Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment
Abstract
:1. Introduction
2. System Model and Control Problem Definition
3. Control Design
3.1. Exact Model Knowledge Controller
3.2. Adaptive Controller
3.2.1. Least-Squares Parameter Estimator
3.2.2. Adaptive Controller Design
3.2.3. Optimum Trajectory Generation
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Implementable Form of the Filtered Signal Qf(t)
Appendix B. Proof Details for Theorem 2
Appendix C. Proof Details for Theorem 3
References
- National Cancer Institute. Breast Cancer. Available online: http://www.cancer.gov/cancertopics/types/breast (accessed on 1 June 2021).
- National Cancer Institute. Understanding Cancer Series: Angiogenesis. Available online: http://www.cancer.gov/cancertopics/understandingcancer/angiogenesis (accessed on 1 July 2019).
- Clagsburn, M.; Soker, S. VEGF/VPF: The angiogenesis factor found? Curr. Biol. 1993, 3, 699–702. [Google Scholar]
- Folkman, J. Angiogenesis: A new concept for therapy of solid tumors. Ann. Surg. 1972, 175, 409–416. [Google Scholar]
- Ledzewicz, U. Optimal control for a system modeling tumor anti-angiogenesis. Int. J. Autom. Control Syst. Eng. 2006, 6, 33–39. [Google Scholar]
- Ledzewicz, U.; Schaettler, H. Application of Optimal Control to a System Describing Tumor Anti-Angiogenesis. In Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Minneapolis, MN, USA, 12–15 July 2006; pp. 478–484. [Google Scholar]
- Ledzewicz, U.; Schaettler, H. A Synthesis of Optimal Controls for a Model of Tumor Growth under Angiogenic Inhibitors. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; pp. 12–15. [Google Scholar]
- Ledzewicz, U. Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol. 2008, 252, 295–312. [Google Scholar] [CrossRef]
- Swierniak, A.; d’Onofrio, A.; Gandolfi, A. Control Problems Related Tumor Angiogenesis. In Proceedings of the IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 677–681. [Google Scholar]
- Nath, N.; Burg, T.C.; Dawson, D.M.; Iyasere, E. Optimizing Anti-Angiogenic Therapy for Tumor Minimization. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 1242–1247. [Google Scholar]
- Hasirci, U.; Burg, T.C.; Groff, R.E. Closed-Loop Nonlinear Smooth Robust Control of Anti-Angiogenic Tumor Therapy. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 2301–2306. [Google Scholar]
- Hasirci, U.; Burg, T.C.; Groff, R.E. Closed-Loop Nonlinear Adaptive Control of Anti-Angiogenic Tumor Therapy. In Proceedings of the 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey, 23–26 June 2013; pp. 1–6. [Google Scholar]
- Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2021, 58, 373–387. [Google Scholar] [CrossRef]
- Chi, R.; Li, H.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type control: Indirect adaptive learning from set-point updates. IEEE Trans. Autom. Control. 2022. [Google Scholar] [CrossRef]
- Qi, Z.; Shi, Q.; Zhang, H. Tuning of Digital PID Controllers Using Particle Swarm Optimization Algorithm for a CAN-Based DC Motor Subject to Stochastic Delays. IEEE Trans. Ind. Electron. 2020, 7, 5637–5646. [Google Scholar] [CrossRef]
- Luo, Q.; Nguyen, A.T.; Fleming, J.; Zhang, H. Unknown Input Observer Based Approach for Distributed Tube-Based Model Predictive Control of Heterogeneous Vehicle Platoons. IEEE Trans. Veh. Technol. 2021, 70, 2930–2944. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, H. Fault Diagnosis of an Autonomous Vehicle with an Improved SVM Algorithm Subject to Unbalanced Datasets. IEEE Trans. Ind. Electron. 2021, 68, 6248–6256. [Google Scholar]
- Ledzewicz, U.; Liu, Y.; Schattler, H. The Effect of Pharmacokinetics on Optimal Protocols for a Mathematical Model of Tumor Anti-Angiogenic Therapy. In Proceedings of the American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 1060–1065. [Google Scholar]
- Agur, Z.; Arakelyan, L.; Daugulis, P.; Ginosar, Y. Hopf point analysis for angiogenesis models. Disrete Cont. Dyn. Sys. B 2004, 4, 29–38. [Google Scholar] [CrossRef]
- Davis, S.; Yancopoulos, G.D. The angiopoietins: Yin and Yang in angiogenesis. Curr. Top. Microbiol. Immunol. 1999, 237, 173–185. [Google Scholar]
- Boehm, T.; Folkman, J.; Browder, T.; O’Reilly, M. Anti-angiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997, 390, 404–407. [Google Scholar]
- Anderson, A.; Chaplain, M. Continuous and discrete mathematical models of tumor induced angiogenesis. Bull. Math. Bio. 1998, 60, 857–859. [Google Scholar] [CrossRef]
- Arakelyan, L.; Vainstain, V.; Agur, Z. A computer algorithm describing the process of vessel formation and maturation and its use for predicting the effects of anti-angiogenic and anti- maturation therapy on vascular tumor growth. Angiogenesis 2002, 5, 203–214. [Google Scholar]
- Ramanujan, S.; Koenig, G.C.; Padera, T.P.; Stoll, B.R.; Jain, R.K. Local imbalance of prangiogenic and anti-angiogenic factors: A potential mechanism of focal necrosis and dormancy in tumors. Can. Res. 2000, 60, 1442–1448. [Google Scholar]
- De Angelis, E.; Preziosi, L. Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem. Math. Model. Methods Appl. Sci. 2000, 10, 379–407. [Google Scholar]
- Jackson, J.L. Vascular tumor growth and treatment: Consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 2002, 44, 201–226. [Google Scholar] [CrossRef]
- Breward, C.J.W.; Byrne, H.M.; Lewis, C.E. A multiphase model describing vascular tumour growth. Bull. Math. Biol. 2003, 65, 609–640. [Google Scholar]
- Ledzewicz, U.; Schattler, H.; d’Onofrio, A. Optimal Control for Combination Therapy in Cancer. In Proceedings of the IEEE International Conference Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 1442–1448. [Google Scholar]
- Hahnfeldt, P.; Panigrahy, D.; Folkman, J.; Hlatky, L. Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Can. Res. 1999, 59, 4770–4775. [Google Scholar]
- Ergun, A.; Camphausen, K.; Wein, L.M. Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 2003, 65, 407–424. [Google Scholar] [CrossRef]
- D’Onofrio, A.; Gandolfi, A. Tumor eradication by anti-angiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 2004, 191, 159–184. [Google Scholar]
- Ledzewicz, U.; Maurer, H.; Schattler, H. Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics. In Recent Advances in Optimization and its Applications in Engineering; Springer: Berlin, Germany, 2010; pp. 267–276. [Google Scholar]
- Ledzewicz, U.; Schattler, H. The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models. Math. Biosci. Eng. 2004, 2, 561. [Google Scholar]
- Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. Nonlinear and Adaptive Control Design; John Wiley and Sons: New York, NY, USA, 1995. [Google Scholar]
- Dawson, D.M.; Hu, J.; Burg, T.C. Nonlinear Control of Electric Machinery; Marcel Dekker Inc.: New York, NY, USA, 1998. [Google Scholar]
- De Queiroz, M.; Dawson, D.; Nagarkatti, S.; Zhang, F. Lyapunov-Based Control of Mechanical Systems; Birkhauser: Boston, MA, USA, 1999. [Google Scholar]
- Ledzewicz, U.; Schattler, H. The structure of optimal protocols for a mathematical model of chemotherapy with antiangiogenic effects. SIAM J. Control Optim. 2022, 60, 1092–1116. [Google Scholar] [CrossRef]
- Moustafid, A. Set-valued analysis of anti-angiogenic therapy and radiotherapy. Math. Model. Numer. Simul. Appl. 2022, 29, 187–196. [Google Scholar]
- Moustafid, A. General anti-angiogenic therapy protocols with chemotherapy. Int. J. Math. Model. Comput. 2021, 11, 1–14. [Google Scholar]
- Ledzewicz, U.; Schättler, H. Combination of antiangiogenic treatment with chemotherapy as a multi-input optimal control problem. Math. Methods Appl. Sci. 2022, 45, 3058–3082. [Google Scholar]
- Ioannou, P.A.; Sun, J. Robust Adaptive Control; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
α | 1.08 | [day]−1 |
d | 3.63 × 10−4 | [day]−1 [mm]−2 |
b | 0.243 | [day]−1 |
G | 1.3 | [day]−1 [conc.]−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, N.; Kil, I.; Hasirci, U.; Groff, R.E.; Burg, T.C. Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment. Biomedicines 2023, 11, 497. https://doi.org/10.3390/biomedicines11020497
Nath N, Kil I, Hasirci U, Groff RE, Burg TC. Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment. Biomedicines. 2023; 11(2):497. https://doi.org/10.3390/biomedicines11020497
Chicago/Turabian StyleNath, Nitendra, Irfan Kil, Ugur Hasirci, Richard E. Groff, and Timothy C. Burg. 2023. "Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment" Biomedicines 11, no. 2: 497. https://doi.org/10.3390/biomedicines11020497
APA StyleNath, N., Kil, I., Hasirci, U., Groff, R. E., & Burg, T. C. (2023). Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment. Biomedicines, 11(2), 497. https://doi.org/10.3390/biomedicines11020497