Are Women with Normal-Weight Obesity at Higher Risk for Cardiometabolic Disorders?
Abstract
:1. Introduction
2. Methods
2.1. Ethical Approval and Consent to Participate
2.2. Participants
- 24 lean women (18.5 ≤ BMI < 25 and BFP < 30%);
- 29 NWO women (18.5 ≤ BMI < 25 and BFP > 30%);
- 28 overweight women (25 ≤ BMI < 30);
- 27 type 1 obese women (30 ≤ BMI < 35);
- 23 type 2 obese women (35 ≤ BMI < 40);
- 23 type 3 obese women (BMI ≥ 40).
2.3. Anthropometric and Blood Pressure Measurements
2.4. Blood Sampling
2.5. Definition of Cardiometabolic Risk Factors
2.6. Statistical Analysis
3. Results
3.1. Physical Characteristics and BP
3.2. Cardiometabolic and Liver Enzymes
3.3. Correlations between WC and BFP and the Cardiometabolic Markers
3.4. Between-Group Comparison of the Cardiometabolic Abnormalities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valenzuela, R.; Das, U.N.; Videla, L.A.; Llorente, C.G. Nutrients and Diet: A Relationship between Oxidative Stress, Aging, Obesity, and Related Noncommunicable Diseases. Oxidative Med. Cell. Longev. 2018, 2018, 7460453. [Google Scholar] [CrossRef]
- Ghanavati, M.; Behrooz, M.; Rashidkhani, B.; Ashtray-Larky, D.; Zameni, S.D.; Alipour, M. Healthy Eating Index in Patients with Cataract: A Case-Control Study. Iran. Red Crescent Med. J. 2015, 17, e22490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, A.; Clinchamps, M.; Pereira, B.; Courteix, D.; LeSourd, B.; Chapier, R.; Obert, P.; Vinet, A.; Walther, G.; Chaplais, E.; et al. Dietary Fibres and the Management of Obesity and Metabolic Syndrome: The RESOLVE Study. Nutrients 2020, 12, 2911. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, B.H.; Bagheri, R.; Roozbeh, B.; Ashtary-Larky, D.; Gaeini, A.A.; Dutheil, F.; Wong, A. Impact of saffron (Crocus sativus Linn) supplementation and resistance training on markers implicated in depression and happiness levels in untrained young males. Physiol. Behav. 2021, 233, 113352. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization Obesity and Overweight Fact Sheet; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Ehrampoush, E.; Arasteh, P.; Homayounfar, R.; Cheraghpour, M.; Alipour, M.; Naghizadeh, M.M.; Hadibarhaghtalab, M.; Davoodi, S.H.; Askari, A.; Razaz, J.M. New anthropometric indices or old ones: Which is the better predictor of body fat? Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, 257–263. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Abbasnezhad, A.; Tinsley, G.M.; Alipour, M.; Wong, A. Effects of gradual weight loss v. rapid weight loss on body composition and RMR: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 1121–1132. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Daneghian, S.; Alipour, M.; Rafiei, H.; Ghanavati, M.; Mohammadpour, R.; Kooti, W.; Ashtary-Larky, P.; Afrisham, R. Waist Circumference to Height Ratio: Better Correlation with Fat Mass Than Other Anthropometric Indices During Dietary Weight Loss in Different Rates. Int. J. Endocrinol. Metab. 2018, 16, e55023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Kyung, C.; Park, J.S.; Kim, S.; Lee, S.-P.; Kim, M.K.; Kim, H.K.; Kim, K.R.; Jeon, T.J.; Ahn, C.W. Subclinical vascular inflammation in subjects with normal weight obesity and its association with body Fat: An 18 F-FDG-PET/CT study. Cardiovasc. Diabetol. 2014, 13, 70. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, B.H.; Bagheri, R.; Ashtary-Larky, D.; Tinsley, G.M.; Eskandari, M.; Wong, A.; Kreider, R.B.; Baker, J.S. The Effects of Concurrent Training Order on Satellite Cell-Related Markers, Body Composition, Muscular and Cardiorespiratory Fitness in Older Men with Sarcopenia. J. Nutr. Health Aging 2020, 24, 796–804. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Del Gobbo, V.; Premrov, M.G.; Bigioni, M.; Galvano, F.; Di Renzo, L. Normal-weight obese syndrome: Early inflammation? Am. J. Clin. Nutr. 2007, 85, 40–45. [Google Scholar] [CrossRef]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Mahmoodi, M.; Rajaei, M.; Alipour, M.; Kooti, W.; Aghamohammdi, V.; Wong, A. The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: A randomised controlled trial. Br. J. Nutr. 2020, 124, 1044–1051. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Aghamohammadi, V.; Ashtary-Larky, D.; Alipour, M.; Ghanavati, M.; Lamuchi-Deli, N. Are young Iranian women with metabolically healthy obesity at increased risk of CVD incidence? J. Vasc. Bras. 2020, 19, 190106. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Martinoli, R.; Vaia, F.; Di Renzo, L. Normal weight obese (NWO) women: An evaluation of a candidate new syndrome. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 513–523. [Google Scholar] [CrossRef]
- Marques-Vidal, P.; Pécoud, A.; Hayoz, D.; Paccaud, F.; Mooser, V.; Waeber, G.; Vollenweider, P. Normal weight obesity: Relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 669–675. [Google Scholar] [CrossRef]
- Shea, J.; Randell, E.W.; Sun, G. The Prevalence of Metabolically Healthy Obese Subjects Defined by BMI and Dual-Energy X-Ray Absorptiometry. Obesity 2011, 19, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Ashtary-Larky, D.; Ghanavati, M.; Lamuchi-Deli, N.; Payami, S.A.; Alavi-Rad, S.; Boustaninejad, M.; Afrisham, R.; Abbasnezhad, A.; Alipour, M. Rapid weight loss vs. slow weight loss: Which is more effective on body composition and metabolic risk factors? Int. J. Endocrinol. Metab. 2017, 15, e13249. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Schumann, M.; Huang, T.; Törmäkangas, T.; Cheng, S. Normal weight obesity and physical fitness in Chinese university students: An overlooked association. BMC Public Health 2018, 18, 1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques-Vidal, P.; Pécoud, A.; Hayoz, D.; Paccaud, F.; Mooser, V.; Waeber, G.; Vollenweider, P. Prevalence of normal weight obesity in Switzerland: Effect of various definitions. Eur. J. Nutr. 2008, 47, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiklund, P.; Törmäkangas, T.; Shi, Y.; Wu, N.; Vainionpää, A.; Alen, M.; Cheng, S. Normal-weight obesity and cardiometabolic risk: A 7-year longitudinal study in girls from prepuberty to early adulthood. Obesity 2017, 25, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Wiklund, P. The effects of muscle mass and muscle quality on cardio-metabolic risk in peripubertal girls: A longitudinal study from childhood to early adulthood. Int. J. Obes. 2017, 42, 648–654. [Google Scholar] [CrossRef]
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V. Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan Municipality, South Africa: A cross-sectional study. J. Health. Popul. Nutr. 2017, 36, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, R.; Ashtary-Larky, D.; Elliott, B.T.; Willoughby, D.S.; Kargarfard, M.; Alipour, M.; Lamuchi-Deli, N.; Kooti, W.; Asbaghi, O.; Wong, A. The effects of gradual vs. rapid weight loss on serum concentrations of myokines and body composition in overweight and obese females. Arch. Physiol. Biochem. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Moghadam, B.H.; Ashtary-Larky, D.; Forbes, S.C.; Candow, D.G.; Galpin, A.J.; Eskandari, M.; Kreider, R.B.; Wong, A. Whole Egg Vs. Egg White Ingestion During 12 weeks of Resistance Training in Trained Young Males: A Randomized Controlled Trial. J. Strength Cond. Res. 2020, 35, 411–419. [Google Scholar] [CrossRef]
- Eskandari, M.; Moghadam, B.H.; Bagheri, R.; Ashtary-Larky, D.; Eskandari, E.; Nordvall, M.; Dutheil, F.; Wong, A. Effects of Interval Jump Rope Exercise Combined with Dark Chocolate Supplementation on Inflammatory Adipokine, Cytokine Concentrations, and Body Composition in Obese Adolescent Boys. Nutrients 2020, 12, 3011. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghadam, B.H.; Jo, E.; Tinsley, G.M.; Stratton, M.T.; Ashtary-Larky, D.; Eskandari, M.; Wong, A. Comparison of whole egg v. egg white ingestion during 12 weeks of resistance training on skeletal muscle regulatory markers in resistance-trained men. Br. J. Nutr. 2020, 124, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Shirali, S.; Daneghian, S.; Hosseini, S.A.; Ashtary-Larky, D.; Daneghian, M.; Mirlohi, M.-S. Effect of Caffeine Co-Ingested with Carnitine on Weight, Body-Fat Percent, Serum Leptin and Lipid Profile Changes in Male Teen Soccer Players: A Randomized Clinical Trial. Int. J Pediatrics. 2016, 4, 3685–3698. [Google Scholar] [CrossRef]
- Pourabbas, M.; Bagheri, R.; Moghadam, B.H.; Willoughby, D.; Candow, D.; Elliott, B.; Forbes, S.; Ashtary-Larky, D.; Eskandari, M.; Wong, A.; et al. Strategic Ingestion of High-Protein Dairy Milk during a Resistance Training Program Increases Lean Mass, Strength, and Power in Trained Young Males. Nutrients 2021, 13, 948. [Google Scholar] [CrossRef]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Grubbs, B.; Motevalli, M.S.; Baker, J.S.; Laher, I.; Zouhal, H. Effects of green tea extract supplementation and endurance training on irisin, pro-inflammatory cytokines, and adiponectin concentrations in overweight middle-aged men. Eur. J. Appl. Physiol. 2020, 120, 915–923. [Google Scholar] [CrossRef]
- Shourabi, P.; Bagheri, R.; Ashtary-Larky, D.; Wong, A.; Motevalli, M.S.; Hedayati, A.; Baker, J.S.; Rashidlamir, A. Effects of hydrotherapy with massage on serum nerve growth factor concentrations and balance in middle aged diabetic neuropathy patients. Complement. Ther. Clin. Pr. 2020, 39, 101141. [Google Scholar] [CrossRef]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Alipour, M.; Motevalli, M.S.; Chebbi, A.; Laher, I.; Zouhal, H. Does green tea extract enhance the anti-inflammatory effects of exercise on fat loss? Br. J Clinic. Pharmacol. 2020, 86, 753–762. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Kheirollah, A.; Bagheri, R.; Ghaffari, M.A.; Mard, S.A.; Hashemi, S.J.; Mir, I.; Wong, A. A single injection of vitamin D3 improves insulin sensitivity and β-cell function but not muscle damage or the inflammatory and cardiovascular responses to an acute bout of resistance exercise in vitamin D-deficient resistance-trained males. Br. J. Nutr. 2019, 123, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.-A.; Payami, S.-A.; Payami, S.-P.; Ashtary-Larky, D.; Nikzamir, A.; Mohammadzadeh, G. Evaluation of Insulin Resistance Indices in Type 2 Diabetic Patients Treated with Different Anti-Diabetic Drugs. Open J. Endocr. Metab. Dis. 2016, 6, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildman, R.P.; Muntner, P.; Reynolds, K.; McGinn, A.P.; Rajpathak, S.; Wylie-Rosett, J.; Sowers, M.R. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight with Cardiometabolic Risk Factor Clustering Prevalence and Correlates of 2 Phenotypes Among the US Population (NHANES 1999–2004). Obstet. Gynecol. Surv. 2008, 63, 783–784. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Meth. 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Di Renzo, L.; Galvano, F.; Orlandi, C.; Bianchi, A.; Di Giacomo, C.; La Fauci, L.; Acquaviva, R.; De Lorenzo, A. Oxidative stress in normal-weight obese syndrome. Obesity 2010, 18, 2125–2130. [Google Scholar] [CrossRef]
- Di Renzo, L.; Tyndall, E.; Gualtieri, P.; Carboni, C.; Valente, R.; Ciani, A.S.; Tonini, M.G.; De Lorenzo, A. Association of body composition and eating behavior in the normal weight obese syndrome. Eat. Weight. Disord. -Stud. Anorex. Bulim. Obes. 2016, 21, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Renzo, L.; Gobbo, V.; Bigioni, M.; Premrov, M.; Cianci, R.; Lorenzo, A. Body composition analyses in normal weight obese women. Eur. Rev. Med. Pharmacol. 2006, 10, 191–196. [Google Scholar]
- Shea, J.; King, M.; Yi, Y.; Gulliver, W.; Sun, G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 741–747. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Korenfeld, Y.; Boarin, S.; Korinek, J.; Jensen, M.D.; Parati, G.; Lopez-Jimenez, F. Normal weight obesity: A risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. 2009, 31, 737–746. [Google Scholar] [CrossRef]
- Jee, S.H.; Pastor-Barriuso, R.; Appel, L.J.; Suh, I.; Miller, E.R., III; Guallar, E. Body mass index and incident ischemic heart disease in South Korean men and women. Am. J. Epidemiol. 2005, 162, 42–48. [Google Scholar] [PubMed]
- Chung, J.-Y.; Kang, H.-T.; Lee, D.-C.; Lee, H.-R.; Lee, Y.-J. Body composition and its association with cardiometabolic risk factors in the elderly: A focus on sarcopenic obesity. Arch. Gerontol. Geriatr. 2012, 56, 270–278. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, E.P.; Gadelha, A.B.; Safons, M.P.; Nóbrega, O.T.; Oliveira, R.J.; Lima, R.M. Sarcopenia and sarcopenic obesity classifications and cardiometabolic risks in older women. Arch. Gerontol. Geriatr. 2014, 59, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S.J. Low muscle mass is associated with cardiometabolic risk regardless of nutritional status in adolescents: A cross-sectional study in a Chilean birth cohort. Pediatr. Diabetes 2017, 18, 895–902. [Google Scholar] [CrossRef]
- WHOE Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157. [Google Scholar] [CrossRef]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The Concept of Normal Weight Obesity. Prog. Cardiovasc. Dis. 2013, 56, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.B.; Silva, A.A.; Veloso, H.F.; Goldani, M.Z.; Kac, G.; Cardoso, V.C.; Bettiol, H.; Barbieri, M.A. Normal Weight Obesity Is Associated with Metabolic Syndrome and Insulin Resistance in Young Adults from a Middle-Income Country. PLoS ONE 2013, 8, e60673. [Google Scholar] [CrossRef] [Green Version]
- Kosmala, W.; Jedrzejuk, D.; Derzhko, R.; Przewlocka-Kosmala, M.; Mysiak, A.; Bednarek-Tupikowska, G. Left ventricular function impairment in patients with normal-weight obesity: Contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation. Circ. Cardiovasc. Imaging 2012, 5, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Forman, J.P.; Stampfer, M.J.; Curhan, G.C. Diet and Lifestyle Risk Factors Associated With Incident Hypertension in Women. JAMA 2009, 302, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Garrison, R.J.; Kannel, W.B.; Stokes, J., III; Castelli, W.P. Incidence and precursors of hypertension in young adults: The Framingham Offspring Study. Prev. Med. 1987, 16, 235–251. [Google Scholar]
- Fryk, E.; Olausson, J.; Mossberg, K.; Strindberg, L.; Schmelz, M.; Brogren, H.; Gan, L.-M.; Piazza, S.; Provenzani, A.; Becattini, B.; et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: A mechanistic case-control and a population-based cohort study. Ebiomedicine 2021, 65, 103264. [Google Scholar] [CrossRef] [PubMed]
- Bellissimo, M.P.; Cai, Q.; Ziegler, T.R.; Liu, K.H.; Tran, P.H.; Vos, M.B.; Martin, G.S.; Jones, D.P.; Yu, T.; Alvarez, J.A. Plasma High-Resolution Metabolomics Differentiates Adults with Normal Weight Obesity from Lean Individuals. Obesity 2019, 27, 1729–1737. [Google Scholar] [CrossRef]
- Conus, F.; Allison, D.B.; Rabasa-Lhoret, R.; St-Onge, M.; St-Pierre, D.H.; Tremblay-Lebeau, A.; Poehlman, E.T. Metabolic and Behavioral Characteristics of Metabolically Obese but Normal-Weight Women. J. Clin. Endocrinol. Metab. 2004, 89, 5013–5020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kyung, C.; Park, J.S.; Lee, S.-P.; Kim, H.K.; Ahn, C.W.; Kim, K.R.; Kang, S. Normal-weight obesity is associated with increased risk of subclinical atherosclerosis. Cardiovasc. Diabetol. 2015, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafourian, M.; Ashtary-Larky, D.; Chinipardaz, R.; Eskandary, N.; Mehavaran, M. Inflammatory Biomarkers’ Response to Two Different Intensities of a Single Bout Exercise Among Soccer Players. Iran. Red Crescent Med. J. 2016, 18, e21498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarantino, G. Non-alcoholic fatty liver disease, obesity and other illnesses. Clin. Investig. Med. 2008, 31, E290–E295. [Google Scholar] [CrossRef] [PubMed]
Cardiometabolic Abnormalities Considered: |
---|
1. Elevated BP: systolic/diastolic BP ≥ 130/85 mm Hg or antihypertensive medication use; |
2. Elevated TG: fasting TG ≥ 150 mg/dL; |
3. Decreased HDL level: HDL level < 50 mg/dL in women or lipid-lowering medication use; |
4. Elevated glucose level: FBG ≥ 100 mg/dL or antidiabetic medication use; |
5. Insulin resistance: HOMA-IR > 5.13 (i.e., the 90th percentile); |
6. Systemic inflammation: hs-CRP level > 0.1 mg/L (i.e., the 90th percentile). |
Value | Lean | NWO | Overweight | Type 1 Obese | Type 2 Obese | Type 3 Obese | PV |
---|---|---|---|---|---|---|---|
Age | 25.33 ± 5.37 | 27.21 ± 4.60 | 27.75 ± 5.30 | 28.63 ± 4.04 | 26.61 ± 4.08 | 28.30 ± 4.17 | 0.14 |
Weight | 53.48 ± 5.70 f, g, h, i | 58.69 ± 4.58 a, b, c, d, e | 69.92 ± 4.48 j, k, l | 83.04 ± 6.23 m, n | 96.31 ± 6.30 o | 107.23 ± 8.77 | <0.001 |
Height | 160.42 ± 5.93 | 158.69 ± 4.58 | 159.39 ± 4.32 | 158.67 ± 4.67 | 160.84 ± 5.95 | 157.26 ± 5.30 | 0.18 |
BMI | 20.75 ± 1.51 f, g, h, i | 23.29 ± 1.20 a, b, c, d, e | 27.50 ± 1.28 j, k, l | 32.93 ± 1.32 m, n | 37.85 ± 3.07 o | 43.35 ± 3.08 | <0.001 |
FM | 13.36 ± 1.97 f, g, h, i | 20.72 ± 2.13 a, b, c, d, e | 28.15 ± 2.68 j, k, l | 37.48 ± 3.25 m, n | 46.46 ± 4.01 o | 55.23 ± 5.41 | <0.001 |
BFP | 24.90 ± 1.81 f, g, h, i | 35.32 ± 2.45 a, b, c, d, e | 40.26 ± 2.79 j, k, l | 45.16 ± 2.76 m, n | 48.93 ± 2.31 o | 51.48 ± 2.07 | <0.001 |
LBM | 21.75 ± 2.39 g, h, i | 20.42 ± 2.05 b, c, d, e | 23.02 ± 2.36 k, l | 25.07 ± 2.65 m, n | 28.27 ± 5.68 | 29.04 ± 2.68 | <0.001 |
LBM% | 40.66 ± 0.98 f, g, h, i | 34.75 ± 1.63 a, c, d, e | 32.96 ± 3.28 j, k, l | 30.16 ± 1.75 n | 29.27 ± 4.85 | 27.09 ± 1.28 | <0.001 |
TBW | 29.43 ± 2.94 g, h, i | 27.76 ± 2.48 b, c, d, e | 30.53 ± 2.42 j, k, l | 33.35 ± 3.23 m, n | 36.66 ± 4.27 | 38.27 ± 3.21 | <0.001 |
FM/LBM | 0.61 ± 0.05 f, g, h, i | 1.02 ± 0.11 a, b, c, d, e | 1.23 ± 0.18 j, k, l | 1.50 ± 0.17 m, n | 1.69 ± 0.26 o | 1.90 ± 0.15 | <0.001 |
WHR | 0.74 ± 0.05 f, g, h, i | 0.77 ± 0.05 c, d, e | 0.80 ± 0.03 j, k, l | 0.85 ± 0.06 n | 0.89 ± 0.03 | 0.91 ± 0.04 | <0.001 |
WC | 67.52 ± 4.61 f, g, h, i | 74.25 ± 4.53 a, b, c, d, e | 83.76 ± 3.48 j, k, l | 96.00 ± 6.23 m, n | 106.19 ± 3.32 o | 112.30 ± 6.47 | <0.001 |
HC | 89.81 ± 3.77 f, g, h, i | 95.72 ± 4.48 a, b, c, d, e | 103.42 ± 4.54 j, k, l | 111.72 ± 5.15 m, n | 117.67 ± 4.19 o | 122.82 ± 5.76 | <0.001 |
HR | 98.33 ± 13.86 | 90.34 ± 13.42 | 91.71 ± 11.43 | 89.51 ± 13.30 | 94.04 ± 9.12 | 88.21 ± 14.41 | 0.08 |
SBP | 111.56 ± 10.92 h, i | 115.70 ± 11.27 | 119.09 ± 16.14 | 117.74 ± 15.06 | 125.84 ± 16.53 | 124.15 ± 14.80 | 0.007 |
Value | Lean | NWO | Overweight | Type 1 Obese | Type 2 Obese | Type 3 Obese | PV |
---|---|---|---|---|---|---|---|
FBG | 84.87 ± 8.91 i | 89.27 ± 9.23 | 87.46 ± 10.35 | 90.55 ± 11.35 | 90.73 ± 9.56 | 94.56 ± 9.50 | 0.026 |
Cholesterol | 167.16 ± 16.19 i | 179.89 ± 29.15 | 171.75 ± 27.18 l | 183.81 ± 34.95 | 181.73 ± 27.66 | 200.21 ± 36.87 | 0.004 |
TG | 97.79 ± 23.53 i | 102.79 ± 64.52 e | 107.96 ± 43.78 l | 116.74 ± 41.89 | 133.43 ± 53.23 | 149.56 ± 49.71 | 0.002 |
HDL | 55.91 ± 5.72 f, g, h, i | 49.10 ± 7.59 a, d, e | 47.78 ± 10.03 l | 44.55 ± 8.70 | 43.30 ± 8.90 | 37.91 ± 6.67 | <0.001 |
LDL | 93.83 ± 12.67 h, i | 107.20 ± 28.71 e | 102.57 ± 22.59 l | 114.14 ± 32.72 | 119.52 ± 25.27 | 134.78 ± 36.34 | <0.001 |
LDL/HDL | 1.69 ± 0.30 g, h, i | 2.28 ± 0.94 e | 2.29 ± 0.70 l | 2.63 ± 0.85 n | 2.95 ± 0.88 o | 3.78 ± 1.33 | <0.001 |
Cholesterol/HDL | 3.01 ± 0.34 g, h, i | 3.82 ± 1.30 e | 3.80 ± 0.91 l | 4.23 ± 0.95 n | 4.45 ± 1.04 o | 5.58 ± 1.54 | <0.001 |
VLDL | 19.55 ± 4.70 i | 20.55 ± 12.90 e | 21.59 ± 8.75 l | 23.34 ± 8.37 | 26.68 ± 10.64 | 29.91 ± 9.94 | 0.002 |
AST | 21.50 ± 7.00 | 26.55 ± 24.10 | 23.21 ± 8.52 | 24.88 ± 13.73 | 22.60 ± 10.05 | 24.04 ± 9.76 | 0.823 |
ALT | 18.79 ± 6.08 | 21.06 ± 13.94 | 23.21 ± 10.02 | 27.85 ± 16.27 | 22.26 ± 9.69 | 21.95 ± 7.74 | 0.113 |
ALP | 175.50 ± 48.85 | 185.58 ± 37.39 | 168.21 ± 59.05 | 203.18 ± 61.01 | 194.60 ± 65.09 | 193.13 ± 59.99 | 0.212 |
Insulin | 8.49 ± 3.48 i | 10.69 ± 5.96 | 11.54 ± 7.54 | 10.55 ± 5.02 | 11.01 ± 4.81 | 14.73 ± 9.98 | 0.045 |
HOMA-IR | 1.07 ± 0.43 i | 1.36 ± 0.74 | 1.46 ± 0.93 | 1.35 ± 0.62 | 1.41 ± 0.59 | 1.89 ± 1.26 | 0.032 |
HOMA-S percentage | 104.10 ± 33.89 | 95.85 ± 53.09 | 94.73 ± 55.06 | 89.13 ± 40.23 | 83.51 ± 35.43 | 78.33 ± 48.55 | 0.43 |
HOMA-B percentage | 116.23 ± 37.18 | 121.72 ± 56.15 | 132.47 ± 63.51 | 119.90 ± 48.56 | 122.02 ± 50.76 | 130.15 ± 55.94 | 0.877 |
hs-CRP | 0.93 ± 1.11 h, i | 2.08 ± 1.10 d, e | 1.81 ± 1.36 k, l | 3.22 ± 2.90 m, n | 7.73 ± 7.09 | 9.12 ± 5.59 | <0.001 |
Variable | BFP | WC | ||
---|---|---|---|---|
R | p | r | p | |
SBP | 0.279 | 0.000 | 0.286 | <0.001 |
DBP | 0.114 | NS | 0.105 | NS |
FBG | 0.240 | 0.003 | 0.240 | 0.003 |
Cholesterol | 0.247 | 0.002 | 0.253 | 0.002 |
TG | 0.299 | <0.001 | 0.313 | <0.001 |
HDL | −0.599 | <0.001 | −0.511 | <0.001 |
LDL | 0.376 | <0.001 | 0.359 | <0.001 |
HOMA-IR | 0.201 | 0.012 | 0.188 | 0.02 |
hs-CRP | 0.518 | <0.001 | 0.550 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashtary-Larky, D.; Niknam, S.; Alipour, M.; Bagheri, R.; Asbaghi, O.; Mohammadian, M.; Jaime, S.J.; Baker, J.S.; Wong, A.; Suzuki, K.; et al. Are Women with Normal-Weight Obesity at Higher Risk for Cardiometabolic Disorders? Biomedicines 2023, 11, 341. https://doi.org/10.3390/biomedicines11020341
Ashtary-Larky D, Niknam S, Alipour M, Bagheri R, Asbaghi O, Mohammadian M, Jaime SJ, Baker JS, Wong A, Suzuki K, et al. Are Women with Normal-Weight Obesity at Higher Risk for Cardiometabolic Disorders? Biomedicines. 2023; 11(2):341. https://doi.org/10.3390/biomedicines11020341
Chicago/Turabian StyleAshtary-Larky, Damoon, Sara Niknam, Meysam Alipour, Reza Bagheri, Omid Asbaghi, Mehrnaz Mohammadian, Salvador J. Jaime, Julien S. Baker, Alexei Wong, Katsuhiko Suzuki, and et al. 2023. "Are Women with Normal-Weight Obesity at Higher Risk for Cardiometabolic Disorders?" Biomedicines 11, no. 2: 341. https://doi.org/10.3390/biomedicines11020341
APA StyleAshtary-Larky, D., Niknam, S., Alipour, M., Bagheri, R., Asbaghi, O., Mohammadian, M., Jaime, S. J., Baker, J. S., Wong, A., Suzuki, K., & Afrisham, R. (2023). Are Women with Normal-Weight Obesity at Higher Risk for Cardiometabolic Disorders? Biomedicines, 11(2), 341. https://doi.org/10.3390/biomedicines11020341