Sensitivity Analysis for Survival Prognostic Prediction with Gene Selection: A Copula Method for Dependent Censoring
Abstract
:1. Introduction
2. Backgrounds
2.1. Classical Gene Selection Method
2.2. Copula-Based Gene Selection Method
2.3. Prognostic Prediction Method
3. Proposed Methods
3.1. Sensitivity Analysis via the Copula-Graphic Estimator
3.2. Examples of Parametric Copulas
4. Software and Web Application
5. Results
5.1. Lung Cancer Data
5.2. Sensitivity Analysis via the Web App
5.3. Comparison with the 16-Gene Pedictor Developed by Chen et al. [6]
6. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Witten, D.M.; Tibshirani, R. Survival analysis with high-dimensional covariates. Stat. Methods Med. Res. 2010, 19, 29–51. [Google Scholar] [CrossRef]
- Newcombe, P.J.; Ali, H.R.; Blows, F.M.; Provenzano, E.; Pharoah, P.D.; Caldas, C.M.; Richardson, S.T. Weibull regression with Bayesian variable selection to identify prognostic tumour markers of breast cancer survival. Stat. Methods Med. Res. 2017, 26, 414–436. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, J.; Liu, M.; Zhu, Q.; Li, Q.; Xie, C.; Han, C.; Wang, Y.; Gao, M.; Liu, J. Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma. Aging 2020, 12, 13502. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A. Big Data Analytics in Oncology with R; CRC Press: New York, NY, USA, 2022. [Google Scholar]
- Matsui, S. Statistical issues in clinical development and validation of genomic signatures. In Design and Analysis of Clinical Trials for Predictive Medicine; Matsui, S., Buyse, M., Simon, R., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 207–226. [Google Scholar]
- Chen, H.-Y.; Yu, S.-L.; Chen, C.-H.; Chang, G.-C.; Chen, C.-Y.; Yuan, A.; Cheng, C.-L.; Wang, C.-H.; Terng, H.-J.; Kao, S.-F.; et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 2007, 356, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Beer, D.G.; Kardia, S.L.; Huang, C.-C.; Giordano, T.J.; Levin, A.M.; Misek, D.E.; Lin, L.; Chen, G.; Gharib, T.G.; Thomas, D.G.; et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 2002, 8, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Emura, T.; Chen, Y.-H.; Chen, H.-Y. Survival prediction based on compound covariate under Cox proportional hazard models. PLoS ONE 2012, 7, e47627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emura, T.; Matsui, S.; Chen, H.-Y. compound.Cox: Univariate feature selection and compound covariate for predicting survival. Comput. Methods Programs Biomed. 2019, 168, 21–37. [Google Scholar] [CrossRef]
- Jenssen, T.K.; Kuo, W.P.; Stokke, T.; Hovig, E. Association between gene expressions in breast cancer and patient survival. Hum. Genet. 2002, 111, 411–420. [Google Scholar]
- Van’T Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Hu, X.J.; Wang, R. Evaluating Association between Two Event Times with Observations Subject to Informative Censoring. J. Am. Stat. Assoc. 2021. [Google Scholar] [CrossRef]
- Sotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B.; et al. Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. J. Natl. Cancer Inst. 2006, 98, 262–272. [Google Scholar] [CrossRef]
- Haibe-Kains, B.; Desmedt, C.; Loi, S.; Culhane, A.; Bontempi, G.; Quackenbush, J.; Sotiriou, C. A Three-Gene Model to Robustly Identify Breast Cancer Molecular Subtypes. J. Natl. Cancer Inst. 2012, 104, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Xiang, L. Correlation-based joint feature screening for semi-competing risks outcomes with application to breast cancer data. Stat. Methods Med. Res. 2021, 30, 2428–2446. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Niu, Y.; Zhao, W.; Yan, C.; Qi, Y. Construction and validation of a prognostic model for lung adenocarcinoma based on endoplasmic reticulum stress-related genes. Sci. Rep. 2022, 12, 19857. [Google Scholar] [CrossRef]
- Ding, H.; Shi, L.; Chen, Z.; Lu, Y.; Tian, Z.; Xiao, H.; Deng, X.; Chen, P.; Zhang, Y. Construction and evaluation of a prognostic risk model of tumor metastasis-related genes in patients with non-small cell lung cancer. BMC Med. Genom. 2022, 15, 187. [Google Scholar] [CrossRef]
- Neto, C.; Brito, M.; Lopes, V.; Peixoto, H.; Abelha, A.; Machado, J. Application of Data Mining for the Prediction of Mortality and Occurrence of Complications for Gastric Cancer Patients. Entropy 2019, 21, 1163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lin, Y.; Zhuang, M.; Zhu, L.; Dai, Y.; Lin, M. Screening and identification of CNIH4 gene associated with cell proliferation in gastric cancer based on a large-scale CRISPR-Cas9 screening database DepMap. Gene 2023, 850, 146961. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Tajima, A.; Yahata, T.; Kodama, S.; Fujiwara, H.; Suzuki, M.; Onishi, Y.; Hatae, M.; Sueyoshi, K.; Fujiwara, H.; et al. Gene Expression Profile for Predicting Survival in Advanced-Stage Serous Ovarian Cancer across Two Independent Datasets. PLoS ONE 2010, 5, e9615. [Google Scholar] [CrossRef] [PubMed]
- Emura, T.; Nakatochi, M.; Matsui, S.; Michimae, H.; Rondeau, V. Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model. Stat. Methods Med. Res. 2018, 27, 2842–2858. [Google Scholar] [CrossRef]
- Waldron, L.; Haibe-Kains, B.; Culhane, A.C.; Riester, M.; Ding, J.; Wang, X.V.; Ahmadifar, M.; Tyekucheva, S.; Bernau, C.; Risch, T.; et al. Comparative Meta-analysis of Prognostic Gene Signatures for Late-Stage Ovarian Cancer. J. Natl. Cancer Inst. 2014, 106, 049. [Google Scholar] [CrossRef] [Green Version]
- Emura, T.; Nakatochi, M.; Murotani, K.; Rondeau, V. A joint frailty-copula model between tumour progression and death for meta-analysis. Stat. Methods Med Res. 2017, 26, 2649–2666. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Jiang, W.; Yue, Q.; Ye, R.; Li, Y.; Hong, J.; Zhang, M. Radiomic model to predict the expression of PD-1 and overall survival of patients with ovarian cancer. Int. Immunopharmacol. 2022, 113, 109335. [Google Scholar] [CrossRef]
- Arora, C.; Kaur, D.; Lathwal, A.; Raghava, G.P. Risk prediction in cutaneous melanoma patients from their clinico-pathological features: Superiority of clinical data over gene expression data. Heliyon 2020, 6, e04811. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Dong, C.; Shi, H.; Yan, Z.; Zhang, J.; Liu, J. Constructing and validating of m7G-related genes prognostic signature for hepatocellular carcinoma and immune infiltration: Potential biomarkers for predicting the overall survival. J. Gastrointest. Oncol. 2022, 13, 3169–3182. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Li, S.; Li, L.; Li, L.; Li, D.; Guo, H.; Gao, D.; Liu, S.; Ruan, C.; et al. Prognostic prediction and immune infiltration analysis based on ferroptosis and EMT state in hepatocellular carcinoma. Front. Immunol. 2022, 13, 1076045. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Guo, Y.; Chen, Z.; Zhang, F.; Huang, J.; Qin, Y. A prognostic risk prediction model based on ferroptosis-related long non-coding RNAs in bladder cancer: A bulk RNA-seq research and scRNA-seq validation. Medicine 2022, 101, e32558. [Google Scholar] [CrossRef]
- Zhou, L.; Cheng, Q.; Hu, Y.; Tan, H.; Li, X.; Wu, S.; Zhou, T.; Zhou, J. Cuproptosis-related LncRNAs are potential prognostic and immune response markers for patients with HNSCC via the integration of bioinformatics analysis and experimental validation. Front. Oncol. 2022, 12, 1030802. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Z.; Yuan, Z.; Teh, B.M.; Zhou, C.; Shen, Y. Identification of a cuproptosis-related lncRNA signature to predict the prognosis and immune landscape of head and neck squamous cell carcinoma. Front. Oncol. 2022, 12, 983956. [Google Scholar] [CrossRef]
- He, Y.; Lin, Z.; Tan, S. Identification of prognosis-related gene features in low-grade glioma based on ssGSEA. Front. Oncol. 2022, 12, 1056623. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Guglielmelli, P. Molecular prognostication in Ph-negative MPNs in 2022. Hematology 2022, 1, 225–234. [Google Scholar] [CrossRef]
- Li, Z.; Xia, Z.; Yu, Y.; Cai, L.; Jian, W.; Wang, T.; Xue, W.; Wang, X.; Wang, B.; Zhang, P.; et al. A pyroptosis-associated signature plays a role in prognosis prediction in clear cell renal cell carcinoma. BMC Med. Genom. 2022, 15, 204. [Google Scholar] [CrossRef]
- Choi, J.; Oh, I.; Seo, S.; Ahn, J. G2Vec: Distributed gene representations for identification of cancer prognostic genes. Sci. Rep. 2018, 8, 13729. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Oh, I.; Ahn, J. An Improved Method for Prediction of Cancer Prognosis by Network Learning. Genes 2018, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Staplin, N.D.; Kimber, A.C.; Collett, D.; Roderick, P.J. Dependent censoring in piecewise exponential survival models. Stat. Methods Med. Res. 2015, 24, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Emura, T.; Chen, Y.H. Analysis of Survival Data with Dependent Censoring: Copula-Based Approaches; Springer: Singapore, 2018. [Google Scholar]
- Schneider, S.; Demarqui, F.; Colosimo, E.A.; Mayrink, V.D. An approach to model clustered survival data with dependent censoring. Biom. J. 2020, 62, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Demarqui, F.; de Freitas Costa, E. Free-ranging dogs’ lifetime estimated by an approach for long-term survival data with dependent censoring. Environ. Ecol. Stat. 2002, 29, 869–911. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Vishwakarma, G.K.; Banerjee, S.; Ong, S.H. A modified risk detection approach of biomarkers by frailty effect on multiple time to event data. J. Comput. Appl. Math. 2023, 419, 114681. [Google Scholar] [CrossRef]
- Emura, T.; Chen, Y.-H. Gene selection for survival data under dependent censoring: A copula-based approach. Stat. Methods Med. Res. 2016, 25, 2840–2857. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H. Semiparametric marginal regression analysis for dependent competing risks under an assumed copula. J. R. Stat. Soc. Ser. B 2010, 72, 235–251. [Google Scholar] [CrossRef]
- Braekers, R.; Veraverbeke, N. A copula-graphic estimator for the conditional survival function under dependent censoring. Can. J. Stat. 2005, 33, 429–447. [Google Scholar] [CrossRef] [Green Version]
- Emura, T.; Michimae, H. A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environ. Ecol. Stat. 2017, 24, 151–173. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Connors, M.H.; Brodaty, H. Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood. Stat. Med. 2018, 37, 2238–2251. [Google Scholar] [CrossRef] [PubMed]
- Czado, C.; Van Keilegom, I. Dependent censoring based on parametric copulas. Biometrika 2022, asac067. [Google Scholar] [CrossRef]
- Moradian, H.; Larocque, D.; Bellavance, F. Survival forests for data with dependent censoring. Stat. Methods Med. Res. 2019, 28, 445–461. [Google Scholar] [CrossRef]
- Deresa, N.W.; Van Keilegom, I.; Antonio, K. Copula-based inference for bivariate survival data with left truncation and dependent censoring. Insur. Math. Econ. 2022, 107, 1–21. [Google Scholar] [CrossRef]
- Huang, X.W.; Wang, W.; Emura, T. A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Jpn. J. Stat. Data Sci. 2021, 4, 917–951. [Google Scholar] [CrossRef]
- Lo, S.M.; Wilke, R.A. A copula model for dependent competing risks. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2010, 59, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Klein, J.P. Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 1995, 82, 127–138. [Google Scholar] [CrossRef]
- Rivest, L.P.; Wells, M.T. A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. J. Multivar. Anal. 2001, 79, 138–155. [Google Scholar] [CrossRef] [Green Version]
- de Uña-Álvarez, J.; Veraverbeke, N. Generalized copula-graphic estimator. Test 2013, 22, 343–360. [Google Scholar] [CrossRef]
- de Uña-Álvarez, J.; Veraverbeke, N. Copula-graphic estimation with left-truncated and right-censored data. Statistics 2013, 51, 387–403. [Google Scholar] [CrossRef]
- Emura, T.; Hsu, J.H. Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring. Comput. Stat. Data Anal. 2020, 150, 106990. [Google Scholar] [CrossRef]
- Emura, T.; Ditzhaus, M.; Dobler, D.; Murotani, K. Factorial survival analysis for treatment effects under dependent censoring. arXiv 2023, arXiv:2302.01617. [Google Scholar]
- Winston Chang, J.C.; Allaire, J.J.; Xie, Y.; McPherson, J. Shiny: Web Application Framework for R. CRAN. 2021. Available online: https://CRAN.R-project.org/package=shiny (accessed on 1 January 2023).
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2007. [Google Scholar]
- Lo, S.M.; Wilke, R.A. A regression model for the copula-graphic estimator. J. Econom. Methods 2014, 3, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Sujica, A.; Van Keilegom, I. The copula-graphic estimator in censored nonparametric location-scale regression models. Econom. Stat. 2018, 7, 89–114. [Google Scholar] [CrossRef]
- Emura, T.; Hsu, W.C.; Chou, W.C. A survival tree based on stabilized score tests for high-dimensional covariates. J. Appl. Stat. 2023, 50, 264–290. [Google Scholar] [CrossRef]
- Fournier, M.-C.; Foucher, Y.; Blanche, P.; Legendre, C.; Girerd, S.; Ladrière, M.; Morelon, E.; Buron, F.; Rostaing, L.; Kamar, N.; et al. Dynamic predictions of long-term kidney graft failure: An information tool promoting patient-centred care. Nephrol. Dial. Transplant. 2019, 34, 1961–1969. [Google Scholar] [CrossRef]
- Asar, Ö.; Fournier, M.-C.; Dantan, E. Dynamic predictions of kidney graft survival in the presence of longitudinal outliers. Stat. Methods Med. Res. 2021, 30, 185–203. [Google Scholar] [CrossRef]
- Lenain, R.; Dantan, E.; Giral, M.; Foucher, Y.; Asar, Ö.; Naesens, M.; Hazzan, M.; Fournier, M.-C. External Validation of the DynPG for Kidney Transplant Recipients. Transplantation 2021, 105, 396–403. [Google Scholar] [CrossRef]
- Kawakami, R.; Michimae, H.; Lin, Y.-H. Assessing the numerical integration of dynamic prediction formulas using the exact expressions under the joint frailty-copula model. Jpn. J. Stat. Data Sci. 2021, 4, 1293–1321. [Google Scholar] [CrossRef]
- Emura, T.; Michimae, H.; Matsui, S. Dynamic Risk Prediction via a Joint Frailty-Copula Model and IPD Meta-Analysis: Building Web Applications. Entropy 2022, 24, 589. [Google Scholar] [CrossRef]
- Kordestani, M.; Saif, M.; Orchard, M.E.; Razavi-Far, R.; Khorasani, K. Failure Prognosis and Applications—A Survey of Recent Literature. IEEE Trans. Reliab. 2021, 70, 728–748. [Google Scholar] [CrossRef]
- Hong, Y.; Meeker, W.Q.; McCalley, J.D. Prediction of remaining life of power transformers based on left truncated and right censored lifetime data. Ann. Appl. Stat. 2009, 3, 857–879. [Google Scholar] [CrossRef] [Green Version]
- Mitra, D.; Kundu, D.; Balakrishnan, N. Likelihood analysis and stochastic EM algorithm for left truncated right censored data and associated model selection from the Lehmann family of life distributions. Jpn. J. Stat. Data Sci. 2021, 4, 1019–1048. [Google Scholar] [CrossRef]
- Zheng, R.; Najafi, S.; Zhang, Y. A recursive method for the health assessment of systems using the proportional hazards model. Reliab. Eng. Syst. Saf. 2022, 221, 108379. [Google Scholar] [CrossRef]
- Emura, T.; Michimae, H. Left-truncated and right-censored field failure data: Review of parametric analysis for reliability. Qual. Reliab. Eng. Int. 2022, 38, 3919–3934. [Google Scholar] [CrossRef]
- Zuo, Z.; Wang, L.; Lio, Y. Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations. Energies 2023, 16, 62. [Google Scholar] [CrossRef]
- Peng, M.; Xiang, L.; Wang, S. Semiparametric regression analysis of clustered survival data with semi-competing risks. Comp. Stat. Data Anal. 2018, 124, 53–70. [Google Scholar] [CrossRef]
- Burzykowski, T.; Molenberghs, G.; Buyse, M.; Geys, H.; Renard, D. Validation of surrogate end points in multiple randomized clinical trials with failure time end points. J. R. Stat. Soc. Ser. C Appl. Stat. 2001, 50, 405–422. [Google Scholar] [CrossRef] [Green Version]
- Rotolo, F.; Paoletti, X.; Michiels, S. surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Comput. Methods Programs Biomed. 2018, 155, 189–198. [Google Scholar] [CrossRef]
- Emura, T.; Sofeu, C.L.; Rondeau, V. Conditional copula models for correlated survival endpoints: Individual patient data meta-analysis of randomized controlled trials. Stat. Methods Med. Res. 2021, 30, 2634–2650. [Google Scholar] [CrossRef] [PubMed]
- Orenti, A.; Boracchi, P.; Marano, G.; Biganzoli, E.; Ambrogi, F. A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks. Stat. Methods Appl. 2022, 31, 709–727. [Google Scholar] [CrossRef]
- Ghosh, S.; Sheppard, L.W.; Holder, M.T.; Loecke, T.D.; Reid, P.C.; Bever, J.D.; Reuman, D.C. Copulas and their potential for ecology. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2020; Volume 62, pp. 409–468. [Google Scholar]
- Zhou, Y.; Lu, Z.; Shi, Y.; Cheng, K. The copula-based method for statistical analysis of step-stress accelerated life test with dependent competing failure modes. Proc. Inst. Mech. Eng. O J. Risk Reliab. 2019, 233, 401–418. [Google Scholar] [CrossRef]
- Shih, J.-H.; Konno, Y.; Chang, Y.-T.; Emura, T. Copula-Based Estimation Methods for a Common Mean Vector for Bivariate Meta-Analyses. Symmetry 2022, 14, 186. [Google Scholar] [CrossRef]
- Chesneau, C. Theoretical study of some angle parameter trigonometric copulas. Modelling 2022, 3, 140–163. [Google Scholar] [CrossRef]
- Susam, S.O. A multi-parameter Generalized Farlie-Gumbel-Morgenstern bivariate copula family via Bernstein polynomial. Hacet. J. Math. Stat. 2022, 51, 618–631. [Google Scholar] [CrossRef]
- Ota, S.; Kimura, M. Effective estimation algorithm for parameters of multivariate Farlie–Gumbel–Morgenstern copula. Jpn. J. Stat. Data Sci. 2021, 4, 1049–1078. [Google Scholar] [CrossRef]
- Zhang, Z.; Charalambous, C.; Foster, P. A Gaussian copula joint model for longitudinal and time-to-event data with random effects. Comp. Stat. Data Anal. 2023, 181, 107685. [Google Scholar] [CrossRef]
- Chesneau, C. Theoretical Contributions to Three Generalized Versions of the Celebioglu–Cuadras Copula. Analytics 2023, 2, 31–54. [Google Scholar] [CrossRef]
- Bekrizadeh, H.; Parham, G.A.; Jamshidi, B. A new asymmetric class of bivariate copulas for modeling dependence. Commun. Stat.-Simul. Comput. 2017, 46, 5594–5609. [Google Scholar] [CrossRef]
Prognostic Index (PI) | |||
---|---|---|---|
Emura and Chen [41] | Chen et al. [6] | ||
Clayton copula | (tau = 0.33) | 0.065 | 0.036 |
(tau = 0.50) | 0.036 | 0.036 | |
(tau = 0.75) | 0.021 | 0.036 | |
(tau = 0.88) | 0.011 | 0.029 | |
Gumbel copula | (tau = 0.00) | 0.171 | 0.040 |
(tau = 0.50) | 0.058 | 0.029 | |
(tau = 0.75) | 0.028 | 0.029 | |
(tau = 0.91) | 0.011 | 0.025 | |
Frank copula | (tau = −0.75) | 0.360 | 0.059 |
(tau = −0.46) | 0.307 | 0.054 | |
(tau = 0.46) | 0.054 | 0.034 | |
(tau = 0.75) | 0.018 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-T.; Liao, G.-Y.; Emura, T. Sensitivity Analysis for Survival Prognostic Prediction with Gene Selection: A Copula Method for Dependent Censoring. Biomedicines 2023, 11, 797. https://doi.org/10.3390/biomedicines11030797
Yeh C-T, Liao G-Y, Emura T. Sensitivity Analysis for Survival Prognostic Prediction with Gene Selection: A Copula Method for Dependent Censoring. Biomedicines. 2023; 11(3):797. https://doi.org/10.3390/biomedicines11030797
Chicago/Turabian StyleYeh, Chih-Tung, Gen-Yih Liao, and Takeshi Emura. 2023. "Sensitivity Analysis for Survival Prognostic Prediction with Gene Selection: A Copula Method for Dependent Censoring" Biomedicines 11, no. 3: 797. https://doi.org/10.3390/biomedicines11030797
APA StyleYeh, C. -T., Liao, G. -Y., & Emura, T. (2023). Sensitivity Analysis for Survival Prognostic Prediction with Gene Selection: A Copula Method for Dependent Censoring. Biomedicines, 11(3), 797. https://doi.org/10.3390/biomedicines11030797