Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors
Abstract
:1. Introduction
2. Methods Institutional Review Board (IRB)
2.1. Cohort
2.2. Laboratory Methods
2.3. Statistical Analysis
3. Results
Mucoepidermoid Carcinoma
4. Discussion
4.1. Genetic Alterations
4.2. Diagnostic Markers
4.3. Prognostic Markers
4.4. Treatment
Standard Therapy
- i.
- Surgery
- ii.
- Chemotherapy
- iii.
- Monoclonal antibody
- iv.
- Targeted therapies
- 1.
- Sorafenib
- 2.
- Nintedanib
- 3.
- Lapatinib
- 4.
- Vorinostat
- 5.
- ANA-12
- v.
- Immunotherapy
- vi.
- Novel studies
5. Synopsis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANG-2 | Angiopietin-2 |
ABL | Abelson |
BDNF | brain-derived neutropenic factor |
CREB | CAMP Response Element-Binding Protein |
CRTC1 | CREB Regulated Transcription Coactivator 1 |
EGFR | epidermal growth factor receptor |
erbB2 | receptor tyrosine-protein kinase |
HNSCC | squamous cell carcinoma of the head and neck |
FGFR | fibroblast growth factor receptor |
FISH | Fluorescent in situ hybridization |
MECa | Mucoepidermoid carcinoma |
NCI-MATCH | National Cancer Institute—Molecular Analysis for Therapy Choice |
PDGFR | platelet-derived growth factor receptor |
T-DM1 | ado-trastuzumab emtansine |
TrkB | tyrosine receptor kinase B |
VEGF | Vascular endothelial growth factor |
WHO | World Health Organization |
References
- Barnes, L.; Eveson, J.W.; Sidransky, D.; Reichart, P. Pathology and Genetics of Head and Neck Tumours; IARC: Lyon, France, 2005; Volume 9. [Google Scholar]
- Wahlberg, P.; Anderson, H.; Biörklund, A.; Möller, T.; Perfekt, R. Carcinoma of the parotid and submandibular glands—A study of survival in 2465 patients. Oral Oncol. 2002, 38, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, M.; Locati, L.D.; Prott, F.J.; Gatta, G.; McGurk, M.; Licitra, L. Major and minor salivary gland tumors. Crit. Rev. Oncol. Hematol. 2010, 74, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Holst, V.A.; Marshall, C.E.; Moskaluk, C.A.; Frierson, H., Jr. KIT protein expression and analysis of c-kit gene mutation in adenoid cystic carcinoma. Mod. Pathol. Off. J. U.S. Can. Acad. Pathol. Inc. 1999, 12, 956–960. [Google Scholar]
- Vered, M.; Braunstein, E.; Buchner, A. Immunohistochemical study of epidermal growth factor receptor in adenoid cystic carcinoma of salivary gland origin. Head Neck J. Sci. Spec. Head Neck 2002, 24, 632–636. [Google Scholar] [CrossRef]
- Glisson, B.; Colevas, A.D.; Haddad, R.; Krane, J.; El-Naggar, A.; Kies, M.; Costello, R.; Summey, C.; Arquette, M.; Langer, C. HER2 expression in salivary gland carcinomas: Dependence on histological subtype. Clin. Cancer Res. 2004, 10, 944–946. [Google Scholar] [CrossRef]
- Jaehne, M.; Roeser, K.; Jaekel, T.; Schepers, J.D.; Albert, N.; Löning, T. Clinical and immunohistologic typing of salivary duct carcinoma: A report of 50 cases. Cancer 2005, 103, 2526–2533. [Google Scholar] [CrossRef]
- Nasser, S.M.; Faquin, W.C.; Dayal, Y. Expression of androgen, estrogen, and progesterone receptors in salivary gland tumors: Frequent expression of androgen receptor in a subset of malignant salivary gland tumors. Am. J. Clin. Pathol. 2003, 119, 801–806. [Google Scholar] [CrossRef]
- Nardi, V.; Sadow, P.M.; Juric, D.; Zhao, D.; Cosper, A.K.; Bergethon, K.; Scialabba, V.L.; Batten, J.M.; Borger, D.R.; Iafrate, A.J. Detection of Novel Actionable Genetic Changes in Salivary Duct Carcinoma Helps Direct Patient TreatmentMolecular Characterization of Salivary Duct Carcinoma. Clin. Cancer Res. 2013, 19, 480–490. [Google Scholar] [CrossRef]
- Pfeffer, M.R.; Talmi, Y.; Catane, R.; Symon, Z.; Yosepovitch, A.; Levitt, M. A phase II study of Imatinib for advanced adenoid cystic carcinoma of head and neck salivary glands. Oral Oncol. 2007, 43, 33–36. [Google Scholar] [CrossRef]
- Jakob, J.A.; Kies, M.S.; Glisson, B.S.; Kupferman, M.E.; Liu, D.D.; Lee, J.J.; El-Naggar, A.K.; Gonzalez–Angulo, A.M.; Blumenschein, G.R., Jr. Phase II study of gefitinib in patients with advanced salivary gland cancers. Head Neck 2015, 37, 644–649. [Google Scholar] [CrossRef]
- Agulnik, M.; Cohen, E.W.; Cohen, R.B.; Chen, E.X.; Vokes, E.E.; Hotte, S.J.; Winquist, E.; Laurie, S.; Hayes, D.N.; Dancey, J.E. Phase II study of lapatinib in recurrent or metastatic epidermal growth factor receptor and/or erbB2 expressing adenoid cystic carcinoma and non-adenoid cystic carcinoma malignant tumors of the salivary glands. J. Clin. Oncol. 2007, 25, 3978–3984. [Google Scholar] [CrossRef]
- Locati, L.; Bossi, P.; Perrone, F.; Potepan, P.; Crippa, F.; Mariani, L.; Casieri, P.; Orsenigo, M.; Losa, M.; Bergamini, C. Cetuximab in recurrent and/or metastatic salivary gland carcinomas: A phase II study. Oral Oncol. 2009, 45, 574–578. [Google Scholar] [CrossRef]
- Haddad, R.; Colevas, A.D.; Krane, J.F.; Cooper, D.; Glisson, B.; Amrein, P.C.; Weeks, L.; Costello, R.; Posner, M. Herceptin in patients with advanced or metastatic salivary gland carcinomas. A phase II study. Oral Oncol. 2003, 39, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Falchook, G.S.; Lippman, S.M.; Bastida, C.C.; Kurzrock, R. Human epidermal receptor 2–amplified salivary duct carcinoma: Regression with dual human epidermal receptor 2 inhibition and anti–vascular endothelial growth factor combination treatment. Head Neck 2014, 36, E25–E27. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Cohen, P.R.; Kurzrock, R. Salivary duct carcinoma: Targeting the phosphatidylinositol 3-kinase pathway by blocking mammalian target of rapamycin with temsirolimus. J. Clin. Oncol. 2011, 29, e727–e730. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Fichtenholtz, A.; Otto, G.A.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.M.; An, P. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Trabucco, S.E.; Gowen, K.; Maund, S.L.; Sanford, E.; Fabrizio, D.A.; Hall, M.J.; Yakirevich, E.; Gregg, J.P.; Stephens, P.J.; Frampton, G.M. A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability–high cases in 67,000 patient samples. J. Mol. Diagn. 2019, 21, 1053–1066. [Google Scholar] [CrossRef]
- Toper, M.H.; Sarioglu, S. Molecular pathology of salivary gland neoplasms: Diagnostic, prognostic, and predictive perspective. Adv. Anat. Pathol. 2021, 28, 81–93. [Google Scholar] [CrossRef]
- El-Naggar, A.K.; Chan, J.K.; Grandis, J.R. WHO Classification of Head and Neck Tumours. 2017. Available online: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/WHO-Classification-Of-Head-And-Neck-Tumours-2017 (accessed on 25 December 2022).
- Shafique, K.; Zhang, P.J.; Montone, K.T.; Song, S.; Livolsi, V.A.; Baloch, Z. Pathologic grading of mucoepidermoid carcinomas of the salivary gland and its effect on clinicopathologic follow-up: An institutional experience. Hum. Pathol. 2020, 98, 89–97. [Google Scholar] [CrossRef]
- Seethala, R.R.; Stenman, G. Update from the 4th edition of the World Health Organization classification of head and neck tumours: Tumors of the salivary gland. Head Neck Pathol. 2017, 11, 55–67. [Google Scholar] [CrossRef]
- Kato, S.; Elkin, S.K.; Schwaederle, M.; Tomson, B.N.; Helsten, T.; Carter, J.L.; Kurzrock, R. Genomic landscape of salivary gland tumors. Oncotarget 2015, 6, 25631. [Google Scholar] [CrossRef] [PubMed]
- Olivier, T. mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol 2010, 2, a001008. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Tan, M.; Bishop, J.A.; Jones, S.; Sausen, M.; Ha, P.K.; Agrawal, N. Whole-Exome Sequencing of Salivary Gland Mucoepidermoid CarcinomaWhole-Exome Sequencing of Salivary Mucoepidermoid Carcinoma. Clin. Cancer Res. 2017, 23, 283–288. [Google Scholar] [CrossRef]
- Yan, K.; Yesensky, J.; Hasina, R.; Agrawal, N. Genomics of mucoepidermoid and adenoid cystic carcinomas. Laryngoscope Investig. Otolaryngol. 2018, 3, 56–61. [Google Scholar] [CrossRef]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef]
- Loong, H.H.-F.; Du, N.; Cheng, C.; Lin, H.; Guo, J.; Lin, G.; Li, M.; Jiang, T.; Shi, Z.; Cui, Y. KRAS G12C mutations in Asia: A landscape analysis of 11,951 Chinese tumor samples. Transl. Lung Cancer Res. 2020, 9, 1759. [Google Scholar] [CrossRef] [PubMed]
- Sheth, H.; Kumar, P.; Shreenivas, A.; Sambath, J.; Pragya, R.; Madre, C.; Athikari, N.; Khandare, H.; Peshattiwar, V.; Datar, R. Excellent response with alpelisib and bicalutamide for advanced salivary duct carcinoma with PIK3CA mutation and high androgen receptor expression—A case report. JCO Precis. Oncol. 2021, 5. [Google Scholar] [CrossRef]
- Kaye, F.J. Mutation-associated fusion cancer genes in solid tumors. Mol. Cancer Ther. 2009, 8, 1399–1408. [Google Scholar] [CrossRef]
- Stenman, G. Fusion oncogenes and tumor type specificity—Insights from salivary gland tumors. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2005; Volume 15, pp. 224–235. [Google Scholar]
- O’Neill, I.D. t (11; 19) translocation and CRTC1-MAML2 fusion oncogene in mucoepidermoid carcinoma. Oral Oncol. 2009, 45, 2–9. [Google Scholar] [CrossRef]
- Conkright, M.D.; Canettieri, G.; Screaton, R.; Guzman, E.; Miraglia, L.; Hogenesch, J.B.; Montminy, M. TORCs: Transducers of regulated CREB activity. Mol. Cell 2003, 12, 413–423. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Gao, P.; Nakamura, M.; Cao, Y.; Shen, H.; Griffin, J.D. Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J. 2005, 24, 2391–2402. [Google Scholar] [CrossRef]
- Tonon, G.; Modi, S.; Wu, L.; Kubo, A.; Coxon, A.B.; Komiya, T.; O’Neil, K.; Stover, K.; El-Naggar, A.; Griffin, J.D. t (11; 19)(q21; p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat. Genet. 2003, 33, 208–213. [Google Scholar] [CrossRef]
- Shinomiya, H.; Ito, Y.; Kubo, M.; Yonezawa, K.; Otsuki, N.; Iwae, S.; Inagaki, H.; Nibu, K.-I. Expression of amphiregulin in mucoepidermoid carcinoma of the major salivary glands: A molecular and clinicopathological study. Hum. Pathol. 2016, 57, 37–44. [Google Scholar] [CrossRef]
- Okumura, Y.; Miyabe, S.; Nakayama, T.; Fujiyoshi, Y.; Hattori, H.; Shimozato, K.; Inagaki, H. Impact of CRTC1/3–MAML2 fusions on histological classification and prognosis of mucoepidermoid carcinoma. Histopathology 2011, 59, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Miyabe, S.; Okabe, M.; Sakuma, H.; Ijichi, K.; Hasegawa, Y.; Nagatsuka, H.; Shimozato, K.; Inagaki, H. Clinicopathological significance of the CRTC3–MAML2 fusion transcript in mucoepidermoid carcinoma. Mod. Pathol. 2009, 22, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Möller, E.; Stenman, G.; Mandahl, N.; Hamberg, H.; Mölne, L.; Van Den Oord, J.; Brosjö, O.; Mertens, F.; Panagopoulos, I. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2008, 215, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Anzick, S.L.; Chen, W.D.; Park, Y.; Meltzer, P.; Bell, D.; El-Naggar, A.K.; Kaye, F.J. Unfavorable prognosis of CRTC1-MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer 2010, 49, 59–69. [Google Scholar] [CrossRef]
- Jee, K.J.; Persson, M.; Heikinheimo, K.; Passador-Santos, F.; Aro, K.; Knuutila, S.; Odell, E.W.; Mäkitie, A.; Sundelin, K.; Stenman, G. Genomic profiles and CRTC1–MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma. Mod. Pathol. 2013, 26, 213–222. [Google Scholar] [CrossRef]
- García, J.J.; Hunt, J.L.; Weinreb, I.; McHugh, J.B.; Barnes, E.L.; Cieply, K.; Dacic, S.; Seethala, R.R. Fluorescence in situ hybridization for detection of MAML2 rearrangements in oncocytic mucoepidermoid carcinomas: Utility as a diagnostic test. Hum. Pathol. 2011, 42, 2001–2009. [Google Scholar] [CrossRef]
- Bishop, J.A.; Cowan, M.L.; Shum, C.H.; Westra, W.H. MAML2 rearrangements in variant forms of mucoepidermoid carcinoma: Ancillary diagnostic testing for the ciliated and warthin-like variants. Am. J. Surg. Pathol. 2018, 42, 130. [Google Scholar] [CrossRef]
- Tajima, S.; Namiki, I.; Koda, K. A clear cell variant of mucoepidermoid carcinoma harboring CRTC1-MAML2 fusion gene found in buccal mucosa: Report of a case showing a large clear cell component and lacking typical epidermoid cells and intermediate cells. Med. Mol. Morphol. 2017, 50, 117–121. [Google Scholar] [CrossRef]
- Kuma, Y.; Yamada, Y.; Yamamoto, H.; Kohashi, K.; Ito, T.; Furue, M.; Oda, Y. A novel fusion gene CRTC3-MAML2 in hidradenoma: Histopathological significance. Hum. Pathol. 2017, 70, 55–61. [Google Scholar] [CrossRef]
- Behboudi, A.; Enlund, F.; Winnes, M.; Andrén, Y.; Nordkvist, A.; Leivo, I.; Flaberg, E.; Szekely, L.; Mäkitie, A.; Grenman, R. Molecular classification of mucoepidermoid carcinomas—Prognostic significance of the MECT1–MAML2 fusion oncogene. Genes Chromosomes Cancer 2006, 45, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Okabe, M.; Miyabe, S.; Nagatsuka, H.; Terada, A.; Hanai, N.; Yokoi, M.; Shimozato, K.; Eimoto, T.; Nakamura, S.; Nagai, N. MECT1-MAML2 fusion transcript defines a favorable subset of mucoepidermoid carcinoma. Clin. Cancer Res. 2006, 12, 3902–3907. [Google Scholar] [CrossRef] [PubMed]
- Luk, P.P.; Wykes, J.; Selinger, C.I.; Ekmejian, R.; Tay, J.; Gao, K.; Eviston, T.J.; Lum, T.; O’Toole, S.A.; Clark, J.R. Diagnostic and prognostic utility of Mastermind-like 2 (MAML2) gene rearrangement detection by fluorescent in situ hybridization (FISH) in mucoepidermoid carcinoma of the salivary glands. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 530–541. [Google Scholar] [CrossRef]
- Tirado, Y.; Williams, M.D.; Hanna, E.Y.; Kaye, F.J.; Batsakis, J.G.; El-Naggar, A.K. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin’s tumors: Implications for histogenesis and biologic behavior. Genes Chromosomes Cancer 2007, 46, 708–715. [Google Scholar] [CrossRef]
- Birkeland, A.C.; Foltin, S.K.; Michmerhuizen, N.L.; Hoesli, R.C.; Rosko, A.J.; Byrd, S.; Yanik, M.; Nor, J.E.; Bradford, C.R.; Prince, M.E. Correlation of Crtc1/3-Maml2 fusion status, grade and survival in mucoepidermoid carcinoma. Oral Oncol. 2017, 68, 5–8. [Google Scholar] [CrossRef]
- Saade, R.E.; Bell, D.; Garcia, J.; Roberts, D.; Weber, R. Role of CRTC1/MAML2 translocation in the prognosis and clinical outcomes of mucoepidermoid carcinoma. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Chiosea, S.I.; Dacic, S.; Nikiforova, M.N.; Seethala, R.R. Prospective testing of mucoepidermoid carcinoma for the MAML2 translocation: Clinical implications. Laryngoscope 2012, 122, 1690–1694. [Google Scholar] [CrossRef]
- Cipriani, N.A.; Lusardi, J.J.; McElherne, J.; Pearson, A.T.; Olivas, A.D.; Fitzpatrick, C.; Lingen, M.W.; Blair, E.A. Mucoepidermoid carcinoma: A comparison of histologic grading systems and relationship to MAML2 rearrangement and prognosis. Am. J. Surg. Pathol. 2019, 43, 885. [Google Scholar] [CrossRef]
- Yoshimura, T.; Higashi, S.; Yamada, S.; Noguchi, H.; Nomoto, M.; Suzuki, H.; Ishida, T.; Takayama, H.; Hirano, Y.; Yamashita, M. PCP4/PEP19 and HER2 Are Novel Prognostic Markers in Mucoepidermoid Carcinoma of the Salivary Gland. Cancers 2021, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Di Villeneuve, L.; Souza, I.L.; Tolentino, F.D.S.; Ferrarotto, R.; Schvartsman, G. Salivary gland carcinoma: Novel targets to overcome treatment resistance in advanced disease. Front. Oncol. 2020, 10, 580141. [Google Scholar] [CrossRef]
- Yih, W.-Y.; Kratochvil, F.J.; Stewart, J.C. Intraoral minor salivary gland neoplasms: Review of 213 cases. J. Oral Maxillofac. Surg. 2005, 63, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, W.M.; Morris, C.G.; Amdur, R.J.; Werning, J.W.; Villaret, D.B. Radiotherapy alone or combined with surgery for salivary gland carcinoma. Cancer 2005, 103, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.L.; Choi, S.H.; Lee, S.W.; Cho, K.J.; Nam, S.Y.; Kim, S.Y. Carcinomas arising in the submandibular gland: High propensity for systemic failure. J. Surg. Oncol. 2008, 97, 533–537. [Google Scholar] [CrossRef]
- de Souza, L.B.; de Oliveira, L.C.; Nonaka, C.F.W.; Lopes, M.L.D.d.S.; Pinto, L.P.; Queiroz, L.M.G. Immunoexpression of GLUT-1 and angiogenic index in pleomorphic adenomas, adenoid cystic carcinomas, and mucoepidermoid carcinomas of the salivary glands. Eur. Arch. Otorhinolaryngol. 2017, 274, 2549–2556. [Google Scholar] [CrossRef]
- Lagha, A.; Chraiet, N.; Ayadi, M.; Krimi, S.; Allani, B.; Rifi, H.; Raies, H.; Mezlini, A. RETRACTED: Systemic therapy in the management of metastatic or advanced salivary gland cancers. Oral Oncol. 2012, 48, 948–957. [Google Scholar] [CrossRef]
- Limaye, S.A.; Posner, M.R.; Krane, J.F.; Fonfria, M.; Lorch, J.H.; Dillon, D.A.; Shreenivas, A.V.; Tishler, R.B.; Haddad, R.I. Trastuzumab for the treatment of salivary duct carcinoma. Oncologist 2013, 18, 294–300. [Google Scholar] [CrossRef]
- Lewis, A.G.; Tong, T.; Maghami, E. Diagnosis and management of malignant salivary gland tumors of the parotid gland. Otolaryngol. Clin. North Am. 2016, 49, 343–380. [Google Scholar] [CrossRef]
- Sama, S.; Komiya, T.; Guddati, A.K. Advances in the Treatment of Mucoepidermoid Carcinoma. World J. Oncol. 2022, 13, 1–7. [Google Scholar] [CrossRef]
- Young, A.; Okuyemi, O.T. Malignant Salivary Gland Tumors. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Ries, F.; Klastersky, J. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am. J. Kidney Dis. 1986, 8, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Pederson, A.W.; Salama, J.K.; Haraf, D.J.; Witt, M.E.; Stenson, K.M.; Portugal, L.; Seiwert, T.; Villaflor, V.M.; Cohen, E.E.; Vokes, E.E. Adjuvant chemoradiotherapy for locoregionally advanced and high-risk salivary gland malignancies. Head Neck Oncol. 2011, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Canales, J.O.; Morales-Vadillo, R.; Guzmán-Arias, G.; Cava-Vergiú, C.E.; Guerra-Miller, H.; Montes-Gil, J.E. Mucoepidermoid carcinoma of the salivary glands. A retrospective study of 51 cases and review of the literatura. Acta Odontológica Latinoam. 2016, 29, 230–238. [Google Scholar]
- Terauchi, M.; Michi, Y.; Hirai, H.; Sugiyama, K.; Wada, A.; Harada, H.; Yoda, T. Prognostic factors in mucoepidermoid carcinoma of the minor salivary glands: A single-center retrospective study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 209–216. [Google Scholar] [CrossRef]
- Airoldi, M.; Pedani, F.; Succo, G.; Gabriele, A.M.; Ragona, R.; Marchionatti, S.; Bumma, C. Phase II randomized trial comparing vinorelbine versus vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer 2001, 91, 541–547. [Google Scholar] [CrossRef]
- Gilbert, J.; Li, Y.; Pinto, H.A.; Jennings, T.; Kies, M.S.; Silverman, P.; Forastiere, A.A. Phase II trial of taxol in salivary gland malignancies (E1394): A trial of the Eastern Cooperative Oncology Group. Head Neck J. Sci. Spec. Head Neck 2006, 28, 197–204. [Google Scholar] [CrossRef]
- Raguse, J.-D.; Gath, H.J.; Bier, J.; Riess, H.; Oettle, H. Docetaxel (Taxotere) in recurrent high grade mucoepidermoid carcinoma of the major salivary glands. Oral Oncol. Extra 2004, 40, 5–7. [Google Scholar] [CrossRef]
- Nakano, T.; Yamamoto, H.; Hashimoto, K.; Yasumatsu, R.; Nakashima, T.; Oda, Y.; Komune, S. HER2 and EGFR Gene Copy Number Alterations Are Predominant in High-Grade Salivary Mucoepidermoid Carcinoma. Otolaryngol. Head Neck Surg. 2013, 149, P174. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Black, M.J.; Hier, M.; Chauvin, P.; Rochon, L. HER2/neu and Ki-67 as prognostic indicators in mucoepidermoid carcinoma of salivary glands. J. Otolaryngol. 2003, 32. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Alqarni, M.A.; Alnobi, A.; Tarakji, B. Human epidermal growth factor receptor 2 (HER2/neu) in salivary gland carcinomas: A review of literature. J. Clin. Diagn. Res. 2015, 9, ZE04. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, R.; Bowles, D.; Kang, H.; Meric-Bernstam, F.; Hainsworth, J.; Spigel, D.; Bose, R.; Burris, H.; Sweeney, C.; Beattie, M. Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: Results from MyPathway, a phase IIa multiple basket study. Ann. Oncol. 2020, 31, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Egebjerg, K.; Harwood, C.D.; Woller, N.C.; Kristensen, C.A.; Mau-Sørensen, M. Her2 positivity in histological subtypes of salivary gland carcinoma: A systematic review and meta-analysis. Front. Oncol. 2021, 11, 2154. [Google Scholar] [CrossRef] [PubMed]
- Gazola, A.A.; Wong, D.; Chin, R.; Nikitas, J.; Kim, C.J.; Hart, S.D.; St John, M.; Chai-Ho, W. Excellent Response to Fam-Trastuzumab Deruxtecan for Human Epidermal Growth Factor Receptor 2–Positive Salivary Duct Carcinoma With CNS Metastasis: A Case Report. JCO Precis. Oncol. 2022, 6, e2200399. [Google Scholar] [CrossRef]
- Tsurutani, J.; Iwata, H.; Krop, I.; Jänne, P.A.; Takahashi, S.; Park, H.; Redfern, C.; Tamura, K.; Wise-Draper, T.M.; Saito, K. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid TumorsT-DXd in Advanced Solid Tumors. Cancer Discov. 2020, 10, 688–701. [Google Scholar] [CrossRef]
- Jhaveri, K.; Wang, X.; Makker, V.; Luoh, S.-W.; Mitchell, E.; Zwiebel, J.; Sharon, E.; Gray, R.; Li, S.; McShane, L. Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: Results from the NCI-MATCH trial (EAY131) subprotocol Q. Ann. Oncol. 2019, 30, 1821–1830. [Google Scholar] [CrossRef]
- Mohammed, T.; Mangeshkar, S.; Desai, A.; Hegde, U. HER-2 Neu gene: A valuable therapeutic target in metastatic mucoepidermoid carcinoma. J. Oncol. Pharm. Pract. 2021, 27, 1806–1809. [Google Scholar] [CrossRef]
- Cardoso, S.V.; Souza, K.C.N.; Faria, P.R.; Eisenberg, A.L.A.; Dias, F.L.; Loyola, A.M. Assessment of angiogenesis by CD105 antigen in epithelial salivary gland neoplasms with diverse metastatic behavior. BMC Cancer 2009, 9, 391. [Google Scholar] [CrossRef]
- Gleber-Netto, F.O.; Florêncio, T.N.G.; de Sousa, S.F.; Abreu, M.H.N.G.; Mendonça, E.F.; Aguiar, M.C.F. Angiogenesis and lymphangiogenesis in mucoepidermoid carcinoma of minor salivary glands. J. Oral Pathol. Med. 2012, 41, 603–609. [Google Scholar] [CrossRef]
- Demasi, A.P.; Silva, C.A.; Silva, A.D.; Furuse, C.; Soares, A.B.; Altemani, A.; Napimoga, M.H.; Araújo, V.C. Expression of the vascular endothelial growth factor and angiopoietins in mucoepidermoid carcinoma of salivary gland. Head Neck Pathol. 2012, 6, 10–15. [Google Scholar] [CrossRef]
- Locati, L.D.; Bossi, P.; Civelli, E.M.; Perrone, F.; Bergamini, C.; Cortelazzi, B.; Quattrone, P.; Imbimbo, M.; Mirabile, A.; Granata, R. Sorafenib in recurrent and/or metastatic salivary gland carcinomas (RMSGCs): An investigator-initiated phase II trial (NCT01703455). Am. Soc. Clin. Oncol. 2013, 31, 6020. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.J.; Lee, J.Y.; Lee, S.H.; Sun, J.M.; Park, K.; An, H.J.; Cho, J.Y.; Kang, E.J.; Lee, H.Y. Clinical trial of nintedanib in patients with recurrent or metastatic salivary gland cancer of the head and neck: A multicenter phase 2 study (Korean Cancer Study Group HN14-01). Cancer 2017, 123, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Lujan, B.; Hakim, S.; Moyano, S.; Nadal, A.; Caballero, M.; Diaz, A.; Valera, A.; Carrera, M.; Cardesa, A.; Alos, L. Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br. J. Cancer 2010, 103, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Pouloudi, D.; Manou, M.; Sarantis, P.; Tsoukalas, N.; Tsourouflis, G.; Dana, E.; Karamouzis, M.V.; Klijanienko, J.; Theocharis, S. Clinical Significance of Histone Deacetylase (HDAC)-1,-2,-4 and-6 Expression in Salivary Gland Tumors. Diagnostics 2021, 11, 517. [Google Scholar] [CrossRef]
- Wagner, V.P.; Martins, M.D.; Martins, M.A.; Almeida, L.O.; Warner, K.A.; Nör, J.E.; Squarize, C.H.; Castilho, R.M. Targeting histone deacetylase and NFκB signaling as a novel therapy for Mucoepidermoid Carcinomas. Sci. Rep. 2018, 8, 2065. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Yoon, J.H. Histone deacetylase 7 silencing induces apoptosis and autophagy in salivary mucoepidermoid carcinoma cells. J. Oral Pathol. Med. 2017, 46, 276–283. [Google Scholar] [CrossRef]
- de Moraes, J.K.; Wagner, V.P.; Fonseca, F.P.; Vargas, P.A.; de Farias, C.B.; Roesler, R.; Martins, M.D. Uncovering the role of brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in head and neck malignancies. J. Oral Pathol. Med. 2018, 47, 221–227. [Google Scholar] [CrossRef]
- McHugh, C.H.; Roberts, D.B.; El-Naggar, A.K.; Hanna, E.Y.; Garden, A.S.; Kies, M.S.; Weber, R.S.; Kupferman, M.E. Prognostic factors in mucoepidermoid carcinoma of the salivary glands. Cancer 2012, 118, 3928–3936. [Google Scholar] [CrossRef]
- Wagner, V.P.; Martins, M.D.; Amoura, E.; Zanella, V.G.; Roesler, R.; de Farias, C.B.; Bingle, C.D.; Vargas, P.A.; Bingle, L. TrkB-targeted therapy for mucoepidermoid carcinoma. Biomedicines 2020, 8, 531. [Google Scholar] [CrossRef]
- Klempner, S.J.; Fabrizio, D.; Bane, S.; Reinhart, M.; Peoples, T.; Ali, S.M.; Sokol, E.S.; Frampton, G.; Schrock, A.B.; Anhorn, R. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: A review of current evidence. Oncologist 2020, 25, e147–e159. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Even, C.; Delord, J.-P.; Price, K.A.; Nakagawa, K.; Oh, D.-Y.; Burge, M.; Chung, H.C.; Doi, T.; Fakih, M.; Takahashi, S. Evaluation of pembrolizumab monotherapy in patients with salivary gland carcinoma in the phase 2 KEYNOTE-158 study. Oral Oncol. 2021, 118, 9. [Google Scholar] [CrossRef]
- Cohen, R.B.; Delord, J.-P.; Doi, T.; Piha-Paul, S.A.; Liu, S.V.; Gilbert, J.; Algazi, A.P.; Damian, S.; Hong, R.-L.; Le Tourneau, C. Pembrolizumab for the treatment of advanced salivary gland carcinoma: Findings of the phase 1b KEYNOTE-028 study. Am. J. Clin. Oncol. 2018, 41, 1083. [Google Scholar] [CrossRef]
- Pharaon, R.R.; Gernon, T.; Chang, S.; Vora, N.; Villaflor, V.M.; Bell, D.; Afkhami, M.; Amini, A.; Sampath, S.; Kang, R.; et al. Prolonged response to checkpoint inhibitor therapy in two metastatic mucoepidermoid salivary gland carcinoma cases: A research report. Mol. Case Stud. 2022, 8, a006189. [Google Scholar]
- Chen, Z.; Chen, J.; Gu, Y.; Hu, C.; Li, J.; Lin, S.; Shen, H.; Cao, C.; Gao, R.; Li, J. Aberrantly activated AREG–EGFR signaling is required for the growth and survival of CRTC1–MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene 2014, 33, 3869–3877. [Google Scholar] [CrossRef]
- De Block, K.; Vander Poorten, V.; Dormaar, T.; Nuyts, S.; Hauben, E.; Floris, G.; Deroose, C.M.; Schöffski, P.; Clement, P.M. Metastatic HER-2-positive salivary gland carcinoma treated with trastuzumab and a taxane: A series of six patients. Acta Clin. Belg. 2016, 71, 383–388. [Google Scholar] [CrossRef]
- Villa, J.C.; Chiu, D.; Brandes, A.H.; Escorcia, F.E.; Villa, C.H.; Maguire, W.F.; Hu, C.-J.; de Stanchina, E.; Simon, M.C.; Sisodia, S.S. Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep. 2014, 8, 1077–1092. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Johns, M.E.; Cantrell, R.W. Chemotherapy for salivary gland cancer. Otolaryngol. Head Neck Surg. 1986, 95, 165–170. [Google Scholar] [CrossRef]
- Pires, F.R.; De Almeida, O.P.; De Araújo, V.C.; Kowalski, L.P. Prognostic factors in head and neck mucoepidermoid carcinoma. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 174–180. [Google Scholar] [CrossRef]
- Grisanti, S.; Amoroso, V.; Buglione, M.; Rosati, A.; Gatta, R.; Pizzocaro, C.; Ferrari, V.D.; Marini, G. Cetuximab in the treatment of metastatic mucoepidermoid carcinoma of the salivary glands: A case report and review of literature. J. Med. Case Reports 2008, 2, 320. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, M.; Andreola, S.; Sirizzotti, G.; Cantu, G. Mucoepidermoid carcinoma of the salivary glands: Clinicopathologic review of 108 patients treated at the National Cancer Institute of Milan. Ann. Surg. Oncol. 2002, 9, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Ma, D.; Sun, K.; Li, T.; Zhang, Y. Myoepithelial carcinoma of the salivary glands: Behavior and management. Chin. Med. J. 2003, 116, 163–165. [Google Scholar] [PubMed]
- Ross, J.; Gay, L.; Wang, K.; Vergilio, J.; Suh, J.; Ramkissoon, S.; Somerset, H.; Johnson, J.; Russell, J.; Ali, S. Comprehensive genomic profiles of metastatic and relapsed salivary gland carcinomas are associated with tumor type and reveal new routes to targeted therapies. Ann. Oncol. 2017, 28, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
Muco-Epidermoid Carcinoma | |
Number of cases | 118 |
Median age (range) | 64 (16–89+) |
Gender (M/F) | 58%/42% |
GA per tumor | 4.88 |
Cell Cycle Regulatory GA | |
TP53 | 40.70% |
CDKN2A | 52.50% |
CDKN2B | 30.50% |
CDK4 | 1.70% |
CCND1 | 3.40% |
RB1 | 3.40% |
Chromosomal and Chromatin Related GA | |
TERT | 15.00% |
ARID1A | 2.50% |
xRAS-RAF Pathway GA | |
KRAS All | 5.10% |
KRAS G12C | 2.50% |
HRAS | 14.40% |
BRAF | 1.70% |
MTOR Pathway GA | |
PTEN | 7.60% |
PIK3CA | 16.90% |
NF1 | 4.20% |
TSC2 | 1.00% |
DNA Damage Response Associated GA | |
BRCA1 | 1.70% |
BRCA2 | 5.90% |
ATM | 4.20% |
PALB2 | 0.80% |
BAP1 | 18.60% |
Receptor Tyrosine Kinase Targetable GA | |
ERBB2 (amp/SV) | 5.9%/0% |
EGFR (amp/SV) | 0.8%/0% |
FGFR1 | 5.10% |
FGFR2 | 0% |
RET | 0% |
ETV6lNTRK3 fusion | 0% |
MET | 0% |
KIT | 0.80% |
Transcription Factor Genomic Alterations | |
NFIB-MYB Fusion | 0% |
ESR1 | 0% |
AR | 0% |
MYC | 1.70% |
EWSR | 0% |
Emerging Potentially Genomic Alterations | |
NOTCH1 | 4.20% |
NOTCH2 | 7.60% |
MTAP | 13.70% |
(F1CDx only) | (51 cases) |
Immuno-Oncology Drug Biomarkers | |
MSI high frequency | 0% |
(100 cases) | |
CD274 (PD-L1) amp | 0% |
STK11 inactivating GA | 3.40% |
MDM2 amp | 3.40% |
Median TMB | 2.6 |
TMB > 10% | 16.90% |
TMB > 20% | 12.70% |
PD-L1 low expression (≤49%) | 38.40% |
(26 cases) | |
PD-L1 high expression (>50%) | 4.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bou Zerdan, M.; Kumar, P.A.; Zaccarini, D.; Ross, J.; Huang, R.; Sivapiragasam, A. Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines 2023, 11, 519. https://doi.org/10.3390/biomedicines11020519
Bou Zerdan M, Kumar PA, Zaccarini D, Ross J, Huang R, Sivapiragasam A. Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines. 2023; 11(2):519. https://doi.org/10.3390/biomedicines11020519
Chicago/Turabian StyleBou Zerdan, Maroun, Prashanth Ashok Kumar, Daniel Zaccarini, Jeffrey Ross, Richard Huang, and Abirami Sivapiragasam. 2023. "Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors" Biomedicines 11, no. 2: 519. https://doi.org/10.3390/biomedicines11020519
APA StyleBou Zerdan, M., Kumar, P. A., Zaccarini, D., Ross, J., Huang, R., & Sivapiragasam, A. (2023). Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines, 11(2), 519. https://doi.org/10.3390/biomedicines11020519