Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing
Abstract
:1. Introduction
1.1. Phases of Wound Healing
1.2. Complications in Diabetic Wounds
1.2.1. Impaired Neuropeptide Wound Healing
1.2.2. Vascular Dysfunction
1.2.3. Immune System
1.3. Approaches towards Dealing with Complications in Diabetic Wounds
2. Diabetic Foot Ulceration and Delayed Wound Healing/Mode of Impaired Diabetic Wound Healing
2.1. Platelets
2.2. Neutrophils
2.3. Monocytes/Macrophages
2.4. Endothelial Cells
2.5. Fibroblasts and Keratinocytes
3. Epigenetics of Wound Healing and Its Response
4. Epigenetic Mechanisms and Adaptations in the Diabetic Wound
4.1. Modification of DNA
4.1.1. DNA Methylation
4.1.2. DNA Hydroxyl Methylation
4.2. Histone Adaptations
4.2.1. Histone Lysine Methylation and De-Methylation
4.2.2. Histone Arginine Methylation/De-Methylation
4.2.3. Acetylation/De-Cetylation of Histone
4.2.4. Other Modifications of Histone
4.3. ATP-Reliant Chromatin Remodeling
5. Molecular Targets for Promoting Diabetic Wound Healing
5.1. Immunomodulators
5.1.1. Lactoferrin
5.1.2. Thymosin β 4
5.1.3. Chemokines in Wound Healing
5.2. Neuropeptides
5.2.1. Substance P (SP)
5.2.2. Neuropeptide Y (NPY)
5.3. Growth Factors
5.3.1. Vascular Endothelial Growth Factor (VEGF)
5.3.2. Fibroblast Growth Factor (FGF)
5.3.3. Nerve Growth Factor
5.3.4. Connective Tissue Growth Factor (CTGF/CCN2)
5.3.5. Hepatocyte Growth Factor (HGF)
5.4. Other Therapeutic Agents
5.4.1. Homeobox Genes
5.4.2. Treprostinil
5.4.3. Nucleic Acid
5.4.4. Antioxidants
6. Pharmacological Approach towards Inflammation
6.1. Phyto-Modulators
6.1.1. Aloe Vera
6.1.2. Honey
6.1.3. Curcumin
6.1.4. Picroliv
6.1.5. Arnebin-1
6.2. Clinical Drugs
6.2.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
6.2.2. Cyclooxygenase (COX) Inhibitors
6.3. Biological Therapies for Inflammation
6.3.1. Receptor and Receptor Recombinant Cytokine Receptors-Ig Fusion Proteins
6.3.2. Cytokine-Neutralising mAbs
6.4. MicroRNAs
6.4.1. miRNA Biogenesis
6.4.2. Diverse miRNA in Wound Healing
6.4.3. Treatment Strategies via Regulating miRNA
Phase | miRNAs | Targets | Functions | Reference |
---|---|---|---|---|
Inflammation | miR-146a | TRAF6, IRAK1 | inhabit excessive inflammatory reactions in keratinocytes and macrophages | [106] |
miR-155 | BCL6, SHIP1 | control development and activity of immune cells | [104] | |
miR-132 | HBEGF | Increases anti-inflammatory transmitter acetylcholine level reduces chemokine release by keratinocytes | [93] | |
miR-21 | PTEN, PDCD4 | Suppress LPS-induced inflammatory responses | [84] | |
miR-125b | TNF-α | divergence in regulation | [107] | |
miR-223 | Mef2c | Polarization regulation | [108] | |
Proliferation | miR-21 | TIMP3, TIAM1 | Promotes migration of keratinocytes and fibroblasts | [105] |
miR-132 | HBEGF, RASA1 | Induce keratinocyte growth and neovascularization | [93] | |
miR-31 | EMP1 | Promotes propagation and immigration of keratinocytes | [84] | |
miR-99 groups | IGF1R, AKT1,mTOR | Silences keratinocytes migration and proliferation | [101] | |
Remodeling | miR-210 | E2F3, EFNA3 | Suppresses keratinocytes proliferation promotes angiogenesis | [99] |
miR-29a | Collagen I and II | Improves collagen expression | [109] | |
miR-29b | COL1, COL2, COL3A1 | Develop ECM remodeling | [110] | |
miR-29c | SMADs, β-Catenin | Progress remodeling of * ECM | [111] | |
miR-192 | E-Catherin | Enhance * ECM modification | [112] |
6.5. Bone-Marrow-Derived Mesenchymal Stem Cells (BMMSCs)
6.6. Medical Maggot Therapy
6.7. Fluorescence Bio Modulation
6.8. Hyperbaric Oxygen Healing
7. Novel Treatment Interventions and Drug Delivery Mechanisms
7.1. Lipoidal and Polymeric Nanocarriers Formulation for Efficient Skin Penetration
7.2. Prevention of Malicious Stress-Induced Wound Healing
7.3. Noteworthy Mode of Topical Gene Therapy
7.4. Stem Cells Initiate Fibrotic-Free Treatments
7.5. Biomaterials-Based Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindley, L.E.; Stojadinovic, O.; Pastar, I.; Tomic-Canic, M. Biology and biomarkers for wound healing. Plast. Reconstr. Surg. 2016, 138, 18S–28S. [Google Scholar] [CrossRef]
- Yannas, I.V.; Tzeranis, D.S.; So, P.T.C. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen. 2017, 25, 177. [Google Scholar] [CrossRef] [Green Version]
- Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin Acute Wound Healing: A Comprehensive Review. Int. J. Inflamm. 2019, 2019, 3706315. [Google Scholar] [CrossRef]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 2019, 112, 108615. [Google Scholar] [CrossRef]
- Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 2019, 109, 2561–2572. [Google Scholar] [CrossRef]
- Richard, C.; Wadowski, M.; Goruk, S.; Cameron, L.; Sharma, A.M.; Field, C.J. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res. Care 2017, 5, e000379. [Google Scholar] [CrossRef] [Green Version]
- Morey, M.; O’Gaora, P.; Pandit, A.; Hélary, C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLoS ONE 2019, 14, e0220577. [Google Scholar] [CrossRef] [Green Version]
- Barros, J.F.; Waclawiak, I.; Pecli, C.; Borges, P.A.; Georgii, J.L.; Ramos-Junior, E.S.; Canetti, C.; Courau, T.; Klatzmann, D.; Kunkel, S.L.; et al. Role of Chemokine Receptor CCR4 and Regulatory T Cells in Wound Healing of Diabetic Mice. J. Investig. Dermatol. 2019, 139, 1161–1170. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Xu, Z.; Hu, Y.; Liu, Y.; Liu, W.; Hu, X.; Ye, T.; Hong, J.; Zhu, H.; et al. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio predict mortality in patients with diabetic foot ulcers undergoing amputations. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 821–829. [Google Scholar] [CrossRef]
- Brem, H.; Tomic-canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Investig. 2007, 117, 1219–1222. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Morsy, R.; El-Zawawy, N.A.; Fareed, M.F.; Bedaiwy, M.Y. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): A novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomedicine 2017, 12, 6059–6073. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.; Tecilazich, F.; Kafanas, A.; Doupis, J.; Gnardellis, C.; Leal, E.; Tellechea, A.; Pradhan, L.; Lyons, T.E.; Giurini, J.M.; et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes 2012, 61, 2937–2947. [Google Scholar] [CrossRef] [Green Version]
- Kubisz, P. Endothelial and platelet markers in diabetes mellitus type 2. World J. Diabetes 2015, 6, 423. [Google Scholar] [CrossRef]
- Bucala, R.; Tracey, K.J.; Cerami, A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Investig. 1991, 87, 432. [Google Scholar] [CrossRef] [Green Version]
- Karima, M.; Kantarci, A.; Ohira, T.; Hasturk, H.; Jones, V.L.; Nam, B.-H.; Malabanan, A.; Trackman, P.C.; Badwey, J.A.; Van Dyke, T.E. Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: Association with periodontitis. J. Leukoc. Biol. 2005, 78, 862–870. [Google Scholar] [CrossRef] [Green Version]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coggeshall, M.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Veves, A.; Akbari, C.M.; Primavera, J.; Donaghue, V.M.; Zacharoulis, D.; Chrzan, J.S.; Degirolami, U.; Logerfo, F.W.; Freeman, R. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 1998, 47, 457–463. [Google Scholar] [CrossRef]
- Usui, M.L.; Mansbridge, J.N.; Carter, W.G.; Fujita, M.; Olerud, J.E. Keratinocyte Migration, Proliferation, and Differentiation in Chronic Ulcers From Patients With Diabetes and Normal Wounds. J. Histochem. Cytochem. 2008, 56, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.J.; Melvin, W.J.; Gallagher, K. Macrophage-mediated inflammation in diabetic wound repair. Semin. Cell Dev. Biol. 2021, 119, 111–118. [Google Scholar] [CrossRef]
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef]
- Ishii, M.; Wen, H.; Corsa, C.A.S.; Liu, T.; Coelho, A.L.; Allen, R.M.; Carson, W.F., IV; Cavassani, K.A.; Li, X.; Lukacs, N.W.; et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 2009, 114, 3244–3254. [Google Scholar] [CrossRef] [Green Version]
- Schaller, M.; Ito, T.; Allen, R.M.; Kroetz, D.; Kittan, N.; Ptaschinski, C.; Cavassani, K.; Carson, W.F.; Godessart, N.; Grembecka, J.; et al. Epigenetic regulation of IL-12-dependent T cell proliferation. J. Leukoc. Biol. 2015, 98, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Kruidenier, L.; Chung, C.-W.; Cheng, Z.; Liddle, J.; Che, K.; Joberty, G.; Bantscheff, M.; Bountra, C.; Bridges, A.; Diallo, H.; et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 2012, 488, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R.; Pugh, J.E. DNA modification mechanisms and gene activity during development. Science 1975, 187, 226–232. Available online: https://pubmed.ncbi.nlm.nih.gov/1111098/ (accessed on 15 June 2022). [CrossRef]
- Bestor, T.H.; Ingram, V.M. Two DNA methyltransferases from murine erythroleukemia cells: Purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 1983, 80, 5559. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Ren, M.; Yang, C.; Hu, Y.X.; Ran, J.M.; Yan, L. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp. Dermatol. 2012, 21, 123–129. [Google Scholar] [CrossRef]
- Thomas, J.O.; Kornberg, R.D. Cleavable cross-links in the analysis of histone-histone associations. FEBS Lett. 1975, 58, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Strahl, B.D.; David Allis, C. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef]
- Jenuwein, T.; Allis, C.D. Translating the histone code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Morey, L.; Helin, K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 2010, 35, 323–332. [Google Scholar] [CrossRef]
- Na, J.; Yoon Shin, J.; Jeong, H.; Youn Lee, J.; Joon Kim, B.; Sun Kim, W.; Young Yune, T.; Ju, B.-G. JMJD3 and NF-κB-dependent activation of Notch1 gene is required for keratinocyte migration during skin wound healing. Sci. Rep. 2017, 7, 6494. [Google Scholar] [CrossRef] [Green Version]
- Gregory, G.D.; Vakoc, C.R.; Rozovskaia, T.; Zheng, X.; Patel, S.; Nakamura, T.; Canaani, E.; Blobel, G.A. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol. Cell. Biol. 2007, 27, 8466–8479. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ye, Z.; Shi, C.; Sun, L.; Han, M.; Zhuang, Y.; Xu, T.; Zhao, S.; Wu, X. The Histone Methyltransferase Ash1l is Required for Epidermal Homeostasis in Mice. Sci. Rep. 2017, 7, 45401. [Google Scholar] [CrossRef] [Green Version]
- Arda, O.; Göksügür, N.; Tüzün, Y. Basic histological structure and functions of facial skin. Clin. Dermatol. 2014, 32, 3–13. [Google Scholar] [CrossRef]
- Local, A.; Huang, H.; Albuquerque, C.P.; Singh, N.; Lee, A.Y.; Wang, W.; Wang, C.; Hsia, J.E.; Shiau, A.K.; Ge, K.; et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 2018, 50, 73–82. [Google Scholar] [CrossRef]
- Kim, D.-I.; Park, M.J.; Lim, S.K.; Choi, J.H.; Kim, J.C.; Han, H.J.; Kundu, T.K.; Park, J., Il; Yoon, K.C.; Park, S.W.; et al. High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: Role in diabetic retinopathy. Arch. Biochem. Biophys. 2014, 560, 36–43. [Google Scholar] [CrossRef]
- Porta, M.; Amione, C.; Barutta, F.; Fornengo, P.; Merlo, S.; Gruden, G.; Albano, L.; Ciccarelli, M.; Ungaro, P.; Durazzo, M.; et al. The co-activator-associated arginine methyltransferase 1 (CARM1) gene is overexpressed in type 2 diabetes. Endocrine 2019, 63, 284–292. [Google Scholar] [CrossRef]
- Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics 2012, 7, 1098. [Google Scholar] [CrossRef] [Green Version]
- Vignali, M.; Hassan, A.H.; Neely, K.E.; Workman, J.L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 2000, 20, 1899–1910. [Google Scholar] [CrossRef] [Green Version]
- Georgel, P.T.; Tsukiyama, T.; Wu, C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 1997, 16, 4717–4726. [Google Scholar] [CrossRef] [Green Version]
- Ghia, J.E.; Blennerhassett, P.; Kumar-Ondiveeran, H.; Verdu, E.F.; Collins, S.M. The Vagus Nerve: A Tonic Inhibitory Influence Associated with Inflammatory Bowel Disease in a Murine Model. Gastroenterology 2006, 131, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Legrand, D.; Elass, E.; Carpentier, M.; Mazurier, J. Lactoferrin: A modulator of immune and inflammatory responses. Cell. Mol. Life Sci. 2005, 62, 2549–2559. [Google Scholar] [CrossRef]
- Sosne, G.; Szliter, E.A.; Barrett, R.; Kernacki, K.A.; Kleinman, H.; Hazlett, L.D. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp. Eye Res. 2002, 74, 293–299. [Google Scholar] [CrossRef]
- Huff, T.; Otto, A.M.; Müller, C.S.G.; Meier, M.; Hannappel, E. Thymosin beta4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. FASEB J. 2002, 16, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Malinda, K.M.; Goldstein, A.L.; Kueinman, H.K. Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J. 1997, 11, 474–481. [Google Scholar] [CrossRef]
- Philp, D.; Scheremeta, B.; Sibliss, K.; Zhou, M.; Fine, E.L.; Nguyen, M.; Wahl, L.; Hoffman, M.P.; Kleinman, H.K. Thymosin beta4 promotes matrix metalloproteinase expression during wound repair. J. Cell. Physiol. 2006, 208, 195–200. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [Green Version]
- Druszczyńska, M.; Godkowicz, M.; Kulesza, J.; Wawrocki, S.; Fol, M. Cytokine Receptors—Regulators of Antimycobacterial Immune Response. Int. J. Mol. Sci. 2022, 23, 1112. [Google Scholar] [CrossRef]
- Baggiolini, M.; Dewald, B.; Moser, B. Human chemokines: An update. Annu. Rev. Immunol. 1997, 15, 675–705. [Google Scholar] [CrossRef]
- Gibran, N.S.; Ferguson, M.; Heimbach, D.M.; Isik, F.F. Monocyte chemoattractant protein-1 mRNA expression in the human burn wound. J. Surg. Res. 1997, 70, 1–6. [Google Scholar] [CrossRef]
- Charafeddine, R.A.; Makdisi, J.; Schairer, D.; O’Rourke, B.P.; Diaz-Valencia, J.D.; Chouake, J.; Kutner, A.; Krausz, A.; Adler, B.; Nacharaju, P.; et al. Fidgetin-Like 2: A Microtubule-Based Regulator of Wound Healing. J. Investig. Dermatol. 2015, 135, 2309–2318. [Google Scholar] [CrossRef] [Green Version]
- Quattrini, C.; Jeziorska, M.; Malik, R.A. Small fiber neuropathy in diabetes: Clinical consequence and assessment. Int. J. Low. Extrem. Wounds 2004, 3, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Andreou, I.; Sun, X.; Stone, P.H.; Edelman, E.R.; Feinberg, M.W. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol. Med. 2015, 21, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; Giani, T.; Lieberman, S.M.; Kremer, C.; Hong, S.; Indolfi, G.; Schulert, G.; Cron, R.Q.; Mannion, M.L.; Lapidus, S.; et al. Alagille Syndrome and Chronic Arthritis: An International Case Series. J. Pediatr. 2020, 218, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Corral, C.J.; Siddiqui, A.; Wu, L.; Farrell, C.L.; Lyons, D.; Mustoe, T.A. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch. Surg. 1999, 134, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, S.; Hubner, G.; Breier, G.; Longaker, M.T.; Greenhalgh, D.G.; Werner, S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J. Biol. Chem. 1995, 270, 12607–12613. [Google Scholar] [CrossRef] [Green Version]
- Presta, M.; Dell’Era, P.; Mitola, S.; Moroni, E.; Ronca, R.; Rusnati, M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005, 16, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Crean, J.K.; Furlong, F.; Mitchell, D.; Mcardle, E.; Godson, C.; Martin, F.; Crean, J.K.; Furlong, F.; Mitchell, D.; Mcardle, E.; et al. Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27 Kip-1. FASEB J. 2006, 20, 1712–1714. [Google Scholar] [CrossRef]
- Nayeri, F.; Xu, J.; Abdiu, A.; Nayeri, T.; Aili, D.; Liedberg, B.; Carlsson, U. Autocrine production of biologically active hepatocyte growth factor (HGF) by injured human skin. J. Dermatol. Sci. 2006, 43, 49–56. [Google Scholar] [CrossRef]
- Mace, K.A.; Hansen, S.L.; Myers, C.; Young, D.M.; Boudreau, N. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J. Cell Sci. 2005, 118, 2567–2577. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Gao, Y.; Zhao, X.; Guo, C.; Wang, X.; Yang, Y.; Han, C.; Zhao, L.; Qin, Y.; Liu, L.; et al. HOXD3 was negatively regulated by YY1 recruiting HDAC1 to suppress progression of hepatocellular carcinoma cells via ITGA2 pathway. Cell Prolif. 2020, 53, e12835. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.H.; Kay, J.; Duryea, J.; Lu, B.; Bolster, M.B.; Yood, R.A.; Han, R.; Ball, S.; Coleman, C.; Lo, E.; et al. Effects of Teriparatide on Joint Erosions in Rheumatoid Arthritis: A Randomized Controlled Trial. Arthritis Rheumatol. 2017, 69, 1741–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lespagnol, E.; Dauchet, L.; Pawlak-Chaouch, M.; Balestra, C.; Berthoin, S.; Feelisch, M.; Roustit, M.; Boissière, J.; Fontaine, P.; Heyman, E. Early endothelial dysfunction in type 1 diabetes is accompanied by an impairment of vascular smooth muscle function: A meta-analysis. Front. Endocrinol. 2020, 11, 203. [Google Scholar] [CrossRef]
- Dormandy, J.; Belcher, G.; Broos, P.; Eikelboom, B.; Laszlo, G.; Konrad, P.; Moggi, L.; Mueller, U. Prospective study of 713 below-knee amputations for ischaemia and the effect of a prostacyclin analogue on healing. Br. J. Surg. 1994, 81, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Horikawa, N.; Komuro, Y.; Hara, Y. Effect of topical application of a stable prostacyclin analogue, SM-10902 on wound healing in diabetic mice. Eur. J. Pharmacol. 1996, 302, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, L.; Gao, C. Design of gene-activated matrix for the repair of skin and cartilage. Polym. J. 2014, 46, 476–482. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Jafari, S.; Khosroushahi, A.Y. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res. Lett. 2014, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Liang, Y.; Shi, M.; Guo, B. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 2020, 385, 123464. [Google Scholar] [CrossRef]
- Wang, J.M.; Tao, J.; Chen, D.D.; Cai, J.J.; Irani, K.; Wang, Q.; Yuan, H.; Chen, A.F. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Anjum, S.; Joy, J.; Gupta, B. Polysaccharide-Aloe vera Bioactive Hydrogels as Wound Care System. In Cellulose-Based Superabsorbent Hydrogels; Springer: Cham, Switzerland, 2019; pp. 1473–1490. [Google Scholar] [CrossRef]
- Minden-Birkenmaier, B.A.; Cherukuri, K.; Smith, R.A.; Radic, M.Z.; Bowlin, G.L. Manuka Honey Modulates the Inflammatory Behavior of a dHL-60 Neutrophil Model under the Cytotoxic Limit. Int. J. Biomater. 2019, 2019, 6132581. [Google Scholar] [CrossRef] [Green Version]
- Minden-Birkenmaier, B.A.; Bowlin, G.L. Honey-Based Templates in Wound Healing and Tissue Engineering. Bioengineering 2018, 5, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchitta, M.; Maugeri, A.; Favara, G.; San Lio, R.M.; Evola, G.; Agodi, A.; Basile, G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int. J. Mol. Sci. 2019, 20, 1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.K.; Yu, J.J.; Li, Y.M.; Wei, L.N.; Yu, Y.; Feng, Y.H.; Wang, X. A Picrorhiza kurroa Derivative, Picroliv, Attenuates the Development of Dextran-Sulfate-Sodium-Induced Colitis in Mice. Mediat. Inflamm. 2012, 2012, 751629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, G.S.; Singh, A.K.; Banaudha, K.K.; Gaddipati, J.P.; Patnaik, G.K.; Maheshwari, R.K. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing. J. Investig. Dermatol. 1999, 113, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Vaishnavi, P.R.; Gaikwad, N.; Dhaneria, S. Assessment of nonsteroidal anti-inflammatory drug use pattern using World Health Organization indicators: A cross-sectional study in a tertiary care teaching hospital of Chhattisgarh. Indian J. Pharmacol. 2017, 49, 445–450. [Google Scholar] [CrossRef]
- Zhao-Fleming, H.; Hand, A.; Zhang, K.; Polak, R.; Northcut, A.; Jacob, D.; Dissanaike, S.; Rumbaugh, K.P. Effect of non-steroidal anti-inflammatory drugs on post-surgical complications against the backdrop of the opioid crisis. Burn. Trauma 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, S.; Koga, T.; Ohba, M.; Okuno, T.; Koike, M.; Murakami, A.; Matsuda, A.; Yokomizo, T. Non-steroidal anti-inflammatory drug delays corneal wound healing by reducing production of 12-hydroxyheptadecatrienoic acid, a ligand for leukotriene B4 receptor 2. Sci. Rep. 2017, 7, 13267. [Google Scholar] [CrossRef] [Green Version]
- Lisboa, F.A.; Bradley, M.J.; Hueman, M.T.; Schobel, S.A.; Gaucher, B.J.; Styrmisdottir, E.L.; Potter, B.K.; Forsberg, J.A.; Elster, E.A. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds. Surgery 2017, 161, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Ringelstein, M.; Ayzenberg, I.; Harmel, J.; Lauenstein, A.S.; Lensch, E.; Stögbauer, F.; Hellwig, K.; Ellrichmann, G.; Stettner, M.; Chan, A.; et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 2015, 72, 756–763. [Google Scholar] [CrossRef]
- Gordon, K.B.; Duffin, K.C.; Bissonnette, R.; Prinz, J.C.; Wasfi, Y.; Li, S.; Shen, Y.-K.; Szapary, P.; Randazzo, B.; Reich, K. A Phase 2 Trial of Guselkumab versus Adalimumab for Plaque Psoriasis. N. Engl. J. Med. 2015, 373, 136–144. [Google Scholar] [CrossRef]
- Yiu, Z.Z.N.; Exton, L.S.; Jabbar-Lopez, Z.; Mohd Mustapa, M.F.; Samarasekera, E.J.; Burden, A.D.; Murphy, R.; Owen, C.M.; Parslew, R.; Venning, V.; et al. Risk of Serious Infections in Patients with Psoriasis on Biologic Therapies: A Systematic Review and Meta-Analysis. J. Investig. Dermatol. 2016, 136, 1584–1591. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Calderon, C.; Marciniak, S.J.; Bouman-Thio, E.; Szapary, P.; Yang, T.Y.; Schantz, A.; Davis, H.M.; Zhou, H.; Xu, Z. First-in-human study to assess guselkumab (anti-IL-23 mAb) pharmacokinetics/safety in healthy subjects and patients with moderate-to-severe psoriasis. Eur. J. Clin. Pharmacol. 2016, 72, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, X.; Wang, A.; Meisgen, F.; Pivarcsi, A.; Sonkoly, E.; Ståhle, M.; Landén, N.X. MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration. J. Investig. Dermatol. 2015, 135, 1676–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, H.R.; Schoenfeld, L.W.; Ruby, J.G.; Auyeung, V.C.; Spies, N.; Baek, D.; Johnston, W.K.; Russ, C.; Luo, S.; Babiarz, J.E.; et al. Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 2010, 24, 992–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jiang, Y.; Ji, X.; Li, J.; Zhai, X. MiR-132 enhances proliferation and migration of HaCaT cells by targeting TIMP3. RSC Adv. 2019, 9, 21125–21133. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, L.; Andersen, N.; LoGerfo, F.; Veves, A. Molecular Targets for Promoting Wound Healing in Diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov. 2008, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642. [Google Scholar] [CrossRef] [Green Version]
- Finnegan, E.F.; Pasquinelli, A.E. MicroRNA biogenesis: Regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Hammond, S.M.; Boettcher, S.; Caudy, A.A.; Kobayashi, R.; Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001, 293, 1146–1150. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shushan, D.; Markovsky, E.; Gibori, H.; Tiram, G.; Scomparin, A.; Satchi-Fainaro, R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv. Transl. Res. 2014, 4, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, A.; Liu, X.; Meisgen, F.; Grünler, J.; Botusan, I.R.; Narayanan, S.; Erikci, E.; Li, X.; Blomqvist, L.; et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J. Clin. Investig. 2015, 125, 3008–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Lai, U.H.; Zhu, L.; Singh, A.; Ahmed, M.; Forsyth, N.R. Reactive oxygen species formation in the brain at different oxygen levels: The role of hypoxia inducible factors. Front. Cell Dev. Biol. 2018, 6, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 2014, 6, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Essandoh, K.; Li, Y.; Huo, J.; Fan, G.C. MiRNA-Mediated Macrophage Polarization and Its Potential Role in the Regulation of Inflammatory Response. Shock 2016, 46, 122. [Google Scholar] [CrossRef]
- Morille, M.; Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J.P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008, 29, 3477–3496. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.F.; Ding, M.; Liu, D.W.; Liu, Y.; Mao, Y.G.; Peng, Y. MicroRNA profiling in cutaneous wounds of diabetic rats. Genet. Mol. Res. 2015, 14, 9614–9625. [Google Scholar] [CrossRef]
- Ghatak, S.; Li, J.; Chan, Y.C.; Gnyawali, S.C.; Steen, E.; Yung, B.C.; Khanna, S.; Roy, S.; Lee, R.J.; Sen, C.K. AntihypoxamiR functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing. Nanomedicine 2016, 12, 1827–1831. [Google Scholar] [CrossRef] [Green Version]
- Rashighi, M.; Harris, J.E. MicroRNA miR-27b Rescues Bone Marrow–Derived Angiogenic Cell Function and Accelerates Wound Healing in Type 2 Diabetes Mellitus. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Jin, Y.; Tymen, S.D.; Chen, D.; Fang, Z.J.; Zhao, Y.; Dragas, D.; Dai, Y.; Marucha, P.T.; Zhou, X. MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing. PLoS ONE 2013, 8, e64434. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, X.; Wang, B.; Yung, B.C.; Lee, L.J.; Ghoshal, K.; Lee, R.J. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma. J. Control. Release 2013, 168, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Icli, B.; Wara, A.K.M.; Moslehi, J.; Sun, X.; Plovie, E.; Cahill, M.; Marchini, J.F.; Schissler, A.; Padera, R.F.; Shi, J.; et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ. Res. 2013, 113, 1231–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.L.; Liu, J.Q.; Bai, X.Z.; Fan, L.; Han, F.; Jia, W.B.; Su, L.L.; Shi, J.H.; Tang, C.W.; Hu, D.H. Acute downregulation of miR-155 at wound sites leads to a reduced fibrosis through attenuating inflammatory response. Biochem. Biophys. Res. Commun. 2014, 453, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Madhyastha, R.; Madhyastha, H.; Nakajima, Y.; Omura, S.; Maruyama, M. MicroRNA signature in diabetic wound healing: Promotive role of miR-21 in fibroblast migration. Int. Wound J. 2012, 9, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Meisgen, F.; Xu Landén, N.; Bouez, C.; Zuccolo, M.; Gueniche, A.; Ståhle, M.; Sonkoly, E.; Breton, L.; Pivarcsi, A. Activation of Toll-like receptors alters the microRNA expression profile of keratinocytes. Exp. Dermatol. 2014, 23, 281–283. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, A.A.; So, A.Y.-L.; Sinha, N.; Gibson, W.S.J.; Taganov, K.D.; O’Connell, R.M.; Baltimore, D. MicroRNA-125b potentiates macrophage activation. J. Immunol. 2011, 187, 5062–5068. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, H.; Liu, Y.; Song, Y.; Lai, L.; Han, Q.; Cao, X.; Wang, Q. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3. PLoS ONE 2012, 7, e42971. [Google Scholar] [CrossRef] [Green Version]
- Ciechomska, M.; O’reilly, S.; Suwara, M.; Bogunia-Kubik, K.; Van Laar, J.M. MiR-29a Reduces TIMP-1 Production by Dermal Fibroblasts via Targeting TGF-b Activated Kinase 1 Binding Protein 1, Implications for Systemic Sclerosis. PLoS ONE 2014, 9, e115596. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hassan, M.Q.; Jafferji, M.; Aqeilan, R.I.; Garzon, R.; Croce, C.M.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem. 2009, 284, 15676–15684. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; Dimaio, J.M.; Haris Naseem, R.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13027–13032. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Ding, J.; Zhang, Y.; Chang, F.; Wang, J.; Gao, Z.; Zhuang, X.; Chen, X. Activated macrophage-targeted dextran-methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J. Mater. Chem. B 2016, 4, 2102–2113. [Google Scholar] [CrossRef]
- Yan, L.; Chu, J.; Li, M.; Wang, X.; Zong, J.; Zhang, X.; Song, M.; Wang, S. Pharmacological Properties of the Medical Maggot: A Novel Therapy Overview. Evid.-Based Complement. Altern. Med. 2018, 2018, 4934890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Keshri, G.K.; Yadav, A.; Gola, S.; Chauhan, S.; Salhan, A.K.; Bala Singh, S. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J. Biophotonics 2015, 8, 489–501. [Google Scholar] [CrossRef]
- Romanelli, M.; Piaggesi, A.; Scapagnini, G.; Dini, V.; Janowska, A.; Iacopi, E.; Scarpa, C.; Fauverghe, S.; Bassetto, F. Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: The EUREKA trial. J. Wound Care 2018, 27, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, T.; Enomoto, M.; Yamamoto, N.; Tsuji, K.; Horie, M.; Muneta, T.; Sekiya, I.; Okawa, A.; Yagishita, K. Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation. Sci. Rep. 2018, 8, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momin, M.; Kurhade, S.; Khanekar, P.; Mhatre, S. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing. J. Wound Care 2016, 25, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Braun, L.R.; Lamel, S.A.; Richmond, N.A.; Kirsner, R.S. Topical Timolol for Recalcitrant Wounds. JAMA Dermatol. 2013, 149, 1400–1402. [Google Scholar] [CrossRef] [Green Version]
- Houdek, M.T.; Wyles, C.C.; Stalboerger, P.G.; Terzic, A.; Behfar, A.; Moran, S.L. Collagen and Fractionated Platelet-Rich Plasma Scaffold for Dermal Regeneration. Plast. Reconstr. Surg. 2016, 137, 1498–1506. [Google Scholar] [CrossRef]
- Das, S.; Baker, A.B. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front. Bioeng. Biotechnol. 2016, 4, 82. [Google Scholar] [CrossRef] [Green Version]
Cell Growth Factors | Function in the Healing of a Wound |
---|---|
VEGF | Formation of blood vessels in granulation tissue. |
FGFs | The abundance of epithelial cells and fibroblasts, matrix deposition, and angiogenesis. |
KGF’s | keratinocytes migration and its proliferation |
EGF | Differentiation, immigration, proliferation, development of granulation tissue, adhesion of keratinocytes |
G-CSF | Encourage the fabrication of neutrophils, increases the utility of neutrophils and monocytes, and stimulates keratinocytes proliferation. |
PDGF | Myogenic for smooth muscle cells and endothelial cells Chemo-attractant for neutrophils and Fibroblasts, Collagen metabolism and proliferation of fibroblast. |
GM-CSF | Facilitates the propagation of epidermal cells. |
TGF-α | Stimulates accumulation of fibroblast and epithelial cells, and development of granulation tissue. |
TGF-β | Myogenic for smooth muscle cells and fibroblasts, macrophages Chemotactic, excite metabolism of collagen, and angiogenesis (indirect). |
IL-1 | Neutrophil chemotaxis, a proliferation of fibroblast. |
TNF | Fibroblast proliferation. |
Monocytes (macrophages) | Phagocytosis and wiping out invading bacteria, clearance of debris, and necrotic tissue, abundance of inflammatory mediators consisting of cytokines, stimulate the division of fibroblast, angiogenesis, and collagen synthesis. Time of action—8 h. |
HGF | Neo-vascularization, Re epithelization. |
IGF-1 | Stimulates proliferation of Fibroblast. Synthesis of sulfated proteoglycans and collagen |
Serotonin | Vasoconstriction |
PGE2 | Disaggregation of platelet, pain, fever. |
Leukotrienes | Chemo taxis and increased vascular permeability. |
Lipoxins | Weaken inflammatory response. |
Interferon | Maturation of macrophage along with the release of Nitric Oxide. |
Platelets | Activates coagulation cascade and involves in thrombus formation. Releases mediators of inflammation. Time of action—seconds |
Neutrophils | Phagocytosis of invading bacteria, debridement of wounds along with the release of proteolytic enzymes. Time of action—Peak at 24 h |
Lymphocytes | Unknown mode of action. Produce cytokines and regulate the wound healing proliferative phase. Time of action—72–120 h |
Fibroblasts | Fabricate components of the extracellular matrix, synthesis of collagen, and granulation tissue. Time of action—120 h |
Molecular Event | Action | Molecular Mechanism | Activity in Wound Healing |
---|---|---|---|
Ca2+ | Transcription-self-governing diffusible damage signals | Tissue injury causes a prompt rise in Ca2+ intracellular, that modify gene transcription via a protein kinase C and Ca2+/calmodulin-dependent protein kinase (CaMK) | Elevation of actin polymerization and actomyosin contractility of fibroblast and keratinocytes Increased actin dynamics Improved expression of wound response genes |
H2O2 | Transcription-independent diffusible damage signals | Concerned in the establishment of chemotactic signals that vigilant the immune system to damage | Modulation of hemostasis, inflammation, proliferation, angiogenesis, epithelialization, and remodeling phases of wound healing |
ATP | Transcription-autonomous diffusible damage signals | A mechanical injury arises a rapid and substantial ATP liberation by dented cells into the extracellular space | Stimulation of the wound healing cascade |
miR-146 | miR | commencement—epigenetic signal | NFκB Activation directive of innate immune responses |
miR-221 and 222 | miR | Trigger—epigenetic signal | Angiogenesis |
miR-125b | miR | Reticence—epigenetic signal | suppress regulation of TNFα inflammatory genes |
miR-210 | miR | Activation—epigenetic signal | embarrassment/activation of keratinocytes propagation |
miR-146a | miR | Stimulate—epigenetic signal | Produce ECM proteins in chronic diabetes complications |
miR-27b | miR | provoke—epigenetic signal | Activation of cell proliferation and adhesion Inhibition of oxidative stress responses Improvement of new vessel formation |
miR-203 | miR | Activation—epigenetic signal | Activation of keratinocytes propagation |
Metabolic memory | DNA methylation | Epigenetic signal | Diabetic foot fibroblasts and ulcers had lesser global DNA methylation contrast by non-diabetic foot fibroblasts |
Polycomb Group (PcG) class of genes | Chromatin gene repression | Epigenetic signal | Downregulation of threerepressive PcG proteins (Eed, Ezh2, and Suz12) thru wound healing |
Trithorax group (trxG) class of genes | Chromatin gene activation | Epigenetic signal | Up-regulation of twoactivating trxG members (Jmjd3 and Utx) within wound healing |
Quantitative trait loci (QTL) | Controlled intuitivetrait | entity unpredictability of the gene expression | Gene expression dissent stimuli the rate and instance of wound healing effectiveness |
Fibronectin (pFN and cFN) | Gene polymorphisms | Alternative interweaving | The splicing based on type of cell, its function, and the phases of development |
Poly (ADP-ribose) polymerase (PARP) enzymes | PARylation | PARPs amended nicotinamide commencing NAD+ and affix the enduring ADP-ribose entities to suitable protein acceptors. DNA reparation active PARP enzymes | Accelerate wound closure and keratinocytes migration. Prompt synthesis of inflammatory mediators and the wound repairing activity of keratinocytes |
MtROS | Mitochondrial Reactive Oxygen Species | Fabricate Reactive oxygen species (ROS) in mitochondria | Promote actin-centered epithelial wound healing Anti-bacterial action Regulate migration of endothelial cells |
Drug/Biologics as Therapeutic | Nature/Structural Composition of Protein | Brand/Company | Location |
---|---|---|---|
Etanercept | Recombinant fusion protein: Human Tumor necrosis factor receptors 2: ImmunoglobulinG1-Fc | Enbrel® | China |
Rilonacept | Recombinant IL-1R accessory protein (E. coli-derived) | Arcalyst® (Regenron Pharmaceuticals) | Eastview, Mount Pleasant, New York, USA |
Adalimumab | Human ImmunoglobulinG1κ | Humira® | Puerto Rico |
BI655066 | Human mAb anti-IL-12/IL-23 p40 ImmunoglobulinG1 | (Boehringer Ingelheim Pharmaceuticals) | Ingelheim, Germany |
Golimumab | Human ImmunoglobulinG1κ | Simponi® (Janssen Medica) | Belgium |
Certolizumab Pegol | Pegylated-Fab’ of humanized ImmunoglobulinG1κ | Cimzia® (Union Chimique Belge) | Belgium |
Erelzi | TNFR2-IgG1 Etanercept bio similar | etanercept-szzs® (Sandoz) | Holzkirchen, in Germany |
CTP-13 | Humanized Immunoglobulin G1κ Infliximab biosimilar | Remsima® (Infliximab) Inflectra® (Hospira) | United States, America |
Brenzys (SB4) | TNFR2- Immunoglobulin G1 Etanercept biosimilar | (Samsung Bioepis; Merck and Biogen) | United states of America |
BOW015 | Human IgG1κ Infliximab bio similar | Infimab® (Reliance Life Sciences) | India |
SB2 | Human ImmunoglobulinG1κ Infliximab bio similar | (Samsung Bioepis; Merck and Biogen) | United states of America |
Adalimumab-atto | Human ImmunoglobulinG1κ Adalimumab bio similar | Amjevita® (AMGEN) | America |
Adalimumab (India) | Human IgG1κ Adalimumab bio similar | Adfrar® (Torrent Pharma) | United states of America |
SB5 | Human IgG1κ Adalimumab bio similar | (Samsung Bioepis; Merck and Biogen) | United states of America |
Infliximab | Humanized (chimeric) ImmunoglobulinG1κ | Remicade® | Beerse, Belgium, |
Anakinra | Recombinant human IL-1Rα (protein derived from E. coli; non-mAb) | Kineret® (AMGEN/ Biovitrum) | America |
Gerokizumab | Humanized mouse anti-human IL-1β ImmunoglobulinG2κ (Fab) | EyeguardTM (XOMA Corp.) | Emeryville, California, |
Canakinumab | Humanized anti-IL-1β ImmunoglobulinG1κ | IlarisTM (ACZ885) (Novartis) | Switzerland |
Sirukumab | Human mAb ImmunoglobulinG1κ | (GlaxoSmithKline) | London, England |
Tocilizumab | Humanized mouse anti-IL-6R ImmunoglobulinG1κ | Actemra® (Hoffmann–La Roche) | Basel, Switzerland. |
Brodalumab | Human anti-IL-17R IgG2κ | (KHK4827, AMG827) (Valeant Pharmaceutical & Kyowa Hakko Kirin) | Tokyo, Japan |
Sarilumab | Human anti-IL-6R IgG1κ | VelocImmune® (Sanofi and Regeneron) | New York, USA |
Tildrakizumab | Humanized mAb Anti-IL-23 p19 IgG1κ | (Merck; and now Sun Pharma) | India |
Ixekizumab | Humanized anti-IL-17A and17A/F ImmunoglobulinG4 | Taltz® (LY2439821 Eli Lily & Co.) | America |
Secukinumab | Human anti-I7A ImmunoglobulinG1κ | Cosentyx® (Novartis Pharma AG) | Switzerland |
Ustekinumab | Humanized mAb anti-IL-12/IL-23 p40 ImmunoglobulinG1κ | Stelara® Jassen-Cilag andCentocor | Beerse, Belgium |
Briakinuman | Human mAb anti-IL-12/IL-23 p40 ImmunoglobulinG1κ | ABT-874 (Abbott) | Ravenswood, Chicago |
Guselkumab | Humanised mAb Anti-IL-23 p19 ImmunoglobulinG1κ | (Janssen Research & Development) | Netherlands. |
AMG139 | Human mAb p40 IgG1κ anti-IL-12/IL-23 | (Amgen) | Oaks, California |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.K.; Dwivedi, S.D.; Yadav, K.; Shah, K.; Chauhan, N.S.; Pradhan, M.; Singh, M.R.; Singh, D. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines 2023, 11, 613. https://doi.org/10.3390/biomedicines11020613
Singh SK, Dwivedi SD, Yadav K, Shah K, Chauhan NS, Pradhan M, Singh MR, Singh D. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines. 2023; 11(2):613. https://doi.org/10.3390/biomedicines11020613
Chicago/Turabian StyleSingh, Suraj Kumar, Shradha Devi Dwivedi, Krishna Yadav, Kamal Shah, Nagendra Singh Chauhan, Madhulika Pradhan, Manju Rawat Singh, and Deependra Singh. 2023. "Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing" Biomedicines 11, no. 2: 613. https://doi.org/10.3390/biomedicines11020613
APA StyleSingh, S. K., Dwivedi, S. D., Yadav, K., Shah, K., Chauhan, N. S., Pradhan, M., Singh, M. R., & Singh, D. (2023). Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines, 11(2), 613. https://doi.org/10.3390/biomedicines11020613