Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials
Abstract
:1. Introduction
2. Methods
3. Parkinson’s Disease
4. Atypical Parkinsonian Disorders
5. Huntington’s Disease
6. Amyotrophic Lateral Sclerosis
7. Spinocerebellar Ataxia
8. Current Challenges and Future Directions
9. Final Remarks
10. Glossary
- Totipotent cells can differentiate into any cell in the body—both embryonic and extra-embryonic tissue, such as the placenta. In mammals, they consist of the zygote (fertilized egg) and the first blastomeres cells (up to stages 4–8 cells).
- Pluripotent cells include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Pluripotent cells can differentiate in any embryonic cell but cannot differentiate any extra-embryonic tissue. It can form all three germ layers and is formed from the inner cell mass of a blastocyst; these are specifically named embryonic stem cells (ESC).
- Multipotent cells can differentiate into a family of cells that, in many cases, belong to the same tissue (e.g., these cells can develop only into specialized cell types). Examples include Neural Stem Cells (NSCs), which can become any cell part of the central nervous system.
- Oligopotent cells can differentiate into a limited number of different cells.
- Unipotent cells can generate a single type of cell.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Espay, A.J. Your After-Visit Summary-May 29, 2042. Lancet Neurol. 2022, 21, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Herrero, M.; Soto-Rojas, L.O.; Reyes-Sabater, H.; Garcés-Ramirez, L.; de la Cruz López, F.; Villanueva-Fierro, I.; Luna-Muñoz, J. Current Status and Challenges of Stem Cell Treatment for Alzheimer’s Disease. J. Alzheimers Dis. 2021, 84, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Guttikonda, S.R.; Sikkema, L.; Tchieu, J.; Saurat, N.; Walsh, R.M.; Harschnitz, O.; Ciceri, G.; Sneeboer, M.; Mazutis, L.; Setty, M.; et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease. Nat. Neurosci. 2021, 24, 343–354. [Google Scholar] [CrossRef]
- García-León, J.A.; Cabrera-Socorro, A.; Eggermont, K.; Swijsen, A.; Terryn, J.; Fazal, R.; Nami, F.; Ordovás, L.; Quiles, A.; Lluis, F.; et al. Generation of a human induced pluripotent stem cell-based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimers Dement. 2018, 14, 1261–1280. [Google Scholar] [CrossRef]
- Lines, G.; Casey, J.M.; Preza, E.; Wray, S. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 2020, 109, 103553. [Google Scholar] [CrossRef] [PubMed]
- Karch, C.M.; Kao, A.W.; Karydas, A.; Onanuga, K.; Martinez, R.; Argouarch, A.; Wang, C.; Huang, C.; Sohn, P.D.; Bowles, K.R.; et al. A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Rep. 2019, 13, 939–955. [Google Scholar] [CrossRef]
- Adami, R.; Bottai, D. Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Rev. Rep. 2019, 15, 795–813. [Google Scholar] [CrossRef]
- Prochazkova, M.; Chavez, M.G.; Prochazka, J.; Felfy, H.; Mushegyan, V.; Klein, O.D. Chapter 18—Embryonic Versus Adult Stem Cells. In Stem Cell Biology and Tissue Engineering in Dental Sciences; Ajaykumar Vishwakarma, P.S., Shi, S., Ramalingam, M., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 249–262. [Google Scholar]
- Zhang, X.; Hu, D.; Shang, Y.; Qi, X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol. Basis Dis. 2020, 1866, 165431. [Google Scholar] [CrossRef]
- Omole, A.E.; Fakoya, A.O.J. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 2018, 6, e4370. [Google Scholar] [CrossRef]
- Ferroni, L.; Gardin, C.; Tocco, I.; Epis, R.; Casadei, A.; Vindigni, V.; Mucci, G.; Zavan, B. Potential for neural differentiation of mesenchymal stem cells. Adv. Biochem Eng. Biotechnol 2013, 129, 89–115. [Google Scholar] [CrossRef]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol. Ther. (Seoul) 2020, 28, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Freed, C.R.; Greene, P.E.; Breeze, R.E.; Tsai, W.Y.; DuMouchel, W.; Kao, R.; Dillon, S.; Winfield, H.; Culver, S.; Trojanowski, J.Q.; et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 2001, 344, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Goetz, C.G.; Kordower, J.H.; Stoessl, A.J.; Sossi, V.; Brin, M.F.; Shannon, K.M.; Nauert, G.M.; Perl, D.P.; Godbold, J.; et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 2003, 54, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, C.; Chaly, T.; Greene, P.; Breeze, R.; Fahn, S.; Freed, C.; Dhawan, V.; Eidelberg, D. Dopamine cell implantation in Parkinson’s disease: Long-term clinical and (18)F-FDOPA PET outcomes. J. Nucl. Med. 2010, 51, 7–15. [Google Scholar] [CrossRef]
- Barker, R.A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med. 2019, 25, 1045–1053. [Google Scholar] [CrossRef]
- Uwishema, O.; Onyeaka, H.; Badri, R.; Yücel, A.N.; Korkusuz, A.K.; Ajagbe, A.O.; Abuleil, A.; Chaaya, C.; Alhendawi, B.H.M.; Chalhoub, E. The understanding of Parkinson’s disease through genetics and new therapies. Brain Behav. 2022, 12, e2577. [Google Scholar] [CrossRef]
- Marsili, L.; Rizzo, G.; Colosimo, C. Diagnostic Criteria for Parkinson’s Disease: From James Parkinson to the Concept of Prodromal Disease. Front. Neurol. 2018, 9, 156. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. Jama 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Gravitz, L. The promise and potential of stem cells in Parkinson’s disease. Nature 2021, 597, 8–10. [Google Scholar] [CrossRef]
- Lindvall, O.; Rehncrona, S.; Brundin, P.; Gustavii, B.; Astedt, B.; Widner, H.; Lindholm, T.; Björklund, A.; Leenders, K.L.; Rothwell, J.C.; et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch. Neurol. 1989, 46, 615–631. [Google Scholar] [CrossRef]
- Piccini, P.; Brooks, D.J.; Björklund, A.; Gunn, R.N.; Grasby, P.M.; Rimoldi, O.; Brundin, P.; Hagell, P.; Rehncrona, S.; Widner, H.; et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci. 1999, 2, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Kefalopoulou, Z.; Politis, M.; Piccini, P.; Mencacci, N.; Bhatia, K.; Jahanshahi, M.; Widner, H.; Rehncrona, S.; Brundin, P.; Björklund, A.; et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: Two case reports. JAMA Neurol. 2014, 71, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q.; et al. Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson’s Disease. N Engl. J. Med. 2020, 382, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Bologna, M.; Kojovic, M.; Berardelli, A.; Espay, A.J.; Colosimo, C. Dystonia in atypical parkinsonian disorders. Parkinsonism Relat. Disord. 2019, 66, 25–33. [Google Scholar] [CrossRef]
- Lee, P.H.; Lee, J.E.; Kim, H.S.; Song, S.K.; Lee, H.S.; Nam, H.S.; Cheong, J.W.; Jeong, Y.; Park, H.J.; Kim, D.J.; et al. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann. Neurol. 2012, 72, 32–40. [Google Scholar] [CrossRef]
- Giordano, R.; Canesi, M.; Isalberti, M.; Isaias, I.U.; Montemurro, T.; Viganò, M.; Montelatici, E.; Boldrin, V.; Benti, R.; Cortelezzi, A.; et al. Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: Translation into a phase I controlled, randomized clinical study. J. Transl. Med. 2014, 12, 14. [Google Scholar] [CrossRef]
- Canesi, M.; Giordano, R.; Lazzari, L.; Isalberti, M.; Isaias, I.U.; Benti, R.; Rampini, P.; Marotta, G.; Colombo, A.; Cereda, E.; et al. Finding a new therapeutic approach for no-option Parkinsonisms: Mesenchymal stromal cells for progressive supranuclear palsy. J. Transl. Med. 2016, 14, 127. [Google Scholar] [CrossRef]
- Pezzoli, G.; Tesei, S.; Canesi, M.; Sacilotto, G.; Vittorio, M.; Mizuno, Y.; Mochizuki, H.; Antonini, A. The effect of repeated administrations of granulocyte colony stimulating factor for blood stem cells mobilization in patients with progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. Clin. Neurol. Neurosurg. 2010, 112, 65–67. [Google Scholar] [CrossRef]
- Chung, S.J.; Lee, T.Y.; Lee, Y.H.; Baik, K.; Jung, J.H.; Yoo, H.S.; Shim, C.J.; Eom, H.; Hong, J.Y.; Kim, D.J.; et al. Phase I Trial of Intra-arterial Administration of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Patients with Multiple System Atrophy. Stem Cells Int. 2021, 2021, 9886877. [Google Scholar] [CrossRef]
- Ndayisaba, A.; Herrera-Vaquero, M.; Wenning, G.K.; Stefanova, N. Induced pluripotent stem cells in multiple system atrophy: Recent developments and scientific challenges. Clin. Auton Res. 2019, 29, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Park, K.B.; Woo, S.K.; Kang, S.K.; Ra, J.C. Treatment of progressive supranuclear palsy with autologous adipose tissue-derived mesenchymal stem cells: A case report. J. Med. Case Rep. 2014, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yuan, F.; Du, Y.; Pan, T.; Wen, W.; Li, S.; Wang, L.; Lu, A. Umbilical cord blood stem cells transplantation in a patient with severe progressive supranuclear palsy: A case report. J. Med. Case Rep. 2021, 15, 574. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Duque, K.R.; Bode, R.L.; Kauffman, M.A.; Espay, A.J. Uncovering essential tremor genetics: The promise of long-read sequencing. Front. Neurol. 2022, 13, 821189. [Google Scholar] [PubMed]
- Tabrizi, S.J.; Estevez-Fraga, C.; van Roon-Mom, W.M.C.; Flower, M.D.; Scahill, R.I.; Wild, E.J.; Muñoz-Sanjuan, I.; Sampaio, C.; Rosser, A.E.; Leavitt, B.R. Potential disease-modifying therapies for Huntington’s disease: Lessons learned and future opportunities. Lancet Neurol. 2022, 21, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.J.; Dunnett, S.B.; Isacson, O.; Sirinathsinghji, D.J.; Björklund, A. Striatal grafts in rats with unilateral neostriatal lesions--I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience 1988, 24, 791–801. [Google Scholar] [CrossRef]
- Bachoud-Lévi, A.C.; Rémy, P.; Nguyen, J.P.; Brugières, P.; Lefaucheur, J.P.; Bourdet, C.; Baudic, S.; Gaura, V.; Maison, P.; Haddad, B.; et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000, 356, 1975–1979. [Google Scholar] [CrossRef]
- Bachoud-Lévi, A.C.; Gaura, V.; Brugières, P.; Lefaucheur, J.P.; Boissé, M.F.; Maison, P.; Baudic, S.; Ribeiro, M.J.; Bourdet, C.; Remy, P.; et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: A long-term follow-up study. Lancet Neurol. 2006, 5, 303–309. [Google Scholar] [CrossRef]
- Hauser, R.A.; Furtado, S.; Cimino, C.R.; Delgado, H.; Eichler, S.; Schwartz, S.; Scott, D.; Nauert, G.M.; Soety, E.; Sossi, V.; et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 2002, 58, 687–695. [Google Scholar] [CrossRef]
- Reuter, I.; Tai, Y.F.; Pavese, N.; Chaudhuri, K.R.; Mason, S.; Polkey, C.E.; Clough, C.; Brooks, D.J.; Barker, R.A.; Piccini, P. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J. Neurol Neurosurg Psychiatry 2008, 79, 948–951. [Google Scholar] [CrossRef]
- Paganini, M.; Biggeri, A.; Romoli, A.M.; Mechi, C.; Ghelli, E.; Berti, V.; Pradella, S.; Bucciantini, S.; Catelan, D.; Saccardi, R.; et al. Fetal striatal grafting slows motor and cognitive decline of Huntington’s disease. J. Neurol. Neurosurg Psychiatry 2014, 85, 974–981. [Google Scholar] [CrossRef]
- Barker, R.A.; Mason, S.L.; Harrower, T.P.; Swain, R.A.; Ho, A.K.; Sahakian, B.J.; Mathur, R.; Elneil, S.; Thornton, S.; Hurrelbrink, C.; et al. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J. Neurol. Neurosurg Psychiatry 2013, 84, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Bachoud-Lévi, A.; Bourdet, C.; Brugières, P.; Nguyen, J.P.; Grandmougin, T.; Haddad, B.; Jény, R.; Bartolomeo, P.; Boissé, M.F.; Barba, G.D.; et al. Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington’s disease. Exp. Neurol. 2000, 161, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- Borchelt, D.R. Amyotrophic lateral sclerosis--are microglia killing motor neurons? N Engl. J. Med. 2006, 355, 1611–1613. [Google Scholar] [CrossRef] [PubMed]
- Martinez, H.R.; Gonzalez-Garza, M.T.; Moreno-Cuevas, J.E.; Caro, E.; Gutierrez-Jimenez, E.; Segura, J.J. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 2009, 11, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Deda, H.; Inci, M.C.; Kürekçi, A.E.; Sav, A.; Kayihan, K.; Ozgün, E.; Ustünsoy, G.E.; Kocabay, S. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: A 1-year follow-up. Cytotherapy 2009, 11, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Glass, J.D.; Boulis, N.M.; Johe, K.; Rutkove, S.B.; Federici, T.; Polak, M.; Kelly, C.; Feldman, E.L. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem Cells 2012, 30, 1144–1151. [Google Scholar] [CrossRef]
- Oh, K.W.; Moon, C.; Kim, H.Y.; Oh, S.I.; Park, J.; Lee, J.H.; Chang, I.Y.; Kim, K.S.; Kim, S.H. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 2015, 4, 590–597. [Google Scholar] [CrossRef]
- Riley, J.; Federici, T.; Polak, M.; Kelly, C.; Glass, J.; Raore, B.; Taub, J.; Kesner, V.; Feldman, E.L.; Boulis, N.M. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: A phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 2012, 71, 405–416, discussion 416. [Google Scholar] [CrossRef]
- Mazzini, L.; Gelati, M.; Profico, D.C.; Sorarù, G.; Ferrari, D.; Copetti, M.; Muzi, G.; Ricciolini, C.; Carletti, S.; Giorgi, C.; et al. Results from Phase I Clinical Trial with Intraspinal Injection of Neural Stem Cells in Amyotrophic Lateral Sclerosis: A Long-Term Outcome. Stem Cells Transl. Med. 2019, 8, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Petrou, P.; Kassis, I.; Yaghmour, N.E.; Ginzberg, A.; Karussis, D. A phase II clinical trial with repeated intrathecal injections of autologous mesenchymal stem cells in patients with amyotrophic lateral sclerosis. Front. Biosci. (Landmark Ed.) 2021, 26, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, H.; Oh, K.W.; Oh, S.I.; Koh, S.H.; Baik, W.; Noh, M.Y.; Kim, K.S.; Kim, S.H. Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: An investigator-initiated trial and in vivo study. Stem Cells 2014, 32, 2724–2731. [Google Scholar] [CrossRef] [PubMed]
- Barczewska, M.; Maksymowicz, S.; Zdolińska-Malinowska, I.; Siwek, T.; Grudniak, M. Umbilical Cord Mesenchymal Stem Cells in Amyotrophic Lateral Sclerosis: An Original Study. Stem Cell Rev. Rep. 2020, 16, 922–932. [Google Scholar] [CrossRef]
- Siwek, T.; Jezierska-Woźniak, K.; Maksymowicz, S.; Barczewska, M.; Sowa, M.; Badowska, W.; Maksymowicz, W. Repeat Administration of Bone Marrow-Derived Mesenchymal Stem Cells for Treatment of Amyotrophic Lateral Sclerosis. Med. Sci. Monit. 2020, 26, e927484. [Google Scholar] [CrossRef] [PubMed]
- Baloh, R.H.; Johnson, J.P.; Avalos, P.; Allred, P.; Svendsen, S.; Gowing, G.; Roxas, K.; Wu, A.; Donahue, B.; Osborne, S.; et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: A phase 1/2a trial. Nat. Med. 2022, 28, 1813–1822. [Google Scholar] [CrossRef] [PubMed]
- Okano, H. A combined stem-cell-gene therapy strategy for ALS. Nat. Med. 2022, 28, 1751–1752. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Yau, W.Y.; O’Connor, E.; Houlden, H. Spinocerebellar ataxia: An update. J. Neurol. 2019, 266, 533–544. [Google Scholar] [CrossRef]
- Bang, O.Y.; Lee, J.S.; Lee, P.H.; Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005, 57, 874–882. [Google Scholar] [CrossRef]
- Dongmei, H.; Jing, L.; Mei, X.; Ling, Z.; Hongmin, Y.; Zhidong, W.; Li, D.; Zikuan, G.; Hengxiang, W. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 2011, 13, 913–917. [Google Scholar] [CrossRef]
- Jin, J.L.; Liu, Z.; Lu, Z.J.; Guan, D.N.; Wang, C.; Chen, Z.B.; Zhang, J.; Zhang, W.Y.; Wu, J.Y.; Xu, Y. Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr. Neurovasc. Res. 2013, 10, 11–20. [Google Scholar] [CrossRef]
- Tsai, Y.A.; Liu, R.S.; Lirng, J.F.; Yang, B.H.; Chang, C.H.; Wang, Y.C.; Wu, Y.S.; Ho, J.H.; Lee, O.K.; Soong, B.W. Treatment of Spinocerebellar Ataxia With Mesenchymal Stem Cells: A Phase I/IIa Clinical Study. Cell Transplant. 2017, 26, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Appelt, P.A.; Comella, K.; de Souza, L.; Luvizutto, G.J. Effect of stem cell treatment on functional recovery of spinocerebellar ataxia: Systematic review and meta-analysis. Cerebellum Ataxias 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Sabitha, K.R.; Shetty, A.K.; Upadhya, D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci. Biobehav. Rev. 2021, 121, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Vera, E.; Studer, L. When rejuvenation is a problem: Challenges of modeling late-onset neurodegenerative disease. Development 2015, 142, 3085–3089. [Google Scholar] [CrossRef] [PubMed]
- Low, P.A.; Gilman, S. Are trials of intravascular infusions of autologous mesenchymal stem cells in patients with multiple system atrophy currently justified, and are they effective? Ann. Neurol. 2012, 72, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.M.; Harting, M.T.; Jimenez, F.; Monzon-Posadas, W.O.; Xue, H.; Savitz, S.I.; Laine, G.A.; Cox, C.S., Jr. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev. 2009, 18, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Guzman, R.; De Los Angeles, A.; Cheshier, S.; Choi, R.; Hoang, S.; Liauw, J.; Schaar, B.; Steinberg, G. Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 2008, 39, 1300–1306. [Google Scholar] [CrossRef]
- Walczak, P.; Zhang, J.; Gilad, A.A.; Kedziorek, D.A.; Ruiz-Cabello, J.; Young, R.G.; Pittenger, M.F.; van Zijl, P.C.; Huang, J.; Bulte, J.W. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 2008, 39, 1569–1574. [Google Scholar] [CrossRef]
- Van Esch, B.; van der Zaag-Loonen, H.; Bruintjes, T.; van Benthem, P.P. Betahistine in Ménière’s Disease or Syndrome: A Systematic Review. Audiol. Neurootol. 2022, 27, 1–33. [Google Scholar] [CrossRef]
- Marsili, L.; Giannini, G.; Cortelli, P.; Colosimo, C. Early recognition and diagnosis of multiple system atrophy: Best practice and emerging concepts. Expert Rev. Neurother 2021, 21, 993–1004. [Google Scholar] [CrossRef]
- Stocchi, F. Therapy for Parkinson’s disease: What is in the pipeline? Neurotherapeutics 2014, 11, 24–33. [Google Scholar] [CrossRef]
- Marsili, L.; Mahajan, A. Clinical milestones in Parkinson’s disease: Past, present, and future. J. Neurol. Sci. 2022, 432, 120082. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Candelise, N.; Baiardi, S.; Capellari, S.; Giannini, G.; Orrù, C.D.; Antelmi, E.; Mammana, A.; Hughson, A.G.; Calandra-Buonaura, G.; et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol. 2020, 140, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Espay, A.J.; Merola, A. Future of Neurologic Examination in Clinical Practice. JAMA Neurol. 2018, 75, 383. [Google Scholar] [CrossRef] [PubMed]
- Daley, G.Q.; Hyun, I.; Apperley, J.F.; Barker, R.A.; Benvenisty, N.; Bredenoord, A.L.; Breuer, C.K.; Caulfield, T.; Cedars, M.I.; Frey-Vasconcells, J.; et al. Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines. Stem Cell Rep. 2016, 6, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, Y.; Tan, P.; Zhang, Y.; Han, M.; Yu, J.; Zhang, X.; Jia, Z.; Wang, D.; Li, Y.; et al. Induction of mouse totipotent stem cells by a defined chemical cocktail. Nature 2022. [Google Scholar] [CrossRef]
- Espay, A.J.; Kalia, L.V.; Gan-Or, Z.; Williams-Gray, C.H.; Bedard, P.L.; Rowe, S.M.; Morgante, F.; Fasano, A.; Stecher, B.; Kauffman, M.A.; et al. Disease modification and biomarker development in Parkinson disease: Revision or reconstruction? Neurology 2020, 94, 481–494. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Espay, A.J. Is Pathology Always the Diagnostic Gold Standard in Neurodegeneration? Mov. Disord. Clin. Pract. 2022, 9, 1152–1153. [Google Scholar] [CrossRef]
- Marsili, L.; Sharma, J.; Espay, A.J.; Migazzi, A.; Abdelghany, E.; Hill, E.J.; Duque, K.R.; Hagen, M.C.; Stephen, C.D.; Kovacs, G.G.; et al. Neither a Novel Tau Proteinopathy nor an Expansion of a Phenotype: Reappraising Clinicopathology-Based Nosology. Int. J. Mol. Sci. 2021, 22, 7292. [Google Scholar] [CrossRef]
- Pitz, V.; Malek, N.; Tobias, E.S.; Grosset, K.A.; Gentleman, S.; Grosset, D.G. The Levodopa Response Varies in Pathologically Confirmed Parkinson’s Disease: A Systematic Review. Mov. Disord. Clin. Pract. 2020, 7, 218–222. [Google Scholar] [CrossRef] [PubMed]
Condition | Study Name/ID | Phase | N of Patients | Intervention | Design | Status | Follow | Outcome |
---|---|---|---|---|---|---|---|---|
Up | ||||||||
PD | Freed et al., 2001 [13] | I | 40 | Putaminal allogenic MSC | Double-blind, placebo (real vs sham surgery), RCT | Published | 12 m | Subjective clinical improvement in younger age, not in elderly. Dystonia and dyskinesias returned in 15% of transplanted patients at 12 m |
PD | Olanow et al., 2003 [14] | I | 34 | Fetal nigral transplantation | Multidose, | Published | 24 m | Primary endpoint not met (UPDRS-III change at 24 m) |
placebo-controlled, double-blind | ||||||||
* PD | Ma et al., 2010 [15] | I | 33 | Putaminal allogenic MSC | Double-blind, placebo (real vs sham surgery), RCT | Published | 48 m | The dependence of clinical outcomes on subject age and sex at 12 m may not persist at 48 m |
PD | Barker et al., 2019 [16] | I | 11 | Putaminal allogenic MSC | Randomized, open label | Published | 36 m | UPDRS decline (preliminary data), no cognitive disability |
PD, MSA, MSA-P | NCT04876326 | NA | 15 | Autologous adipose MSC, Allogenic umbilical cord MSC, both | Randomized, parallel assignments | Recruiting | - | Clinical, eyesight changes, imaging |
PD | NCT03128450 | II/III | 12 | Human SC | Single arm | Unknown | - | UPDRS, motor, non-motor functions, QoL |
PD | NCT03550183 | I | 20 | MSC | Single arm | Enrolling | - | UPDRS, MMSE, HAMD, HAMA |
PD | NCT03684122 | I/II | 10 | Umbilical cord MSC | Randomized, open label | Not recruiting | - | Safety, tractography, blood, CSF biomarkers |
PD | NCT01446614 | I/II | 20 | BM-MSC | Single arm, open label | Unknown | - | Safety |
PDD, AD, APD | NCT03724136 | NA | 100 | IV/IN BM-MSC | Non-randomized, parallel assignment open label | Recruiting | - | MMSE, ADL |
PD | NCT04506073 | II | 45 | MSC | Randomized, parallel assignment | Not recruiting | - | UPDRS, safety, TUG, H&Y, ADL, PDQ-39, QoL, MoCA |
PD | NCT04146519 | II/III | 50 | Autologous MSC | Randomized, parallel assignment | Recruiting | - | Motor, non-motor symptoms, sleep quality, depression |
PD | NCT04928287 | II | 24 | MSC | Randomized placebo-controlled | Not recruiting | - | UPDRS, Safety, Lab values |
PD | NCT04414813 | I | 3 | Amniotic epithelial SC | Single arm, open label | Not recruiting | - | Safety, UPDRS, H&Y scale, PDQ-39 |
PD | NCT04414813 | I | 10 | iPSC | Single arm | Unknown | Safety | |
PD | NCT02452723 | I | 12 | SC | open label, single arm | Unknown | - | Safety, UPDRS |
PD | NCT03119636 | I/II | 50 | ESC-derived neural precursor cells | Non-randomized, open label | Unknown | - | Safety, UPDRS, DATscan, H&Y |
PD | NCT04802733 | I | 12 | ESC | Single arm, open label | Not recruiting | - | Safety, motor function |
Condition | Study Name | Phase | Number of Patients | Intervention | Design | Adverse Events | Follow-Up | Outcome |
---|---|---|---|---|---|---|---|---|
MSA-C | Lee et al., 2012 [26] | I | 33 | IA or IV MSC | 2 arms vs. placebo | Small ischemic lesions in IA | 12 m | Slower decrease in UMSARS |
PSP-RS | Giordano et al., 2014 [27] | I | 25 | IA BM-MSC | Placebo-controlled crossover | Small ischemic lesions | 18 m | Slower decrease in UPDRS; increased FDG-PET uptake |
PSP | Canesi et al., 2016 [28] | I | 5 | IA BM-MSC | 1 arm | NA | 12 m | Stable rating scales |
MSA (n = 4), PSP (n = 5), CBS (n = 2) | Pezzoli et al., 2008 [29] | I | 11 | IV GCSF | 1 arm | None | 3 m | UPDRS not worsened significantly |
Study Name | Phase | Number of Patients | Intervention | Design | Follow-Up | Adverse Events | Outcome |
---|---|---|---|---|---|---|---|
Bachoud-Lévi et al., 1999 [43] | I | 5 | Fetal striatal neural allografts | 1 arm, open label | 12 m | None | Stable motor and cognitive symptoms |
Bachoud-Lévi et al., 2000* [37] | I | 5 | Intrastriatal neuroblasts | 1 arm, open label | 12 m | NA | Slower progression of motor and cognitive symptoms |
Hauser et al., 2002 [39] | I | 7 | Fetal striatal tissue transplantation | 1 arm, open label | 12 m | Subdural hemorrhages (n = 3) | Slower progression in UHDRS |
Bachoud-Lévi et al., 2006 [38] * | I | 5 | Intrastriatal neuroblasts | 1 arm, open label | 72 m | NA | Clinical improvement plateaued at 2 y, then faded off at 4–6 y |
Reuter et al., 2008 [40] | I | 2 | Fetal striatal allografts | 1 arm, open label | 66 m | NA | Improvement in UHDRS, cognition, and mood |
Barker et al., 2012 [42] | I | 5 | Fetal striatal tissue transplantation | 2 arms: control group | 54.6 m (AV.) | None | No difference between groups |
Paganini et al., 2014 [41] | I | 10 | Fetal striatal tissue transplantation | 2 arms: control group | 132 m (Av.) | Not relevant | Lower motor, cognitive progression; better brain metabolism in transplanted pts. |
Study Name | Phase | N of Patients | Intervention | Design | Follow-Up | Adverse Events | Outcome |
---|---|---|---|---|---|---|---|
Deda et al., 2009 [47] | I | 13 | BM-derived hematopoietic SC | 1 arm, open label, control group | 12 m | Infections | Global motor improvement (ENMG) |
Martinez et al., 2010 [46] | I | 10 | CD133+ SC | 1 arm, open label, control group | 12 m | None | Transient increase in ALSFRS-R score (higher better) at 6 m, and improved survival |
Glass et al., 2012 [48] | I | 12 | Intraspinal fetal-derived neural SC | 1 arm, open label | 18 m | None | No evidence of acceleration of disease progression at ALSFRS-R, FVC, HHD scales |
Riley et al., 2012 [50] | I | 12 | Intraspinal neural fetal SC | 1 arm, open label | 18 m | Surgery-related | Intraspinal lumbar microinjection procedure is safe (Safety trial) |
Mazzini et al., 2019 [51] | I | 18 | Intraspinal neural SC | 1 arm, open label | 60 m | None | Transient increase in ALSFRS-R scale at 1 and 4 m |
Barczewsk a et al., 2020 [54] | I | 67 | WJ-MSC | 1 arm, open label, and control group | 6 m | None | Increased survival |
Siwek et al., 2020 [55] | I | 8 | BM-MSC | 1 arm, open label | 6 m | None | Slowing of disease progression (ALSFRS-R score) only in patients with rapid disease course |
Petrou et al.l., 2021 [52] | II | 20 | MSC | 1 arm, open label | 6 m | None | >25% improvement in ALSFRS-R |
Baloh et al., 2022 [56] | I/IIa | 18 | Unilateral spinal injection of human progenitor neural SC transduced with GDNF | 1 arm open label | 12 m | None | Procedure is safe (Safety trial); Graft survival and GDNF production were confirmed in autopsied samples |
Study Name | Phase | Number of Patients | Intervention | Design | Adverse Events | Follow-Up | Outcome |
---|---|---|---|---|---|---|---|
Dongmei et al., 2011 [60] | I | 24 * | Intrathecal injection of UC-MSC | 1 arm, open label | None | 15 m | Better ICARS and ADL scores |
Jin et al., 2013 [61] | I | 16 | IV and intrathecal UC-MSC | 1 arm, open label | None | 12 m | Better BBS and ICARS scores |
Tsai et al., 2017 [62] | I/IIa | 7 ** | IV allogeneic adipose tissue derived MSC | 1 arm, open label | None | 12 m | Marginally better SARA and PET metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsili, L.; Sharma, J.; Outeiro, T.F.; Colosimo, C. Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines 2023, 11, 505. https://doi.org/10.3390/biomedicines11020505
Marsili L, Sharma J, Outeiro TF, Colosimo C. Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines. 2023; 11(2):505. https://doi.org/10.3390/biomedicines11020505
Chicago/Turabian StyleMarsili, Luca, Jennifer Sharma, Tiago Fleming Outeiro, and Carlo Colosimo. 2023. "Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials" Biomedicines 11, no. 2: 505. https://doi.org/10.3390/biomedicines11020505
APA StyleMarsili, L., Sharma, J., Outeiro, T. F., & Colosimo, C. (2023). Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines, 11(2), 505. https://doi.org/10.3390/biomedicines11020505