Holistic View on the Structure of Immune Response: Petri Net Model
Abstract
:1. Introduction
2. Materials and Methods
- a finite set of places P
- a finite set of transitions T that are disjunctive from P,
- a set of arcs
- the weights of arcs
- an initial marking .
3. Results
3.1. Construction
- The PN is CTI. Each transition invariant has a specific biological meaning.
- Each place invariant of a PBOPN has a specific biological meaning. A detailed definition is provided below in Section 3.3.
3.2. The Petri Net Model
3.3. Place Invariants of a Place-Bordered Ordinary PN
3.4. Invariants of the Full PN Model
3.4.1. Place Invariants
3.4.2. Transition Invariants
3.4.3. Manatee Invariants
3.4.4. Prediction of System Behavior via in Silico Knockout
3.5. Prediction of System Behavior via Simulation
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Appendix A
No. | Name | Description |
---|---|---|
P-0 | T_BL | T cells in blood |
P-1 | B_BL | B cells come from blood in the lymph node |
P-2 | B_TZ | B cells in T zone |
P-3 | T_TZ | T cells in T zone |
P-4 | B3_ME | memory B cell in the medulla |
P-5 | B_GC | B cells in the germinal center |
P-6 | S_B3_ME | technical place for the replication of memory B cells |
P-7 | M_GC | macrophages in germinal center |
P-8 | DC_GC | dendritic cells in germinal center |
P-9 | B_DC_GC | B cell search for an antigen on dendritic cells in germinal center |
P-10 | AG_LZ | antigen in light zone before outflow |
P-11 | M_LZ | macrophages in light zone of germinal center |
P-12 | M_TZ | macrophages in T zone |
P-13 | M_B1_AG_LZ | macrophages bind to activated B cells and antigen before antigen will be degraded in the light zone of germinal center |
P-14 | B1_LZ | activated B cells in light zone |
P-15 | S_B1_DZ | technical place for the replication of activated B cells |
P-16 | B_M_GC | B cell and macrophage in germinal center |
P-17 | APC_TZ | standard localization of antigen-presenting cells in T zone |
P-18 | M_DZ | macrophages in dark zone of germinal center |
P-19 | M_B1_DZ | macrophages bind to activated B cells before degradation in the dark zone of germinal center |
P-20 | M_SCS | macrophages in subcapsular sinus |
P-21 | B1_dead_DZ | deactivated B cells before degradation in dark zone |
P-22 | M_B2_TIS | macrophages bind to plasma B cells in tissue |
P-23 | B2_dead_TIS | deactivated plasma B cell in the tissue |
P-24 | AG_TIS | antigen will be produced in tissue |
P-25 | AG_SCS | antigen comes in the lymph node (subcapsular sinus) |
P-26 | B1_GC | activated B cell in the germinal center |
P-27 | AG_M_SCS | macrophages catch the antigen in the subcapsular sinus |
P-28 | AG_M_TZ | macrophages bring the antigen in the T zone |
P-29 | AG_APC_TZ | antigen-presenting cells show antigen in T zone |
P-30 | AG_T_TZ | T cells will be activated by antigen in T zone |
P-31 | AG_T_B_TZ | activated T cells stimulate B cells in T zone |
P-32 | AG_T_B_LZ | activated T cells and B cells move to the light zone |
P-33 | DC_AG_LZ | dendritic cell presenting antigen in germinal center |
P-34 | B1_AG_LZ | activated B cell with antigen in the light zone |
P-35 | T_GC | T cells in germinal center |
P-36 | B1_DZ | activated B cells in the dark zone |
P-37 | B2_GC | plasma B cell in the germinal center |
P-38 | B2_TZ | plasma B cell in the T zone |
P-39 | B2_ME | plasma B cell in the medulla |
P-40 | B2_BL | plasma B cell in the blood |
P-41 | B2_TIS | plasma B cell in the tissue |
P-42 | AB_TIS | antibody, freshly produced by a plasma B cell |
P-43 | B2_used_TIS | plasma B cell before regeneration in the tissue |
P-44 | AG_AB_TIS | antibody marked antigen for degradation in tissue |
P-45 | M_TIS | macrophages in tissue |
P-46 | M_AG_AB_TIS | macrophages bind to the complex of antigen and antibody in tissue |
P-47 | AG_dead_TIS | antigen will be degraded in tissue |
P-48 | AB_used_TIS | antibody, inactivated and marked for degradation (technical place) |
No. | Name | Description |
---|---|---|
T-0 | OUT_AG_TIS | Degradation of antigens in the body (tissue) [73] |
T-1 | OUT_AB_TIS | Degradation of antibodies in the body (tissue) [74] |
T-2 | TRA_B_BL_to_TZ | Migration of B cells from blood to T zone [75] |
T-3 | TRA_T_BL_to_TZ | Migration of T cells from blood to T zone [76,77] |
T-4 | ENC_B2_with_M_TIS | Plasma B cells contact macrophages in tissue [78] |
T-5 | DIF_B3_ME | Plasma B cells differentiate in memory B cells in medulla [79] |
T-6 | TRA_B_TZ_to_GC | Migration of B cells from T zone to germinal center [78] |
T-7 | TRA_T_TZ_to_BL | Migration of T cells from T zone to blood [77] |
T-8 | M_B3_ME | Technical transition for the replication of memory B cells in medulla [80] |
T-9 | TRA_B_GC_to_TZ | Migration of B cells from germinal center to T zone [81] |
T-10 | G1_B3_ME | Technical transition for the replication of memory B cells in medulla [80] |
T-11 | TRA_B_TZ_to_BL | Migration of B cells from T zone to blood [75] |
T-12 | TRA_B3_ME_to_BL | Migration of memory B cells from medulla to blood [75] |
T-13 | TRA_AG_SCS_to_TIS | Migration of antigen from subcapsular sinus in tissue [82] |
T-14 | IN_B_BL | Production of B cells in bone marrow come in the blood [75] |
T-15 | SEP_B_DC_GC | B cells search on dendritic cells for antigens after this go apart again [81,83] |
T-16 | ENC_B_with_DC_GC | B cells contact dendritic cells in germinal center [81] |
T-17 | TRA_M_GC_to_LZ | Migration of macrophages from the unspecific germinal center in the light zone [83] |
T-18 | ENC_B1_AG_with_M_LZ | Activated B cells with antigen contact macrophages in the light zone of germinal center [83] |
T-19 | SEP_M_B1_AG_LZ | Macrophages mark antigens for degradation after the activation of B cells in the light zone of germinal center [83] |
T-20 | TRA_M_LZ_to_GC | Migration of macrophages from light zone to the unspecific germinal center |
T-21 | OUT_AG_LZ | Technical transition for the degradation of antigens in the light zone of the germinal center |
T-22 | M_B1_DZ | Technical transition for the replication of activated B cells in the dark zone of germinal center [84] |
T-23 | ENC_B_with_M_GC | B cells contact macrophages in germinal center [84] |
T-24 | G1_B1_DZ | Technical transition for the replication of activated B cells in the dark zone of germinal center [85] |
T-25 | SEP_B_M_GC | Macrophages search for incorrect B cells in the germinal center, after this, go apart again [84] |
T-26 | IN_AG_TIS | Influx of antigen, like viruses or bacteria, in the body (tissue) [86,87,88] |
T-27 | OUT_B_BL | Technical transition for the degradation of B cells in blood |
T-28 | TRA_M_GC_to_DZ | Migration of macrophages from the unspecific germinal center in dark zone [83] |
T-29 | TRA_M_DZ_to_GC | Migration of macrophages from dark zone to the unspecific germinal center [83] |
T-30 | ENC_M_with_B1_DZ | Activated B cells contact macrophages in the dark zone of germinal center [83] |
T-31 | SEP_M_B1_DZ | Activated B cells will mark by macrophages for degradation in the dark zone of the germinal center [88] |
T-32 | TRA_M_SCS_to_TZ | Migration of macrophages from subcapsular sinus to T zone [89] |
T-33 | OUT_B1_dead_DZ | Degradation of non-specialized activated B cells in the dark zone of germinal center [83,90] |
T-34 | TRA_M_TZ_to_SCS | Migration of macrophages from T zone to subcapsular sinus [89] |
T-35 | TRA_M_SCS_to_GC | Migration of macrophages from subcapsular sinus to the unspecific germinal center [89,91] |
T-36 | SEP_M_B2_TIS | Plasma B cells will mark by macrophages for degradation in the body (tissue) [92] |
T-37 | TRA_M_GC_to_SCS | Migration of macrophages from the unspecific germinal center to subcapsular sinus [83] |
T-38 | OUT_B2_TIS | Degradation of plasma B cells after the release of antibodies in the body (tissue) [79] |
T-39 | TRA_AG_TIS_to_SCS | Migration of antigen from tissue to subcapsular sinus [82] |
T-40 | ENC_AG_with_M_SCS | Macrophages contact antigens in subcapsular sinus [89,93] |
T-41 | TRA_B1_LZ_to_GC | Migration of activated B cells from the light zone in the unspecific germinal center [83] |
T-42 | TRA_AG_M_SCS_to_TZ | Migration of activated macrophages by antigen from subcapsular sinus in T zone [89] |
T-43 | TRA_B1_DZ_to_GC | Migration of activated B cells from the dark zone in the unspecific germinal center [83] |
T-44 | ENC_AG_M_with_APC_TZ | Antigen-presenting cells contact the antigen and macrophages in T zone [94] |
T-45 | ENC_AG_APC_with_T_TZ | T cells contact antigen on antigen-presenting cells in T zone [95,96] |
T-46 | ENC_AG_T_with_B_TZ | B cells contact the complex of antigen and T cell in T zone [96,97] |
T-47 | TRA_AG_T_B_TZ_to_LZ | Migration of activated T and B cells by antigen from T zone to light zone of germinal center [79,97] |
T-48 | ENC_AG_T_B_with_DC_LZ | Dendritic cells contact the complex of antigen, T and B cell in the light zone of germinal center [76] |
T-49 | ENC_DC_AG_with_B_LZ | B cells contact dendritic cells with antigen in the light zone of germinal center [81,88] |
T-50 | TRA_T_GC_to_TZ | Migration of T cells from the unspecific germinal center to T zone [98] |
T-51 | TRA_B1_LZ_to_DZ | Migration of activated B cells from light to dark zone of germinal center [99] |
T-52 | DIF_B2_GC | Activated B cells differentiate to plasma B cells in germinal center [100] |
T-53 | TRA_B2_GC_to_TZ | Migration of plasma B cells from germinal center to T zone [83] |
T-54 | TRA_B2_TZ_to_ME | Migration of plasma B cells from T zone to medulla [101] |
T-55 | TRA_B2_ME_to_BL | Migration of plasma B cells from medulla to blood [75] |
T-56 | TRA_B1_DZ_to_LZ | Migration of activated B cells from dark to the light zone of the germinal center [83,99,102] |
T-57 | TRA_B2_BL_to_TIS | Migration of plasma B cells from blood to the body (tissue) [75] |
T-58 | REL_AB_TIS | Release of antibodies by plasma B cells in the body (tissue) [82] |
T-59 | REG_B2_TIS | Regeneration of plasma B cells after the release of antibodies before plasma B cells can release antibodies again [82,101] |
T-60 | ENC_AB_with_AG_TIS | Antibodies contact antigens in tissue [103] |
T-61 | TRA_M_TIS_to_SCS | Migration of macrophages from the body (tissue) to subcapsular sinus [89] |
T-62 | TRA_M_SCS_to_TIS | Migration of macrophages from subcapsular sinus in the body (tissue) [89] |
T-63 | ENC_AG_AB_with_M_TIS | Macrophages contact the complex of antigen and antibody in tissue [92] |
T-64 | SEP_M_AG_AB_TIS | Antigens and antibodies will be marked by macrophages for degradation in the body (tissue) [92] |
No. | Name | Reaction |
---|---|---|
0 : | OUT_AG_TIS : | AG_dead_TIS → OExternal . |
1 : | OUT_AB_TIS : | AB_used_TIS → OExternal . |
2 : | TRA_B_BL_to_TZ : | B_BL → B_TZ . |
3 : | TRA_T_BL_to_TZ : | T_BL → T_TZ . |
4 : | ENC_B2_with_M_TIS : | B2_TIS + M_TIS → M_B2_TIS . |
5 : | DIF_B3_ME : | B2_ME → B3_ME . |
6 : | TRA_B_TZ_to_GC : | B_TZ → B_GC . |
7 : | TRA_T_TZ_to_BL : | T_TZ → T_BL . |
8 : | M_B3_ME : | S_B3_ME → 2 B3_ME . |
9 : | TRA_B_GC_to_TZ : | B_GC → B_TZ . |
10 : | G1_B3_ME : | B3_ME → S_B3_ME . |
11 : | TRA_B_TZ_to_BL : | B_TZ → B_BL . |
12 : | TRA_B3_ME_to_BL : | B3_ME → B2_BL . |
13 : | TRA_AG_SCS_to_TIS : | AG_SCS → AG_TIS . |
14 : | IN_B_BL : | OExternal → B_BL . |
15 : | SEP_B_DC_GC : | B_DC_GC → B_GC + DC_GC . |
16 : | ENC_B_with_DC_GC : | B_GC + DC_GC → B_DC_GC . |
17 : | TRA_M_GC_to_LZ : | M_GC → M_LZ . |
18 : | ENC_B1_AG_with_M_LZ : | M_LZ + B1_AG_LZ → M_B1_AG_LZ . |
19 : | SEP_M_B1_AG_LZ : | M_B1_AG_LZ → AG_LZ + M_LZ + B1_LZ . |
20 : | TRA_M_LZ_to_GC : | M_LZ → M_GC . |
21 : | OUT_AG_LZ : | AG_LZ → OExternal . |
22 : | M_B1_DZ : | S_B1_DZ → 2 B2_DZ . |
23 : | ENC_B_with_M_GC : | B_GC + M_GC → B_M_GC . |
24 : | G1_B1_DZ : | B2_DZ → S_B1_DZ . |
25 : | SEP_B_M_GC : | B_M_GC → B_GC + M_GC . |
26 : | IN_AG_TIS : | OExternal → AG_TIS . |
27 : | OUT_B_BL : | B_BL → OExternal . |
28 : | TRA_M_GC_to_DZ : | M_GC → M_DZ . |
29 : | TRA_M_DZ_to_GC : | M_DZ → M_GC . |
30 : | ENC_M_with_B1_DZ : | 2 S_B1_DZ + M_DZ → M_B1_DZ . |
31 : | SEP_M_B1_DZ : | M_B1_DZ → M_DZ + B1_dead_DZ . |
32 : | TRA_M_SCS_to_TZ : | M_SCS → M_TZ . |
33 : | OUT_B1_dead_DZ : | B1_dead_DZ → OExternal . |
34 : | TRA_M_TZ_to_SCS : | M_TZ → M_SCS . |
35 : | TRA_M_SCS_to_GC : | M_SCS → M_GC . |
36 : | SEP_M_B2_TIS : | M_B2_TIS → B2_dead_TIS + M_TIS . |
37 : | TRA_M_GC_to_SCS : | M_GC → M_SCS . |
38 : | OUT_B2_TIS : | B2_dead_TIS → OExternal . |
39 : | TRA_AG_TIS_to_SCS : | AG_TIS → AG_SCS . |
40 : | ENC_AG_with_M_SCS : | M_SCS + AG_SCS → AG_M_SCS . |
41 : | TRA_B1_LZ_to_GC : | B1_LZ → B1_GC . |
42 : | TRA_AG_M_SCS_to_TZ : | AG_M_SCS → AG_M_TZ . |
43 : | TRA_B1_DZ_to_GC : | B2_DZ → B1_GC . |
44 : | ENC_AG_M_with_APC_TZ : | APC_TZ + AG_M_TZ → |
M_TZ + AG_APC_TZ . | ||
45 : | ENC_AG_APC_with_T_TZ : | T_TZ + AG_APC_TZ → |
APC_TZ + AG_T_TZ . | ||
46 : | ENC_AG_T_with_B_TZ : | B_TZ + AG_T_TZ → AG_T_B_TZ . |
47 : | TRA_AG_T_B_TZ_to_LZ : | AG_T_B_TZ → AG_T_B_LZ . |
48 : | ENC_AG_T_B_with_DC_LZ : | DC_GC + AG_T_B_LZ → |
DC_GC + B1_AG_LZ . | ||
50 : | TRA_T_GC_to_TZ : | T_GC → T_TZ . |
51 : | TRA_B1_LZ_to_DZ : | B1_LZ → B2_DZ . |
52 : | DIF_B2_GC : | B1_GC → B2_GC . |
53 : | TRA_B2_GC_to_TZ : | B2_GC → B2_TZ . |
54 : | TRA_B2_TZ_to_ME : | B2_TZ → B2_ME . |
55 : | TRA_B2_ME_to_BL : | B2_ME → B2_BL . |
56 : | TRA_B1_DZ_to_LZ : | B2_DZ → B1_LZ . |
57 : | TRA_B2_BL_to_TIS : | B2_BL → B2_TIS . |
58 : | REL_AB_TIS : | B2_TIS → AB_TIS + B2_used_TIS . |
59 : | REG_B2_TIS : | B2_used_TIS → B2_TIS . |
60 : | ENC_AB_with_AG_TIS : | AG_TIS + AB_TIS → AG_AB_TIS . |
61 : | TRA_M_TIS_to_SCS : | M_TIS → M_SCS . |
62 : | TRA_M_SCS_to_TIS : | M_SCS → M_TIS . |
63 : | ENC_AG_AB_with_M_TIS : | AG_AB_TIS + M_TIS → M_AG_AB_TIS . |
64 : | SEP_M_AG_AB_TIS : | M_AG_AB_TIS → |
M_TIS + AG_dead_TIS + AB_used_TIS . |
No. | Length | Places | Conserved Cell |
---|---|---|---|
PI-0 | 13 | M_GC, M_LZ, M_TZ, M_B1_AG_LZ, B_M_GC, M_DZ, M_B1_DZ, M_SCS, M_B2_TIS, AG_M_SCS, AG_M_TZ, M_TIS, M_AG_AB_TIS | Macrophages (M) |
PI-1 | 6 | T_BL, T_TZ, AG_T_TZ, AG_T_B_TZ, AG_T_B_LZ, T_GC | T cell (T) |
PI-2 | 3 | DC_GC, B_DC_GC, DC_AG_LZ | Dendritic cell (DC) |
PI-3 | 2 | APC_TZ, AG_APC_TZ | Antigen-presenting cell (APC) |
No. | Length | Transitions | Function |
---|---|---|---|
TI-0 | 26 | TRA_B_BL_to_TZ ENC_B2_with_M_TIS IN_B_BL ENC_B1_AG_with_M_LZ SEP_M_B1_AG_LZ OUT_AG_LZ IN_AG_TIS TRA_M_TZ_to_SCS SEP_M_B2_TIS OUT_B2_TIS TRA_AG_TIS_to_SCS ENC_AG_with_M_SCS TRA_B1_LZ_to_GC TRA_AG_M_SCS_to_TZ ENC_AG_M_with_APC_TZ ENC_AG_APC_with_T_TZ ENC_AG_T_with_B_TZ TRA_AG_T_B_TZ_to_LZ ENC_AG_T_B_with_DC_LZ ENC_DC_AG_with_B_LZ TRA_T_GC_to_TZ DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_ME_to_BL TRA_B2_BL_to_TIS | Activation of a B cell by an invading antigen. The activated B cell moves from blood to the T zone and via the light zone, dark zone, medulla, and blood to the tissue. The B cell differentiates in several steps and eventually becomes degraded in the tissue. Neither a cell replication nor the production of any antibody is involved. |
TI-1 | 2 | TRA_M_TIS_to_SCS TRA_M_SCS_to_TIS | Macrophages migrate from tissue in SCS and vice versa. |
TI-2 | 2 | IN_B_BL OUT_B_BL | Flow of B cells in the blood. |
TI-3 | 2 | TRA_T_BL_to_TZ TRA_T_TZ_to_BL | T cells migrate from blood to T zone and vice versa. |
TI-4 | 7 | ENC_B2_with_M_TIS M_B3_ME G1_B3_ME TRA_B3_ME_to_BL SEP_M_B2_TIS OUT_B2_TIS TRA_B2_BL_to_TIS | Memory B cells (B3) proliferate in the medulla. Plasma B cells (B2) of in the tissue and are degraded. |
TI-5 | 22 | 2*TRA_B_BL_to_TZ 2*IN_B_BL 2*ENC_B1_AG_with_M_LZ 2*SEP_M_B1_AG_LZ 2*OUT_AG_LZ 2*G1_B1_DZ 2*IN_AG_TIS ENC_M_with_B1_DZ SEP_M_B1_DZ OUT_B1_dead_DZ 2*TRA_M_TZ_to_SCS 2*TRA_AG_TIS_to_SCS 2*ENC_AG_with_M_SCS 2*TRA_AG_M_SCS_to_TZ 2*ENC_AG_M_with_APC_TZ 2*ENC_AG_APC_with_T_TZ 2*ENC_AG_T_with_B_TZ 2*TRA_AG_T_B_TZ_to_LZ 2*ENC_AG_T_B_with_DC_LZ 2*ENC_DC_AG_with_B_LZ 2*TRA_T_GC_to_TZ 2*TRA_B1_LZ_to_DZ | Activation of a B cell by an invading antigen. The activated B cell (B1) will be degraded in the DZ. |
TI-6 | 2 | TRA_B_TZ_to_GC TRA_B_GC_to_TZ | B cells migrate from the T zone to GC and vice versa. |
TI-7 | 2 | TRA_M_SCS_to_GC TRA_M_GC_to_SCS | Macrophages migrate from SCS to GC and vice versa. |
TI-8 | 28 | TRA_B_BL_to_TZ ENC_B2_with_M_TIS DIF_B3_ME TRA_B3_ME_to_BL IN_B_BL ENC_B1_AG_with_M_LZ SEP_M_B1_AG_LZ OUT_AG_LZ IN_AG_TIS TRA_M_TZ_to_SCS SEP_M_B2_TIS OUT_B2_TIS TRA_AG_TIS_to_SCS ENC_AG_with_M_SCS TRA_AG_M_SCS_to_TZ TRA_B1_DZ_to_GC ENC_AG_M_with_APC_TZ ENC_AG_APC_with_T_TZ ENC_AG_T_with_B_TZ TRA_AG_T_B_TZ_to_LZ ENC_AG_T_B_with_DC_LZ ENC_DC_AG_with_B_LZ TRA_T_GC_to_TZ TRA_B1_LZ_to_DZ DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_BL_to_TIS | Activation of a B cell by an invading antigen. The activated B cell moves from blood to the T zone and via the light zone, dark zone, medulla, and blood to the tissue. The B cell differentiates in several steps and eventually becomes degraded in the tissue. Neither a cell replication nor the production of any antibody is involved. |
TI-9 | 8 | OUT_AG_TIS OUT_AB_TIS IN_AG_TIS REL_AB_TIS REG_B2_TIS ENC_AB_with_AG_TIS ENC_AG_AB_with_M_TIS SEP_M_AG_AB_TIS | Plasma B cells (B2) release antibodies (AB). AB encounters antigen and are degraded. |
TI-10 | 27 | TRA_B_BL_to_TZ ENC_B2_with_M_TIS DIF_B3_ME TRA_B3_ME_to_BL IN_B_BL ENC_B1_AG_with_M_LZ SEP_M_B1_AG_LZ OUT_AG_LZ IN_AG_TIS TRA_M_TZ_to_SCS SEP_M_B2_TIS OUT_B2_TIS TRA_AG_TIS_to_SCS ENC_AG_with_M_SCS TRA_B1_LZ_to_GC TRA_AG_M_SCS_to_TZ ENC_AG_M_with_APC_TZ ENC_AG_APC_with_T_TZ ENC_AG_T_with_B_TZ TRA_AG_T_B_TZ_to_LZ ENC_AG_T_B_with_DC_LZ ENC_DC_AG_with_B_LZ TRA_T_GC_to_TZ DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_BL_to_TIS | Activation of a B cell by an invading antigen. The activated B cell moves from blood to the T zone and via the light zone, dark zone, medulla, and blood to the tissue. The B cell differentiates in several steps and eventually becomes degraded in the tissue. Neither a cell replication nor the production of any antibody is involved. |
TI-11 | 2 | TRA_B_BL_to_TZ TRA_B_TZ_to_BL | B cells migrate from blood to the T zone and vice versa. |
TI-12 | 2 | ENC_B_with_M_GC SEP_B_M_GC | B cells encounter macrophages in GC and separate. |
TI-13 | 2 | TRA_AG_SCS_to_TIS TRA_AG_TIS_to_SCS | Antigen moves from tissue to SCS and vice versa. |
TI-14 | 2 | TRA_M_GC_to_DZ TRA_M_DZ_to_GC | Macrophages migrate from GC to DZ and vice versa. |
TI-15 | 2 | SEP_B_DC_GC ENC_B_with_DC_GC | B cells encounter dendritic cells in GC and separate. |
TI-16 | 13 | ENC_B2_with_M_TIS DIF_B3_ME TRA_B3_ME_to_BL M_B1_DZ G1_B1_DZ SEP_M_B2_TIS OUT_B2_TIS TRA_B1_LZ_to_GC DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B1_DZ_to_LZ TRA_B2_BL_to_TIS | Activated B cells (B1) proliferate in DZ. B1 differentiates to plasma cells (B2) and moves via the light zone of the germinal center, and the T zone in the medulla. In the medulla, B2 differentiates to memory B cells (B3). B2 moves then via blood in the tissue and will there be degraded. |
TI-17 | 2 | TRA_M_GC_to_LZ TRA_M_LZ_to_GC | Macrophages migrate from GC to LZ and vice versa. |
TI-18 | 2 | TRA_M_SCS_to_TZ TRA_M_TZ_to_SCS | Macrophages migrate from T zone to SCS and vice versa. |
TI-19 | 2 | TRA_B1_LZ_to_DZ TRA_B1_DZ_to_LZ | Activated B cells (B1) migrate from LZ to DZ and vice versa. |
TI-20 | 5 | 2*M_B1_DZ 4*G1_B1_DZ ENC_M_with_B1_DZ SEP_M_B1_DZ OUT_B1_dead_DZ | Activated B cells (B1) proliferate in DZ and is degraded. |
TI-21 | 12 | ENC_B2_with_M_TIS M_B1_DZ G1_B1_DZ SEP_M_B2_TIS OUT_B2_TIS TRA_B1_LZ_to_GC DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_ME_to_BL TRA_B1_DZ_to_LZ TRA_B2_BL_to_TIS | Activated B cells (B1) proliferate in DZ. B1 differentiates to plasma cells (B2) and moves via the light zone of the germinal center, T zone, medulla, and blood in the tissue. B2 is degraded in the tissue. |
TI-22 | 12 | ENC_B2_with_M_TIS DIF_B3_ME TRA_B3_ME_to_BL M_B1_DZ G1_B1_DZ SEP_M_B2_TIS OUT_B2_TIS TRA_B1_DZ_to_GC DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_BL_to_TIS | Activated B cells (B1) proliferate in DZ. B1 differentiates to plasma cells (B2) and moves via germinal center, and T zone in the medulla. In the medulla, B2 differentiates to memory B cells (B3). B2 moves then via blood in the tissue and will there be degraded. |
TI-23 | 27 | TRA_B_BL_to_TZ ENC_B2_with_M_TIS IN_B_BL ENC_B1_AG_with_M_LZ SEP_M_B1_AG_LZ OUT_AG_LZ IN_AG_TIS TRA_M_TZ_to_SCS SEP_M_B2_TIS OUT_B2_TIS TRA_AG_TIS_to_SCS ENC_AG_with_M_SCS TRA_AG_M_SCS_to_TZ TRA_B1_DZ_to_GC ENC_AG_M_with_APC_TZ ENC_AG_APC_with_T_TZ ENC_AG_T_with_B_TZ TRA_AG_T_B_TZ_to_LZ ENC_AG_T_B_with_DC_LZ ENC_DC_AG_with_B_LZ TRA_T_GC_to_TZ TRA_B1_LZ_to_DZ DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_ME_to_BL TRA_B2_BL_to_TIS | Activation of a B cell by an invading antigen. The activated B cell moves from blood to the T zone and via the light zone, dark zone, medulla, and blood to the tissue. The B cell differentiates in several steps and eventually becomes degraded in the tissue. Neither a cell replication nor the production of any antibody is involved. |
TI-24 | 11 | ENC_B2_with_M_TIS M_B1_DZ G1_B1_DZ SEP_M_B2_TIS OUT_B2_TIS TRA_B1_DZ_to_GC DIF_B2_GC TRA_B2_GC_to_TZ TRA_B2_TZ_to_ME TRA_B2_ME_to_BL TRA_B2_BL_to_TIS | Activated B cells (B1) proliferate in DZ. B1 differentiates to plasma cells (B2) and moves via germinal center, T zone, medulla, and blood in the tissue. B2 is degraded in the tissue. |
No. | No. of Transitions | TI’s | Pure | Antibody | Replication |
---|---|---|---|---|---|
MI-0 | 15 | TI-4 TI-9 | y | ME | |
MI-1 | 2 | TI-1 | |||
MI-2 | 2 | TI-2 | y | ||
MI-3 | 2 | TI-3 | |||
MI-4 | 7 | TI-4 | ME | ||
MI-5 | 4 | TI-2 TI-11 | y | ||
MI-6 | 24 | TI-5 TI-6 | DZ | ||
MI-7 | 2 | TI-7 | |||
MI-8 | 17 | TI-4 TI-9 TI-13 | y | ME | |
MI-9 | 30 | TI-0 TI-6 TI-19 | |||
MI-10 | 36 | TI-6 TI-9 TI-23 | y | ||
MI-11 | 30 | TI-6 TI-8 | |||
MI-12 | 29 | TI-6 TI-10 | |||
MI-13 | 29 | TI-6 TI-23 | |||
MI-14 | 2 | TI-14 | |||
MI-15 | 36 | TI-6 TI-9 TI-10 | y | ||
MI-16 | 13 | TI-16 | DZ | ||
MI-17 | 2 | TI-17 | |||
MI-18 | 2 | TI-18 | |||
MI-19 | 6 | TI-2 TI-6 TI-11 | y | ||
MI-20 | 5 | TI-20 | DZ | ||
MI-21 | 12 | TI-21 | DZ | ||
MI-22 | 12 | TI-22 | DZ | ||
MI-23 | 25 | TI-5 TI-6 TI-11 | DZ | ||
MI-24 | 11 | TI-24 | DZ | ||
MI-25 | 13 | TI-19 TI-24 | DZ | ||
MI-26 | 25 | TI-5 TI-6 TI-13 | DZ | ||
MI-27 | 14 | TI-19 TI-22 | DZ | ||
MI-28 | 13 | TI-19 TI-21 | DZ | ||
MI-29 | 28 | TI-0 TI-6 | |||
MI-30 | 7 | TI-19 TI-20 | DZ | ||
MI-31 | 14 | TI-16 TI-19 | DZ | ||
MI-32 | 25 | TI-5 TI-6 TI-19 | DZ | ||
MI-33 | 37 | TI-6 TI-8 TI-9 | y | ||
MI-34 | 31 | TI-6 TI-8 TI-11 | |||
MI-35 | 31 | TI-6 TI-8 TI-13 | |||
MI-36 | 30 | TI-6 TI-19 TI-23 | |||
MI-37 | 35 | TI-0 TI-6 TI-9 | y | ||
MI-38 | 30 | TI-6 TI-13 TI-23 | |||
MI-39 | 29 | TI-0 TI-6 TI-11 | |||
MI-40 | 19 | TI-9 TI-24 | y | DZ | |
MI-41 | 30 | TI-6 TI-11 TI-23 | |||
MI-42 | 29 | TI-0 TI-6 TI-13 | |||
MI-43 | 20 | TI-9 TI-22 | y | DZ | |
MI-44 | 20 | TI-9 TI-21 | y | DZ | |
MI-45 | 21 | TI-9 TI-16 | y | DZ | |
MI-46 | 31 | TI-6 TI-10 TI-19 | |||
MI-47 | 30 | TI-6 TI-10 TI-13 | |||
MI-48 | 30 | TI-6 TI-10 TI-11 | |||
MI-49 | 30 | TI-0 TI-6 TI-15 | |||
MI-50 | 31 | TI-6 TI-8 TI-19 | |||
MI-51 | 31 | TI-6 TI-15 TI-23 | |||
MI-52 | 31 | TI-6 TI-10 TI-15 | |||
MI-53 | 32 | TI-6 TI-8 TI-15 | |||
MI-54 | 26 | TI-5 TI-6 TI-12 | DZ | ||
MI-55 | 32 | TI-6 TI-8 TI-12 | |||
MI-56 | 31 | TI-6 TI-10 TI-12 | |||
MI-57 | 26 | TI-5 TI-6 TI-15 | DZ | ||
MI-58 | 31 | TI-6 TI-12 TI-23 | |||
MI-59 | 23 | TI-9 TI-15 TI-16 | y | DZ | |
MI-60 | 22 | TI-9 TI-13 TI-21 | y | DZ | |
MI-61 | 22 | TI-9 TI-13 TI-22 | y | DZ | |
MI-62 | 30 | TI-0 TI-6 TI-12 | |||
MI-63 | 21 | TI-9 TI-13 TI-24 | y | DZ | |
MI-64 | 8 | TI-2 TI-6 TI-11 TI-12 | |||
MI-65 | 8 | TI-2 TI-6 TI-11 TI-15 |
No. | Length | Places | Conserved Cell |
---|---|---|---|
PI-0 | 6 | T_BL, T_TZ, AG_T_TZ, AG_T_B_TZ, AG_T_B_LZ, T_GC | T cell (T) |
PI-1 | 2 | APC_TZ, AG_APC_TZ | Antigen-presenting cell (APC) |
PI-2 | 3 | DC_GC, B_DC_GC, DC_AG_LZ | Dendritic cell (DC) |
PI-3 | 13 | M_GC, M_LZ, M_TZ, M_B1_AG_LZ, B_M_GC, M_DZ, M_B1_DZ, M_SCS, M_B2_TIS, AG_M_SCS, AG_M_TZ, M_TIS, M_AG_AB_TIS | Macrophage (M) |
PI-4 | 25 | B_BL, B_TZ, B3_ME, B_GC, S_B3_ME, B_DC_GC, M_B1_AG_LZ, B1_LZ, S_B1_DZ, B_M_GC, M_B1_DZ, B1_dead_DZ, M_B2_TIS, B2_dead_TIS, B1_GC, AG_T_B_TZ, AG_T_B_LZ, B1_AG_LZ, B1_DZ, B2_GC, B2_TZ, B2_ME, B2_BL, B2_TIS, B2_used_TIS | B cell (B1, B2, B3) |
PI-5 | 30 | B3_ME, S_B3_ME, M_B1_AG_LZ, B1_LZ, S_B1_DZ, M_B1_DZ, B1_dead_DZ, M_B2_TIS, B2_dead_TIS, AG_TIS, AG_SCS, B1_GC, AG_M_SCS, AG_M_TZ, AG_APC_TZ, AG_T_TZ, AG_T_B_TZ, AG_T_B_LZ, DC_AG_LZ, B1_AG_LZ, B1_DZ, B2_GC, B2_TZ, B2_ME, B2_BL, B2_TIS, B2_used_TIS, AG_AB_TIS, M_AG_AB_TIS, AB_used_TIS | Cells activated by antigen (AG). |
PI-6 | 30 | B3_ME, S_B3_ME, M_B1_AG_LZ, B1_LZ, S_B1_DZ, M_B1_DZ, B1_dead_DZ, M_B2_TIS, B2_dead_TIS, AG_TIS, AG_SCS, B1_GC, AG_M_SCS, AG_M_TZ, AG_APC_TZ, AG_T_TZ, AG_T_B_TZ, AG_T_B_LZ, DC_AG_LZ, B1_AG_LZ, B1_DZ, B2_GC, B2_TZ, B2_ME, B2_BL, B2_TIS, B2_used_TIS, AG_AB_TIS, M_AG_AB_TIS, AG_dead_TIS | Cells activated by antigen (AG). |
PI-7 | 10 | B_BL, B_TZ, B_GC, B_DC_GC, AG_LZ, M_B1_AG_LZ, B_M_GC, AG_T_B_TZ, AG_T_B_LZ, B1_AG_LZ | Non-activated B cell (B) and B cell (B1) with antigen (AG) |
PI-8 | 15 | AG_LZ, M_B1_AG_LZ, AG_TIS, AG_SCS, AG_M_SCS, AG_M_TZ, AG_APC_TZ, AG_T_TZ, AG_T_B_TZ, AG_T_B_LZ, DC_AG_LZ, B1_AG_LZ, AG_AB_TIS, M_AG_AB_TIS, AB_used_TIS | Antigen (AG) |
PI-9 | 15 | AG_LZ, M_B1_AG_LZ, AG_TIS, AG_SCS, AG_M_SCS, AG_M_TZ, AG_APC_TZ, AG_T_TZ, AG_T_B_TZ, AG_T_B_LZ, DC_AG_LZ, B1_AG_LZ, AG_AB_TIS, M_AG_AB_TIS, AG_dead_TIS | Antigen (AG) |
References
- Margaris, K.; Black, R.A. Modelling the lymphatic system: Challenges and opportunities. J. R. Soc. Interface 2012, 9, 601–612. [Google Scholar] [CrossRef]
- Cappuccio, A.; Tieri, P.; Castiglione, F. Multiscale modelling in immunology: A review. Briefings Bioinform. 2016, 17, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Eftimie, R.; Gillard, J.J.; Cantrell, D.A. Mathematical models for immunology: Current state of the art and future research directions. Bull. Math. Biol. 2016, 78, 2091–2134. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E., Jr.; Bertram, C.D. Lymphatic system flows. Annu. Rev. Fluid Mech. 2018, 50, 459–482. [Google Scholar] [CrossRef] [PubMed]
- Mozokhina, A.; Savinkov, R. Mathematical modelling of the structure and function of the lymphatic system. Mathematics 2020, 8, 1467. [Google Scholar] [CrossRef]
- Altan-Bonnet, G.; Mora, T.; Walczak, A.M. Quantitative immunology for physicists. Phys. Rep. 2020, 849, 1–83. [Google Scholar] [CrossRef]
- Azarov, I.; Peskov, K.; Helmlinger, G.; Kosinsky, Y. Role of T cell-to-dendritic cell chemoattraction in T cell priming initiation in the lymph node: An agent-based modeling study. Front. Immunol. 2019, 10, 1289. [Google Scholar] [CrossRef] [PubMed]
- Keşmir, C.; De Boer, R.J. A mathematical model on germinal center kinetics and termination. J. Immunol. 1999, 163, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Hollenbaugh, J.A.; Zand, M.S.; Holden-Wiltse, J.; Mosmann, T.R.; Perelson, A.S.; Wu, H.; Topham, D.J. Quantifying the early immune response and adaptive immune response kinetics in mice infected with Influenza A virus. J. Virol. 2010, 84, 6687–6698. [Google Scholar] [CrossRef]
- Swerdlin, N.; Cohen, I.R.; Harel, D. The lymph node B cell immune response: Dynamic analysis in-silico. Proc. IEEE 2008, 96, 1421–1443. [Google Scholar] [CrossRef]
- Kislitsyn, A.; Savinkov, R.; Novkovic, M.; Onder, L.; Bocharov, G. Computational approach to 3D modeling of the lymph node geometry. Computation 2015, 3, 222–234. [Google Scholar] [CrossRef]
- Pennisi, M.; Cavalieri, S.; Motta, S.; Pappalardo, F. A methodological approach for using high-level Petri nets to model the immune system response. BMC Bioinform. 2016, 17, 91–105. [Google Scholar] [CrossRef]
- Obaid, A.; Naz, A.; Ikram, A.; Awan, F.M.; Raza, A.; Ahmad, J.; Ali, A. Model of the adaptive immune response system against HCV infection reveals potential immunomodulatory agents for combination therapy. Sci. Rep. 2018, 8, 8874. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.J.; Klein, U.; Lygeros, J.; Rodríguez Martínez, M. A probabilistic model of the germinal center reaction. Front. Immunol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pernice, S.; Follia, L.; Maglione, A.; Pennisi, M.; Pappalardo, F.; Novelli, F.; Clerico, M.; Beccuti, M.; Cordero, F.; Rolla, S. Computational modeling of the immune response in multiple sclerosis using epimod framework. BMC Bioinform. 2020, 21, 1–21. [Google Scholar] [CrossRef]
- Gutowska, K.; Formanowicz, D.; Formanowicz, P. Selected aspects of tobacco-induced prothrombotic state, inflammation and oxidative stress: Modeled and analyzed using petri nets. Interdiscip. Sci. Comput. Life Sci. 2019, 11, 373–386. [Google Scholar] [CrossRef]
- Rżosińska, K.; Formanowicz, D.; Formanowicz, P. The study of the influence of micro-environmental signals on macrophage differentiation using a quantitative Petri net based model. Arch. Control Sci. 2017, 27, 331–349. [Google Scholar] [CrossRef]
- Petri, C.A. Kommunikation mit Automaten. Ph.D. Thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1962. [Google Scholar]
- Lipton, R. The Reachability Problem Requires Exponential Space; Research Report; Department of Computer Science, Yale University: New Haven, CT, USA, 1976. [Google Scholar]
- Mayr, E.W. An algorithm for the general Petri net reachability problem. In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing. Association for Computing Machinery, New York, NY, USA, 11–13 May 1981; pp. 238–246. [Google Scholar]
- Kostin, A.E. Reachability analysis in T-invariant-less Petri nets. IEEE Trans. Autom. Control 2003, 48, 1019–1024. [Google Scholar] [CrossRef]
- Kostin, A.E. A reachability algorithm for general Petri nets based on transition invariants. In Proceedings of the International Symposium on Mathematical Foundations of Computer Science, Stara Lesna, Slovakia, 28 August–1 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 608–621. [Google Scholar]
- Kostin, A. Using Transition Invariants for Reachability Analysis of Petri Nets; IntechOpen: Rijeka, Croatia, 2008; Chapter 19. [Google Scholar]
- Leroux, J. The reachability problem for Petri nets is not primitive recursive. In Proceedings of the 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), Virtually, 7–10 February 2022; IEEE: New York, NY, USA, 2022; pp. 1241–1252. [Google Scholar]
- Czerwiński, W.; Orlikowski, Ł. Reachability in Vector Addition Systems is Ackermann-Complete. In Proceedings of the 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), Virtually, 7–10 February 2022; IEEE: New York, NY, USA, 2022; pp. 1229–1240. [Google Scholar]
- Koch, I.; Reisig, W.; Schreiber, F. Modeling in Systems Biology: The Petri Net Approach; Springer Science & Business Media: Berlin, Germany, 2010; Volume 16. [Google Scholar]
- Formanowicz, D.; Wanic-Kossowska, M.; Pawliczak, E.; Radom, M.; Formanowicz, P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease–systems and clinical approach. Sci. Rep. 2015, 5, 18332. [Google Scholar] [CrossRef]
- Formanowicz, D.; Rybarczyk, A.; Radom, M.; Formanowicz, P. A role of inflammation and immunity in essential hypertension—modeled and analyzed using Petri nets. Int. J. Mol. Sci. 2020, 21, 3348. [Google Scholar] [CrossRef]
- Bordon, J.; Moškon, M.; Zimic, N.; Mraz, M. Semi-quantitative modelling of gene regulatory processes with unknown parameter values using fuzzy logic and Petri nets. Fundam. Inform. 2018, 160, 81–100. [Google Scholar] [CrossRef]
- Gutowska, K.; Kogut, D.; Kardynska, M.; Formanowicz, P.; Smieja, J.; Puszynski, K. Petri nets and ODEs as complementary methods for comprehensive analysis on an example of the ATM–p53–NF-kappaB signaling pathways. Sci. Rep. 2022, 12, 1135. [Google Scholar] [CrossRef]
- Grunwald, S.; Speer, A.; Ackermann, J.; Koch, I. Petri net modelling of gene regulation of the Duchenne muscular dystrophy. BioSystems 2008, 92, 189–205. [Google Scholar] [CrossRef]
- Sackmann, A.; Heiner, M.; Koch, I. Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 2006, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Scheidel, J.; Lindauer, K.; Ackermann, J.; Koch, I. Quasi-steady-state analysis based on structural modules and timed Petri net predict system’s dynamics: The life cycle of the insulin receptor. Metabolites 2015, 5, 766–793. [Google Scholar] [CrossRef]
- Scheidel, J.; Amstein, L.; Ackermann, J.; Dikic, I.; Koch, I. In silico knockout studies of xenophagic capturing of Salmonella. PLoS Comput. Biol. 2016, 12, e1005200. [Google Scholar] [CrossRef]
- Amstein, L.; Ackermann, J.; Scheidel, J.; Fulda, S.; Dikic, I.; Koch, I. Manatee invariants reveal functional pathways in signaling networks. BMC Syst. Biol. 2017, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Hannig, J.; Giese, H.; Schweizer, B.; Amstein, L.; Ackermann, J.; Koch, I. isiKnock: In silico knockouts in signaling pathways. Bioinformatics 2019, 35, 892–894. [Google Scholar] [CrossRef]
- Schuster, S.; Fell, D.A.; Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 2000, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, A.; Formanowicz, D.; Formanowicz, P.; Koch, I.; Blazewicz, J. An analysis of the Petri net based model of the human body iron homeostasis process. Comput. Biol. Chem. 2007, 31, 1–10. [Google Scholar] [CrossRef]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020, 75, 1564–1581. [Google Scholar] [CrossRef] [PubMed]
- von Wasielewski, S.; Franklin, J.; Fischer, R.; Hübner, K.; Hansmann, M.L.; Diehl, V.; Georgii, A.; von Wasielewski, R. Nodular sclerosing Hodgkin disease: New grading predicts prognosis in intermediate and advanced stages. Blood J. Am. Soc. Hematol. 2003, 101, 4063–4069. [Google Scholar] [CrossRef] [PubMed]
- Donnadieu, E.; Dupré, L.; Pinho, L.G.; Cotta-de Almeida, V. Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. J. Leukoc. Biol. 2020, 108, 1067–1079. [Google Scholar] [CrossRef]
- Balazki, P.; Lindauer, K.; Einloft, J.; Ackermann, J.; Koch, I. MONALISA for stochastic simulations of Petri net models of biochemical systems. BMC Bioinform. 2015, 16, 1–11. [Google Scholar]
- Starke, P.H. Analyse von Petri-Netz-Modellen; Springer: Berlin/Heidelberg, Germany, 1990; Volume 6. [Google Scholar]
- Starke, P.H.; Roch, S. INA: Integrated Net Analyzer. Reference Manual 1992. Available online: https://www2.informatik.hu-berlin.de/~starke/ina.html (accessed on 13 December 2022).
- von Andrian, U.H.; Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 2003, 3, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Lennet, K.; Kikuchi, M.; Sato, E.; Suchi, T.; Stansfeld, A.G.; Feller, A.C.; Hansmann, M.L.; Müller-Hermelink, H.K.; Gödde-Salz, E. HTLV-positive and -negative T-cell lymphomas. Morphological and immunohistochemical differences between European and HTLV-positive Japanese T-cell lymphomas. Int. J. Cancer 1985, 35, 65–72. [Google Scholar] [CrossRef]
- Cogliatti, S.B.; Schmid, U.; Schumacher, U.; Eckert, F.; Hansmann, M.L.; Hedderich, J.; Takahashi, H.; Lennert, K. Primary B-cell gastric lymphoma: A clinicopathological study of 145 patients. Gastroenterology 1991, 101, 1159–1170. [Google Scholar] [CrossRef]
- Küppers, R.; Klein, U.; Hansmann, M.L.; Rajewsky, K. Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 1999, 341, 1520–1529. [Google Scholar] [CrossRef]
- Diehl, V.; Sextro, M.; Franklin, J.; Hansmann, M.; Harris, N.; Jaffe, E.; Poppema, S.; Harris, M.; Franssila, K.; van Krieken, J.; et al. Clinical presentation, course, and prognostic factors in lymphocyte-predominant Hodgkin’s disease and lymphocyte-rich classical Hodgkin’s disease: Report from the European task force on lymphoma project on lymphocyte-predominant Hodgkin’s disease. J. Clin. Oncol. 1999, 17, 776–783. [Google Scholar] [CrossRef]
- Hannig, J.; Schäfer, H.; Ackermann, J.; Hebel, M.; Schäfer, T.; Döring, C.; Hartmann, S.; Hansmann, M.L.; Koch, I. Bioinformatics analysis of whole slide images reveals significant neighborhood preferences of tumor cells in Hodgkin lymphoma. PLoS Comput. Biol. 2020, 16, e1007516. [Google Scholar] [CrossRef]
- Roncador, G.; Verdes-Montenegro, J.F.G.; Tedoldi, S.; Paterson, J.C.; Klapper, W.; Ballabio, E.; Maestre, L.; Pileri, S.; Hansmann, M.L.; Piris, M.A.; et al. Expression of two markers of germinal center T cells (SAP and PD-1) in angioimmunoblastic T-cell lymphoma. Haematologica 2007, 92, 1059–1066. [Google Scholar] [PubMed]
- Schäfer, T.; Schäfer, H.; Schmitz, A.; Ackermann, J.; Dichter, N.; Döring, C.; Hartmann, S.; Hansmann, M.L.; Koch, I. Image database analysis of Hodgkin lymphoma. Comput. Biol. Chem. 2013, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, H.; Schäfer, T.; Ackermann, J.; Dichter, N.; Döring, C.; Hartmann, S.; Hansmann, M.L.; Koch, I. CD30 cell graphs of Hodgkin lymphoma are not scale-free–an image analysis approach. Bioinformatics 2016, 32, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Oswald, M.S.; Wurzel, P.; Hansmann, M.L. 3D analysis of morphological alterations of the fibroblastic reticular cells in reactive and neoplastic human lymph nodes. Acta Histochem. 2019, 121, 769–775. [Google Scholar]
- Thomos, M.; Wurzel, P.; Scharf, S.; Koch, I.; Hansmann, M.L. 3D investigation shows walls and wall-like structures around human germinal centres, probably regulating T-and B-cell entry and exit. PLoS ONE 2020, 15, e0242177. [Google Scholar] [CrossRef] [PubMed]
- Donnadieu, E.; Reisinger, K.B.; Scharf, S.; Michel, Y.; Bein, J.; Hansen, S.; Loth, A.G.; Flinner, N.; Hartmann, S.; Hansmann, M.L. Landscape of T follicular helper cell dynamics in human germinal centers. J. Immunol. 2020, 205, 1248–1255. [Google Scholar] [CrossRef]
- Wurzel, P.; Ackermann, J.; Schäfer, H.; Scharf, S.; Hansmann, M.L.; Koch, I. Detection of follicular regions in actin-stained whole slide images of the human lymph node by shock filter. Biol. Chem. 2021, 402, 991–999. [Google Scholar] [CrossRef]
- Lumer, L.; Wurzel, P.; Scharf, S.; Schäfer, H.; Ackermann, J.; Koch, I.; Hansmann, M.L. 3D connectomes of reactive and neoplastic CD30 positive lymphoid cells and surrounding cell types. Acta Histochem. 2021, 123, 151750. [Google Scholar] [CrossRef]
- Hartmann, S.; Scharf, S.; Steiner, Y.; Loth, A.G.; Donnadieu, E.; Flinner, N.; Poeschel, V.; Angel, S.; Bewarder, M.; Bein, J.; et al. Landscape of 4D cell interaction in Hodgkin and non-Hodgkin lymphomas. Cancers 2021, 13, 5208. [Google Scholar] [CrossRef]
- Schuster, S.; Hilgetag, C. On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 1994, 2, 165–182. [Google Scholar] [CrossRef]
- Schuster, S.; Dandekar, T.; Fell, D.A. Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 1999, 17, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Stelling, J.; Klamt, S.; Bettenbrock, K.; Schuster, S.; Gilles, E.D. Metabolic network structure determines key aspects of functionality and regulation. Nature 2002, 420, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Heiner, M.; Koch, I.; Will, J. Model validation of biological pathways using Petri nets—Demonstrated for apoptosis. BioSystems 2004, 75, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Koch, I.; Junker, B.H.; Heiner, M. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 2005, 21, 1219–1226. [Google Scholar] [CrossRef]
- Keating, S.M.; Waltemath, D.; König, M.; Zhang, F.; Dräger, A.; Chaouiya, C.; Bergmann, F.T.; Finney, A.; Gillespie, C.S.; Helikar, T.; et al. SBML Level 3: An extensible format for the exchange and reuse of biological models. Mol. Syst. Biol. 2020, 16, e9110. [Google Scholar] [CrossRef]
- Pikor, N.B.; Mörbe, U.; Lütge, M.; Gil-Cruz, C.; Perez-Shibayama, C.; Novkovic, M.; Cheng, H.W.; Nombela-Arrieta, C.; Nagasawa, T.; Linterman, M.A.; et al. Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nat. Immunol. 2020, 21, 649–659. [Google Scholar] [CrossRef]
- Victora, G.D.; Nussenzweig, M.C. Germinal centers. Annu. Rev. Immunol. 2012, 30, 429–457. [Google Scholar] [CrossRef]
- Baldan, P.; Cocco, N.; Marin, A.; Simeoni, M. Petri nets for modelling metabolic pathways: A survey. Nat. Comput. 2010, 9, 955–989. [Google Scholar] [CrossRef]
- Chaouiya, C. Petri net modelling of biological networks. Briefings Bioinform. 2007, 8, 210–219. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Doan, T.A.; Forward, T.; Tamburini, B.A.J. Trafficking and retention of protein antigens across systems and immune cell types. Cell. Mol. Life Sci. 2022, 79, 275. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.; Strodthoff, N.; Wurzel, P.; Marban, A.; Scharf, S.; Schäfer, H.; Seegerer, P.; Loth, A.; Hartmann, S.; Klauschen, F.; et al. New definitions of human lymphoid and follicular cell entities in lymphatic tissue by machine learning. Sci. Rep. 2022, 12, 18991. [Google Scholar] [CrossRef]
- Vyas, J.M.; Van der Veen, A.G.; Ploegh, H.L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 2008, 8, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Hendrikx, J.J.; Haanen, J.B.; Voest, E.E.; Schellens, J.H.; Huitema, A.D.; Beijnen, J.H. Fixed dosing of monoclonal antibodies in oncology. Oncologist 2017, 22, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Perez-Andres, M.; Paiva, B.; Nieto, W.G.; Caraux, A.; Schmitz, A.; Almeida, J.; Vogt Jr, R.; Marti, G.; Rawstron, A.; Van Zelm, M.; et al. Human peripheral blood B-cell compartments: A crossroad in B-cell traffic. Cytom. Part B Clin. Cytom. 2010, 78, S47–S60. [Google Scholar] [CrossRef]
- Lanzavecchia, A.; Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 2001, 106, 263–266. [Google Scholar] [CrossRef]
- Von Andrian, U.H.; Mackay, C.R. T-cell function and migration—Two sides of the same coin. N. Engl. J. Med. 2000, 343, 1020–1034. [Google Scholar] [CrossRef]
- Xu, W.; Joo, H.; Clayton, S.; Dullaers, M.; Herve, M.C.; Blankenship, D.; De La Morena, M.T.; Balderas, R.; Picard, C.; Casanova, J.L.; et al. Macrophages induce differentiation of plasma cells through CXCL10/IP-10. J. Exp. Med. 2012, 209, 1813–1823. [Google Scholar] [CrossRef]
- LeBien, T.W.; Tedder, T.F. B lymphocytes: How they develop and function. Blood 2008, 112, 1570–1580. [Google Scholar] [CrossRef]
- McHeyzer-Williams, L.J.; McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 2005, 23, 487. [Google Scholar] [CrossRef]
- Qi, H.; Egen, J.G.; Huang, A.Y.C.; Germain, R.N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 2006, 312, 1672–1676. [Google Scholar] [CrossRef]
- Gonzalez, S.F.; Degn, S.E.; Pitcher, L.A.; Woodruff, M.; Heesters, B.A.; Carroll, M.C. Trafficking of B cell antigen in lymph nodes. Annu. Rev. Immunol. 2011, 29, 215–233. [Google Scholar] [CrossRef]
- Vinuesa, C.G.; Sanz, I.; Cook, M.C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 2009, 9, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, Y.; Liu, S.; Yu, W.; Liu, Z. CD169+ subcapsular sinus macrophage-derived microvesicles are associated with light zone follicular dendritic cells. Eur. J. Immunol. 2022, 52, 1581–1594. [Google Scholar] [CrossRef]
- Van Zelm, M.C.; Szczepanski, T.; Van Der Burg, M.; Van Dongen, J.J. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J. Exp. Med. 2007, 204, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Sixt, M.; Kanazawa, N.; Selg, M.; Samson, T.; Roos, G.; Reinhardt, D.P.; Pabst, R.; Lutz, M.B.; Sorokin, L. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 2005, 22, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. [Google Scholar] [CrossRef]
- Batista, F.D.; Harwood, N.E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 2009, 9, 15–27. [Google Scholar] [CrossRef]
- Gray, E.E.; Cyster, J.G. Lymph node macrophages. J. Innate Immun. 2012, 4, 424–436. [Google Scholar] [CrossRef]
- Stewart, I.; Radtke, D.; Phillips, B.; McGowan, S.J.; Bannard, O. Germinal center B cells replace their antigen receptors in dark zones and fail light zone entry when immunoglobulin gene mutations are damaging. Immunity 2018, 49, 477–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Garcia-Ibanez, L.; Ulbricht, C.; Lok, L.S.; Pike, J.A.; Mueller-Winkler, J.; Dennison, T.W.; Ferdinand, J.R.; Burnett, C.J.; Yam-Puc, J.C.; et al. Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nat. Commun. 2022, 13, 2460. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Triffitt, J.T. A review on macrophage responses to biomaterials. Biomed. Mater. 2006, 1, R1. [Google Scholar] [CrossRef]
- Louie, D.A.P.; Liao, S. Lymph node subcapsular sinus macrophages as the frontline of lymphatic immune defense. Front. Immunol. 2019, 10, 347. [Google Scholar] [CrossRef]
- Martinez-Pomares, L.; Gordon, S. CD169+ macrophages at the crossroads of antigen presentation. Trends Immunol. 2012, 33, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Brown, F.D.; Turley, S.J. Fibroblastic reticular cells: Organization and regulation of the T lymphocyte life cycle. J. Immunol. 2015, 194, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 1985, 314, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Cahalan, M.D.; Parker, I. Close encounters of the first and second kind: T–DC and T–B interactions in the lymph node. Semin. Immunol. 2005, 17, 442–451. [Google Scholar] [CrossRef]
- Biram, A.; Davidzohn, N.; Shulman, Z. T cell interactions with B cells during germinal center formation, a three-step model. Immunol. Rev. 2019, 288, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.C.; Okada, T.; Tang, H.L.; Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 2007, 315, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Tangye, S.G.; Good, K.L. Human IgM+ CD27+ B cells: Memory B cells or “memory” B cells? J. Immunol. 2007, 179, 13–19. [Google Scholar] [CrossRef]
- Fooksman, D.R.; Schwickert, T.A.; Victora, G.D.; Dustin, M.L.; Nussenzweig, M.C.; Skokos, D. Development and migration of plasma cells in the mouse lymph node. Immunity 2010, 33, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Zotos, D.; Tarlinton, D.M. Determining germinal centre B cell fate. Trends Immunol. 2012, 33, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R.; Padlan, E.A.; Sheriff, S. Antibody-antigen complexes. Annu. Rev. Biochem. 1990, 59, 439–473. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Name |
---|---|
BL | blood |
DZ | dark zone |
GC | germinal center |
LN | lymph node |
LZ | light zone |
ME | medulla |
SCS | subcapsular sinus |
TIS | tissue |
TZ | T zone (paracortex) |
Abbreviation | Name | Compartment |
---|---|---|
AB | antibody | TIS |
AG | antigen | BL, TIS |
APC | antigen-presenting cells | TZ |
B | B cell | BL, TZ, GC, LZ |
B1 | B cell (activated) | LZ, DZ, GC |
B2 | B cell (plasma cell) | GC, TZ, ME, BL, TIS |
B3 | B cell (memory cell) | ME |
DC | dendritic cells | GC, LZ |
M | macrophages | DZ, GC, LZ, SCS, TIS, TZ |
T | T cell | BL, GC, LZ, TZ |
Abbreviation | Name | Description |
---|---|---|
DIF | differentiation | B cell differentiates to plasma B cell or memory B cell |
ENC | encounter | start of interaction between species e.g., cell-cell communication, recognition of antigen |
G1 | replication | G1 phase of cell replication |
IN | influx | interface to the environment that feeds species to the system |
M | replication | M phase of cell replication |
OUT | out-flux | interface to the environment that takes species from the system, also cell death |
REG | regeneration | a cell recovers and becomes active again |
REL | release | final step of the transport of an antibody by a B cell |
SEP | separation | end of interaction between species as, e.g., cell-cell communication, recognition of antigen |
TRA | translocation | species moves from one compartment to another |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharf, S.; Ackermann, J.; Bender, L.; Wurzel, P.; Schäfer, H.; Hansmann, M.-L.; Koch, I. Holistic View on the Structure of Immune Response: Petri Net Model. Biomedicines 2023, 11, 452. https://doi.org/10.3390/biomedicines11020452
Scharf S, Ackermann J, Bender L, Wurzel P, Schäfer H, Hansmann M-L, Koch I. Holistic View on the Structure of Immune Response: Petri Net Model. Biomedicines. 2023; 11(2):452. https://doi.org/10.3390/biomedicines11020452
Chicago/Turabian StyleScharf, Sonja, Jörg Ackermann, Leonie Bender, Patrick Wurzel, Hendrik Schäfer, Martin-Leo Hansmann, and Ina Koch. 2023. "Holistic View on the Structure of Immune Response: Petri Net Model" Biomedicines 11, no. 2: 452. https://doi.org/10.3390/biomedicines11020452
APA StyleScharf, S., Ackermann, J., Bender, L., Wurzel, P., Schäfer, H., Hansmann, M. -L., & Koch, I. (2023). Holistic View on the Structure of Immune Response: Petri Net Model. Biomedicines, 11(2), 452. https://doi.org/10.3390/biomedicines11020452