmanabhan, A.; Aqui, N.; Balogun, R.A.; Connelly-Smith, L.; Delaney, M.; Dunbar, N.M.; Witt, V.; Wu, Y.; Shaz, B.H. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J. Clin. Apher. 2016, 31, 149–338. [Google Scholar] [CrossRef] [PubMed]
- Kambara, C.; Matsuo, H.; Fukudome, T.; Goto, H.; Shibuya, N. Miller Fisher Syndrome and Plasmapheresis. Ther. Apher. 2002, 6, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Reeves, H.M.; Winters, J.L. The mechanisms of action of plasma exchange. Br. J. Haematol. 2014, 164, 342–351. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; Lugaresi, A.; Iarlori, C.; Marzoli, F.; Di Iorio, A.; Gambi, D.; Uncini, A. Prednisone and plasma exchange improve suppressor cell function in chronic inflammatory demyelinating polyneuropathy. J. Neuroimmunol. 1999, 95, 190–194. [Google Scholar] [CrossRef]
- Osman, C.; Jennings, R.; El-Ghariani, K.; Pinto, A. Plasma exchange in neurological disease. Pract. Neurol. 2020, 20, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Cid, J.; Molina, J.M.; Mustieles, M.J.; Periáñez, M.; Lozano, M. Comparison of plasma exchange procedures using three apheresis systems. Transfusion 2015, 55, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Kenarov, P.; Momchilova, A.; Anaya, F.; Voynov, V.; Alexandrov, A.; Tsonchev, Z.; Daskalov, M. Therapeutic Apheresis with Nanotechnology Membrane for Human Diseases; St. Kliment Ohridski University Press: Sofia, Bulgaria, 2014; Volume 1, pp. 1–155. [Google Scholar]
- Linz, W.; Chhibber, V.; Crookston, K.; Vrielink, H. Principles of Apheresis Technology, 5th ed.; ASFA: Vancouver, Canada, 2014. [Google Scholar]
- Anaya, F.; Voynov, V.; Kenarov, P.; Daskalov, M.; Momchilova, A.; Alexandrov, A.; Tsonchev, Z. Aferesis Terapeutica en Neurologia; Punto Rojo Libros SL: Andalusia, Spain, 2015; Volume 1, pp. 1–181. [Google Scholar]
- Hafer, C.; Golla, P.; Gericke, M.; Eden, G.; Beutel, G.; Schmidt, J.J.; Schmidt, B.M.W.; De Reys, S.; Kielstein, J.T. Membrane versus centrifuge-based therapeutic plasma exchange: A randomized prospective crossover study. Int. Urol. Nephrol. 2016, 48, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavranić, B.B.; Bašić-Jukić, N.; Premužić, V.; Kes, P. Membrane therapeutic plasma exchange with and without heparin anticoagulation. J. Clin. Apher. 2017, 32, 479–485. [Google Scholar] [CrossRef]
- Kissling, S.; Legallais, C.; Pruijm, M.; Teta, D.; Vogt, B.; Burnier, M.; Rondeau, E.; Ridel, C. A new prescription model for regional citrate anticoagulation in therapeutic plasma exchanges. BMC Nephrol. 2017, 18, 81. [Google Scholar] [CrossRef] [Green Version]
- Stegmayr, B.; Ptak, J.; Wikström, B.; Berlin, G.; Axelsson, C.; Griskevicius, A.; Centoni, P.; Liumbruno, G.; Molfettini, P.; Audzijoniene, J.; et al. World apheresis registry 2003–2007 data. Transfus. Apher. Sci. 2008, 39, 247–254. [Google Scholar] [CrossRef]
- Bauer, P.R.; Ostermann, M.; Russell, L.; Robba, C.; David, S.; Ferreyro, B.L.; Cid, J.; Castro, P.; Juffermans, N.P.; Montini, L.; et al. Plasma exchange in the intensive care unit: A narrative review. Intensive Care Med. 2022, 48, 1382–1396. [Google Scholar] [CrossRef]
- Sapundzhiev, P.; Momchilova, A.; Vassileva, P.; Kirilova, Y.; Ivanova, R.; Bozhilova, M.; Orozova, M.; Staneva, G.; Krastev, P.; Pankov, R.; et al. Plasmapheresis Affects Ophthalmological Parameters and Oxidative Stress in Patients with Multiple Sclerosis and Neuromyelitis Optica. Arch. Biomed. Eng. Biotechnol. 2021, 5, 000617. [Google Scholar] [CrossRef]
- Tenchov, B.; Koynova, R.; Antonova, B.; Zaharinova, S.; Abarova, S.; Tsonchev, Z.; Komsa-Penkova, R.; Momchilova, A. Blood plasma thermal behavior and protein oxidation as indicators of multiple sclerosis clinical status and plasma exchange therapy progression. Thermochim. Acta 2019, 671, 193–199. [Google Scholar] [CrossRef]
- Tsonchev, Z.; Alexandrov, A.; Momchilova, A.; Pankov, R.; Orozova, M.; Georgieva, R.; Georgiev, S.; Alexandrov, S.; Voinov, V.; Anaya, F.; et al. Therapeutic Apheresis with Nanotechnology Membrane for Human Diseases; Bulgarian Academy of Science Prof. Marin Drinov Publishing House: Sofia, Bulgaria, 2020; Volume 2, pp. 1–163. [Google Scholar]
- Tonev, D.; Georgieva, R.; Vavrek, E. Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. J. Clin. Med. 2022, 11, 4021. [Google Scholar] [CrossRef]
- Russo, G.E.; Lai, S.; Testorio, M.; D’Angelo, A.R.; Martinez, A.; Nunzi, A.; DeBono, V.; Grynyshyn, D.; Musto, T.G. Therapeutic Plasmapheresis Today. G. Tec. Nefrol. Dialitiche 2014, 26, 123–129. [Google Scholar] [CrossRef]
- Delgado, D.R.; Romero, E. A Comparative Analysis between Nanomembrane-Based Therapeutic Plasmapheresis and Other Plasmapheresis Methods and Their Potential Use during the COVID-19 Pandemic. Altern. Integ. Med. 2020, 9, 298. [Google Scholar] [CrossRef]
- Dorst, J.; Fillies, F.; Dreyhaupt, J.; Senel, M.; Tumani, H. Safety and Tolerability of Plasma Exchange and Immunoadsorption in Neuroinflammatory Diseases. J. Clin. Med. 2020, 9, 2874. [Google Scholar] [CrossRef]
- Boedecker, S.C.; Luessi, F.; Engel, S.; Kraus, D.; Klimpke, P.; Holtz, S.; Meinek, M.; Marczynski, P.; Weinmann, A.; Weinmann-Menke, J. Immunoadsorption and plasma exchange—Efficient treatment options for neurological autoimmune diseases. J. Clin. Apher. 2022, 37, 70–81. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, P.A.; Ruts, L.; Jacobs, B.C. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol. 2008, 7, 939–950. [Google Scholar] [CrossRef]
- Rajabally, Y.A.; Durand, M.-C.; Mitchell, J.; Orlikowski, D.; Nicolas, G. Electrophysiological diagnosis of Guillain–Barré syndrome subtype: Could a single study suffice? J. Neurol. Neurosurg. Psychiatry 2015, 86, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Rajabally, Y.A. Immunoglobulin and Monoclonal Antibody Therapies in Guillain-Barré Syndrome. Neurotherapeutics 2022, 19, 885–896. [Google Scholar] [CrossRef]
- Stoian, A.; Șerban, G.; Bajko, Z.; Andone, S.; Mosora, O.; Bălașa, A. Therapeutic plasma exchange as a first-choice therapy for axonal Guillain-Barré syndrome: A case-based review of the literature (Review). Exp. Ther. Med. 2021, 21, 265. [Google Scholar] [CrossRef] [PubMed]
- Cortese, I.; Chaudhry, V.; So, Y.T.; Cantor, F.; Cornblath, D.R.; Rae-Grant, A. Evidence-based guideline update: Plasmapheresis in neurologic disorders: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2011, 76, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Fournier, M.; Kerguelen, A.; de Rivera, F.J.R.; Lacruz, L.; Jimeno, S.; Losantos-García, I.; Hernández-Maraver, D.; Puertas, I.; Tallon-Barranco, A.; Viejo, A.; et al. Therapeutic plasma exchange for myasthenia gravis, Guillain-Barre syndrome, and other immune-mediated neurological diseases, over a 40-year experience. Expert Rev. Neurother. 2022, 22, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Damian, M.S.; Wijdicks, E.F. The clinical management of neuromuscular disorders in intensive care. Neuromuscul. Disord. 2019, 29, 85–96. [Google Scholar] [CrossRef]
- Lehmann, H.C.; Burke, D.; Kuwabara, S. Chronic inflammatory demyelinating polyneuropathy: Update on diagnosis, immunopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2019, 90, 981–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallat, J.-M.; Sommer, C.; Magy, L. Chronic inflammatory demyelinating polyradiculoneuropathy: Diagnostic and therapeutic challenges for a treatable condition. Lancet Neurol. 2010, 9, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Mehndiratta, M.M.; Hughes, R.A.; Pritchard, J. Plasma exchange for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst. Rev. 2015, 2015, CD003906. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Mazibrada, G.; Irani, S.R.; Jacob, A.; Yudina, A. The Role of Plasma Exchange in the Treatment of Refractory Autoimmune Neurological Diseases: A Narrative Review. J. Neuroimmune Pharmacol. 2021, 16, 806–817. [Google Scholar] [CrossRef]
- Bonnan, M.; Cabre, P. Plasma Exchange in Severe Attacks of Neuromyelitis Optica. Mult. Scler. Int. 2012, 2012, 787630. [Google Scholar] [CrossRef]
- Bonnan, M.; Valentino, R.; Debeugny, S.; Merle, H.; Fergé, J.-L.; Mehdaoui, H.; Cabre, P. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J. Neurol. Neurosurg. Psychiatry 2018, 89, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Kleiter, I.; Gahlen, A.; Borisow, N.; Fischer, K.; Wernecke, K.-D.; Hellwig, K.; Pache, F.; Ruprecht, K.; Havla, J.; Kümpfel, T.; et al. NEMOS (Neuromyelitis Optica Study Group). Apheresis therapies for NMOSD attacks: A retrospective study of 207 therapeutic interventions. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribble, K.D.; Walker, L.J.; Saint-Amant, L.; Kuwada, J.Y.; Granato, M. The synaptic receptor Lrp4 promotes peripheral nerve regeneration. Nat. Commun. 2018, 9, 2389. [Google Scholar] [CrossRef] [Green Version]
- DePew, A.; Mosca, T. Conservation and Innovation: Versatile Roles for LRP4 in Nervous System Development. J. Dev. Biol. 2021, 9, 9. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Kaminski, H.J.; Aban, I.B.; Minisman, G.; Kuo, H.-C.; Marx, A.; Ströbel, P.; Mazia, C.; Oger, J.; Cea, J.G.; et al. MGTX Study Group. Randomized Trial of Thymectomy in Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Clair, B.; Tranchant, C.; Chastang, C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Ann. Neurol. 1997, 41, 789–796. [Google Scholar] [CrossRef]
- Barth, D.; Nabavi Nouri, M.; Ng, E.; New, P.; Bril, V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 2011, 76, 2017–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, A.; Choudhry, M.A.; Akbar, M.S.; Mohammad, Y.; Chua, H.C.; Yahia, A.M.; Ulatowski, J.A.; Krendel, D.A.; Leshner, R.T. Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis. Neurology 1999, 52, 629. [Google Scholar] [CrossRef] [PubMed]
- Trikha, I.; Singh, S.; Goyal, V.; Shukla, G.; Bhasin, R.; Behari, M. Comparative efficacy of low dose, daily versus alternate day plasma exchange in severe myasthenia gravis. J. Neurol. 2007, 254, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Connelly-Smith, L.; Dunbar, N.M. The 2019 guidelines from the American Society for Apheresis: What’s new? Curr. Opin. Hematol. 2019, 26, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, M.A.D.; Desidério, C.S.; Catarino, J.D.S.; Trevisan, R.O.; da Silva, D.A.A.; Rocha, V.F.R.; Bovi, W.G.; Timoteo, R.P.; Bonatti, R.C.F.; da Silva, A.E.; et al. Role of Cytokines, Chemokines and IFN-γ+ IL-17+ Double-Positive CD4+ T Cells in Patients with Multiple Sclerosis. Biomedicines 2022, 10, 2062. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Lassmann, H.; Brück, W.; Lucchinetti, C.F. The Immunopathology of Multiple Sclerosis: An Overview. Brain Pathol. 2007, 17, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Aboud, T.; Schuster, N.M. Pain Management in Multiple Sclerosis: A Review of Available Treatment Options. Curr. Treat. Options Neurol. 2019, 21, 62. [Google Scholar] [CrossRef]
- Lipphardt, M.; Mühlhausen, J.; Kitze, B.; Heigl, F.; Mauch, E.; Helms, H.-J.; Müller, G.A.; Koziolek, M.J. Immunoadsorption or plasma exchange in steroid-refractory multiple sclerosis and neuromyelitis optica. J. Clin. Apher. 2019, 34, 381–391. [Google Scholar] [CrossRef]
- Ljubisavljevic, S.; Stojanovic, I.; Cvetkovic, T.; Vojinovic, S.; Stojanov, D.; Stefanovic, N.; Pavlovic, D. Erythrocytes’ antioxidative capacity as a potential marker of oxidative stress intensity in neuroinflammation. J. Neurol. Sci. 2014, 337, 8–13. [Google Scholar] [CrossRef]
- Pentón-Rol, G.; Cervantes-Llanos, M.; Martínez-Sánchez, G.; Cabrera-Gómez, J.A.; Valenzuela-Silva, C.M.; Ramírez-Nuñez, O.; Casanova-Orta, M.; Robinson-Agramonte, M.A.; Lopategui-Cabezas, I.; López-Saura, P.A. TNF-α and IL-10 downregulation and marked oxidative stress in Neuromyelitis Optica. J. Inflamm. 2009, 6, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collongues, N.; Ayme-Dietrich, E.; Monassier, L.; de Seze, J. Pharmacotherapy for Neuromyelitis Optica Spectrum Disorders: Current Management and Future Options. Drugs 2019, 79, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tan, C.; Liu, Y.; Liu, X.; Wang, X.; Gui, Y.; Qin, L.; Deng, F.; Yu, Z.; Hu, C.; et al. Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury. Mol. Med. Rep. 2015, 12, 7756–7762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, A.; Pahan, K. Oxidative Stress Kills Human Primary Oligodendrocytes Via Neutral Sphingomyelinase: Implications for Multiple Sclerosis. J. Neuroimmune Pharmacol. 2007, 2, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Bitzer-Quintero, O.K.; Ramírez-Anguiano, A.C.; Flores-Alvarado, L.J.; Ramírez-Ramírez, V.; Macias-Islas, M.A.; Torres-Sánchez, E.D. Immunology and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach. Clin. Dev. Immunol. 2013, 2013, 708659. [Google Scholar] [CrossRef] [Green Version]
- Amorini, A.M.; Petzold, A.; Tavazzi, B.; Eikelenboom, J.; Keir, G.; Belli, A.; Giovannoni, G.; Di Pietro, V.; Polman, C.; D’Urso, S.; et al. Increase of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin. Biochem. 2009, 42, 1001–1006. [Google Scholar] [CrossRef]
- Bjartmar, C.; Trapp, B.D. Axonal and neuronal degeneration in multiple sclerosis: Mechanisms and functional consequences. Curr. Opin. Neurol. 2001, 14, 271–278. [Google Scholar] [CrossRef] [PubMed]
- van der Goes, A.; Wouters, D.; van der Pol, S.M.A.; Huizinga, R.; Ronken, E.; Adamson, P.; Greenwood, J.; Dijkstra, C.D.; de Vries, H.E. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J. 2001, 15, 1852–1854. [Google Scholar] [CrossRef] [PubMed]
- Schreibelt, G.; Musters, R.J.P.; Reijerkerk, A.; de Groot, L.R.; van der Pol, S.M.A.; Hendrikx, E.M.L.; Döpp, E.D.; Dijkstra, C.D.; Drukarch, B.; de Vries, H.E. Lipoic Acid Affects Cellular Migration into the Central Nervous System and Stabilizes Blood-Brain Barrier Integrity. J. Immunol. 2006, 177, 2630–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Goes, A.; Brouwer, J.; Hoekstra, K.; Roos, D.; Berg, T.K.V.D.; Dijkstra, C.D. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J. Neuroimmunol. 1998, 92, 67–75. [Google Scholar] [CrossRef] [PubMed]
- van Meeteren, M.E.; Hendriks, J.; Dijkstra, C.D.; van Tol, E.A. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol. 2004, 67, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, J.J.; Teunissen, C.E.; de Vries, H.E.; Dijkstra, C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005, 48, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Van Horssen, J.; Schreibelt, G.; Drexhage, J.; Hazes, T.; Dijkstra, C.; van der Valk, P.; de Vries, H. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 2008, 45, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- van Horssen, J.; Schreibelt, G.; Bö, L.; Montagne, L.; Drukarch, B.; van Muiswinkel, F.L.; de Vries, H.E. NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free. Radic. Biol. Med. 2006, 41, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Scapagnini, G.; Ravagna, A.; Bella, R.; Foresti, R.; Bates, T.E.; Stella, A.-M.G.; Pennisi, G. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J. Neurosci. Res. 2002, 70, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mao, Y.; Huang, S.; Li, W.; Zhang, W.; An, J.; Jin, Y.; Guan, J.; Wu, L.; Zhou, P. Selenium nanoparticles derived from Proteus mirabilis YC801 alleviate oxidative stress and inflammatory response to promote nerve repair in rats with spinal cord injury. Regen. Biomater. 2022, 9, rbac042. [Google Scholar] [CrossRef]
- Abdelrahman, S.; Patel, R.P.; Flores, J.; Silver, A.; Focke, J. Cost-analysis of therapeutic plasma exchange vs. intravenous immunoglobulins to treat immune-mediated neuromuscular disorders. Am. J. Neurol. 2020, 1, 119–126. [Google Scholar] [CrossRef]
- Kozul, T.K.; Yudina, A.; Donovan, C.; Pinto, A.; Osman, C. Cost-minimisation analysis of plasma exchange versus IVIg in the treatment of autoimmune neurological conditions. BMC Health Serv. Res. 2022, 22, 904. [Google Scholar] [CrossRef]
- Nagpal, S.; Benstead, T.; Shumak, K.; Rock, G.; Brown, M.; Anderson, D.R. Treatment of Guillain-Barré syndrome: A cost-effectiveness analysis. J. Clin. Apher. 1999, 14, 107–113. [Google Scholar] [CrossRef]
- Winters, J.L.; Brown, D.; Hazard, E.; Chainani, A.; Andrzejewski, C. Cost-minimization analysis of the direct costs of TPE and IVIg in the treatment of Guillain-Barré syndrome. BMC Health Serv. Res. 2011, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-P.; Wang, K.-C.; Liu, C.-Y.; Sheng, W.-Y.; Lee, T.-C. Pharmacoeconomics of therapy for Guillain–Barré syndrome: Plasma exchange and intravenous immunoglobulin. J. Clin. Neurosci. 2007, 14, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Sharma, R.R.; Prinja, S.; Hans, R.; Modi, M.; Sharma, N.; Marwaha, N. Cost-minimization analysis in the Indian subcontinent for treating Guillain Barre Syndrome patients with therapeutic plasma exchange as compared to intravenous immunoglobulin. J. Clin. Apher. 2018, 33, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Atikeler, K.; Tuna, E.; Kockaya, G. PND17 Comparing Cost of Therapeutic Plasma Exchange and Intravenous Immunoglobulin Infusion in Treating Guillain-BarrÉ Syndrome. Value Health 2012, 15, A548. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.P.M.D.; Ferreira, M.P.; Maciel, P.P.; Moreira, L.B. Economic analysis of intravenous immunoglobulin and plasma exchange therapies for the treatment of Guillain-Barré syndrome in a university-based hospital in the south of Brazil. Rev. HCPA. Porto Alegre 2011, 31, 275–280. [Google Scholar]
- Guptill, J.T.; Runken, M.C.; Eaddy, M.; Lunacsek, O.; Fuldeore, R.M. Treatment Patterns and Costs of Chronic Inflammatory Demyelinating Polyneuropathy: A Claims Database Analysis. Am. Health Drug Benefits 2019, 12, 127–135. [Google Scholar]
- Oaklander, A.L.; Lunn, M.P.; Hughes, R.A.; van Schaik, I.N.; Frost, C.; Chalk, C.H. Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): An overview of systematic reviews. Cochrane Database Syst. Rev. 2017, 1, CD010369. [Google Scholar] [CrossRef]
- Heatwole, C.; Johnson, N.; Holloway, R.; Noyes, K. Plasma Exchange versus Intravenous Immunoglobulin for Myasthenia Gravis Crisis: An Acute Hospital Cost Comparison Study. J. Clin. Neuromuscul. Dis. 2011, 13, 85–94. [Google Scholar] [CrossRef]
- Furlan, J.C.; Barth, D.; Barnett, C.; Bril, V. Cost-minimization analysis comparing intravenous immunoglobulin with plasma exchange in the management of patients with myasthenia gravis. Muscle Nerve 2016, 53, 872–876. [Google Scholar] [CrossRef]
- Guptill, J.T.; Sharma, B.K.; Marano, A.; Soucy, A.; Krueger, A.; Sanders, D.B. Estimated cost of treating myasthenia gravis in an insured U.S. population. Muscle Nerve 2012, 45, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, F.; Mohammadi, F.; Yavari, Z. Characterization of the cylindrical electrospun nanofibrous polysulfone membrane for hemodialysis with modelling approach. Med Biol. Eng. Comput. 2021, 59, 1629–1641. [Google Scholar] [CrossRef]
- Hill, K.; Walker, S.N.; Salminen, A.; Chung, H.L.; Li, X.; Ezzat, B.; Miller, J.J.; DesOrmeaux, J.S.; Zhang, J.; Hayden, A.; et al. Second Generation Nanoporous Silicon Nitride Membranes for High Toxin Clearance and Small Format Hemodialysis. Adv. Healthc. Mater. 2020, 9, 1900750. [Google Scholar] [CrossRef]
- Said, N.; Abidin, M.N.Z.; Hasbullah, H.; Ismail, A.F.; Goh, P.S.; Othman, M.H.D.; Abdullah, M.S.; Ng, B.C.; Kadir, S.H.S.A.; Kamal, F. Iron oxide nanoparticles improved biocompatibility and removal of middle molecule uremic toxin of polysulfone hollow fiber membranes. J. Appl. Polym. Sci. 2019, 136, 48234. [Google Scholar] [CrossRef]
- Said, N.; Hasbullah, H.; Abidin, M.N.Z.; Ismail, A.F.; Goh, P.S.; Othman, M.H.D.; Kadir, S.H.S.A.; Kamal, F.; Abdullah, M.S.; Ng, B.C. Facile modification of polysulfone hollow-fiber membranes via the incorporation of well-dispersed iron oxide nanoparticles for protein purification. J. Appl. Polym. Sci. 2019, 136, 47502. [Google Scholar] [CrossRef]
- Radu, E.R.; Voicu, S.I. Functionalized Hemodialysis Polysulfone Membranes with Improved Hemocompatibility. Polymers 2022, 14, 1130. [Google Scholar] [CrossRef] [PubMed]
- Said, N.; Lau, W.J.; Ho, Y.-C.; Lim, S.K.; Abidin, M.N.Z.; Ismail, A.F. A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. Membranes 2021, 11, 767. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Lin, W.-C.; Huang, L.-Y.; Chen, S.-Y.; Yang, M.-C. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 2005, 26, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Fissell, W.H.; Dubnisheva, A.; Eldridge, A.N.; Fleischman, A.J.; Zydney, A.L.; Roy, S. High-performance silicon nanopore hemofiltration membranes. J. Membr. Sci. 2009, 326, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Feinberg, B.; Kant, R.; Chui, B.; Goldman, K.; Park, J.; Moses, W.; Blaha, C.; Iqbal, Z.; Chow, C.; et al. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications. PLoS ONE 2016, 11, e0159526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Long, Y.; Zhang, H.; Li, M.; Duvail, J.; Jiang, X.; Yin, H. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014, 39, 862–890. [Google Scholar] [CrossRef]
- Kaur, S.; Sundarrajan, S.; Rana, D.; Sridhar, R.; Gopal, R.; Matsuura, T.; Ramakrishna, S. Review: The characterization of electrospun nanofibrous liquid filtration membranes. J. Mater. Sci. 2014, 49, 6143–6159. [Google Scholar] [CrossRef]
- Roy, A.; De, S. State-of-the-Art Materials and Spinning Technology for Hemodialyzer Membranes. Sep. Purif. Rev. 2017, 46, 216–240. [Google Scholar] [CrossRef]
- Koh, E.; Lee, Y.T. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3D printing and electrospinning technology. Sep. Purif. Technol. 2020, 241, 116657. [Google Scholar] [CrossRef]
- Wu, S.; Dong, T.; Li, Y.; Sun, M.; Qi, Y.; Liu, J.; Kuss, M.A.; Chen, S.; Duan, B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 2022, 27, 101473. [Google Scholar] [CrossRef] [PubMed]
- Linz, W.; Jr, C.A.; Wu, D.W.; Li, Y.; Roberts, T.; Ipe, T.; Ricci, K.; Knight, S.; Hodjat, P.; Reddy, R.L.; et al. Apheresis medicine in the era of advanced telehealth technologies: An American Society for Apheresis position paper Part I: Understanding the basic technologies and apheresis medicine practice models. J. Clin. Apher. 2020, 35, 460–468. [Google Scholar] [CrossRef]
- Linz, W.; Jr, C.A.; Hofmann, J.C. Apheresis medicine in the era of advanced telehealth technologies: An American Society for Apheresis position paper part II: Principles of apheresis medical practice in a 21st century electronic medical practice environment. J. Clin. Apher. 2022, 37, 122–126. [Google Scholar] [CrossRef]
- Alarifi, I.M. Nanofiltration for blood products. In Nanotechnology for Hematology, Blood Transfusion and Artificial Blood; Denizli, A., Rajan, M., Rahman, K., Nguyen, T.A., Alam, M.E., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2022; pp. 371–395. [Google Scholar] [CrossRef]
- Troccoli, N.M.; Mclver, J.; Losikoff, A.; Poiley, J. Removal of Viruses from Human Intravenous Immune Globulin by 35 nm Nanofiltration. Biologicals 1998, 26, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Burnouf, T.; Radosevich, M. Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia 2003, 9, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Murai, K.; Murozuka, T.; Wakisaka, A.; Tanifuji, M.; Fujii, N.; Tomono, T. Removal of small non-enveloped viruses by nanofiltration. Vox Sang. 2004, 86, 225–229. [Google Scholar] [CrossRef]
- Kreil, T.R.; Wieser, A.; Berting, A.; Spruth, M.; Medek, C.; Polsler, G.; Gaida, T.; Hammerle, T.; Teschner, W.; Schwarz, H.P.; et al. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives. Transfusion 2006, 46, 1143–1151. [Google Scholar] [CrossRef]
- Soluk, L.; Price, H.; Sinclair, C.; Atalla-Mikhail, D.; Genereux, M. Pathogen Safety of Intravenous Rh Immunoglobulin Liquid and Other Immune Globulin Products: Enhanced Nanofiltration and Manufacturing Process Overview. Am. J. Ther. 2008, 15, 435–443. [Google Scholar] [CrossRef]
- Caballero, S.; Nieto, S.; Gajardo, R.; Jorquera, J.I. Viral safety characteristics of Flebogamma® DIF, a new pasteurized, solvent-detergent treated and Planova 20 nm nanofiltered intravenous immunoglobulin. Biologicals 2010, 38, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Jorba, N.; Shitanishi, K.T.; Winkler, C.J.; Herring, S.W. Virus removal capacity at varying ionic strength during nanofiltration of AlphaNine® SD. Biologicals 2014, 42, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Caballero, S.; Diez, J.M.; Belda, F.J.; Otegui, M.; Herring, S.; Roth, N.J.; Lee, D.; Gajardo, R.; Jorquera, J.I. Robustness of nanofiltration for increasing the viral safety margin of biological products. Biologicals 2014, 42, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Burnouf, T. An overview of plasma fractionation. Ann. Blood 2018, 3, 33. [Google Scholar] [CrossRef]
- Doodeji, M.S.; Zerafat, M.M. A review on the applications of nanofiltration in virus removal and pharmaceutical industries. Glob. J. Nanomed. 2018, 3, 555624. [Google Scholar] [CrossRef]
- Adan-Kubo, J.; Tsujikawa, M.; Takahashi, K.; Hongo-Hirasaki, T.; Sakai, K. Microscopic visualization of virus removal by dedicated filters used in biopharmaceutical processing: Impact of membrane structure and localization of captured virus particles. Biotechnol. Prog. 2019, 35, e2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, N.J.; Dichtelmüller, H.O.; Fabbrizzi, F.; Flechsig, E.; Gröner, A.; Gustafson, M.; Jorquera, J.I.; Kreil, T.R.; Misztela, D.; Moretti, E.; et al. Nanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 yearsʼ experience of the plasma protein manufacturers. Transfusion 2020, 60, 2661–2674. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, L.; Mantas, A.; Razumikhin, M.; Katalevsky, A.; Golubev, E.; Mihranyan, A. Two-Step Size-Exclusion Nanofiltration of Prothrombin Complex Concentrate Using Nanocellulose-Based Filter Paper. Biomedicines 2020, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Nanotechnology | Type of Research | Applications | References |
---|---|---|---|
Covered in the last review on blood apheresis technologies | [22] | ||
Membrane with silicon dioxide nanoparticles | Experimental | Hemodialysis | [23] |
Membrane with ferric oxide nanoparticles | Experimental | Hemodialysis | [24] |
Membrane with multi-walled carbon nanotubes | Experimental | Hemodialysis | [25] |
Membrane with graphene oxide nanoparticles | Experimental | Hemodialysis | [26,27] |
Not covered in the last review on blood apheresis technologies | [22] | ||
Membrane with nanoscale pores made of Lavsan film irradiated by accelerated in a collider charged argon particles | Clinical | TPE | [9,28,29,30,31,32,33] |
Membrane Filtration | Centrifugal Separation | |
---|---|---|
Venous access | Central venous access | Peripheral or Central venous access |
Anticoagulation | Heparin | Citrate |
Efficiency of plasma removal | 30% | 70% |
Blood flow rate | High (100–150 mL/min) | Low (50–70 mL/min) |
Conventional Treatment n = 24 | Nanomembrane-Based TPE n = 12 | p Value | |
---|---|---|---|
Non-invasive ventilation | 9 (37%) | 7 (58%) | 0.236 |
Invasive ventilation | 20 (83%) | 5 (42%) | 0.020 |
Early tracheotomy | 12 (50%) | 3 (25%) | 0.286 |
Extubation times (days) | 17 ± 21 | 5 ± 7 | 0.023 |
ICU length of stay (days) | 20 ± 24 | 10 ± 5 | 0.118 |
OR | 95% CI of OR | p Value | |
---|---|---|---|
Age | 0.942 | 0.896 | 0.018 |
MGFA class (IV/V) on ICU admission | 10.111 | 2.086–48.999 | 0.004 |
Therapeutic plasma exchange | 9.000 | 1.550–52.266 | 0.014 |
Non-invasive ventilation | 12.000 | 2.484–57.975 | 0.002 |
BCVA | Average RNFL Thickness (µm) | MD (dB) | ||||
---|---|---|---|---|---|---|
Before TPE | After TPE | Before TPE | After TPE | Before TPE | After TPE | |
Right eye | 1.0 | 1.0 | 71.0 | 59.5 | −8.72 | −7.81 |
Left eye | 1.0 | 1.0 | 65.5 | 60.25 | −15.77 | −15.12 |
Patient Number | ROS (FI/mg Protein) | Isoprostanes (pg/mL) | Kurtzke EDSS | |||
---|---|---|---|---|---|---|
Before TPE | After TPE | Before TPE | After TPE | Before TPE | After TPE | |
1. | 377 | 305 | 56 | 42 | 6.5 | 6.0 |
2. | 380 | 304 | 59 | 48 | 6.5 | 6.0 |
3. | 385 | 312 | 95 | 90 | 8.5 | 8.5 |
4. | 362 | 295 | 61 | 51 | 3.0 | 2.5 |
5. | 296 | 285 | 62 | 54 | 6.0 | 5.5 |
Hardware Cost | Management Cost | ||||
---|---|---|---|---|---|
Type of Procedure | Consumables | Replacement Fluids and Medications | Various Costs | Personal Cost | Total Cost |
€ | € | € | € | € | |
Centrifugal TPE | 186.58 | 356.00 | 50.00 | 200.00 | 792.58 |
Hemophenix Nanofiltration TPE | 150.00 | 15.00 | 50.00 | 100.00 | 315.00 |
Filtration TPE | 175.07 | 356.00 | 50.00 | 200.00 | 781.07 |
Cascade filtration TPE | 404.89 | 85.00 | 50.00 | 200.00 | 739.89 |
Staphylococcal protein A column- immunoadsorption | 1275.07 | 20.00 | 50.00 | 200.00 | 1547.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonev, D.G.; Momchilova, A.B. Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines 2023, 11, 328. https://doi.org/10.3390/biomedicines11020328
Tonev DG, Momchilova AB. Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines. 2023; 11(2):328. https://doi.org/10.3390/biomedicines11020328
Chicago/Turabian StyleTonev, Dimitar G., and Albena B. Momchilova. 2023. "Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology" Biomedicines 11, no. 2: 328. https://doi.org/10.3390/biomedicines11020328
APA StyleTonev, D. G., & Momchilova, A. B. (2023). Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines, 11(2), 328. https://doi.org/10.3390/biomedicines11020328