Current SARS-CoV-2 Protective Strategies for Healthcare Professionals
Abstract
:1. Introduction
2. Transmission of SARS-CoV-2
3. Pre-Appointment Screening
4. Pre-Appointment Mouth Rinsing
5. Hand Hygiene
6. Personal Protective Equipment
7. Removal of Contaminated Air
8. Environmental Surface Disinfection
9. Prevention of Airborne Transmission of Viruses
10. Vaccination
11. Guidance for Health Care Settings
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, M.-Y.; Lee, E.Y.; Yang, J.; Yang, F.; Li, X.; Wang, H.; Lui, M.M.-S.; Lo, C.S.-Y.; Leung, B.; Khong, P.-L.; et al. Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review. Radiol. Cardiothorac. Imaging 2020, 2, e200034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [PubMed]
- Garner, J.S. Guideline for isolation precautions in hospitals. The Hospital Infection Control Practices Advisory Committee. Infect. Control Hosp. Epidemiol. 1996, 17, 53–80. [Google Scholar] [CrossRef]
- Gottfried, R.S. The Black Death: Natural and Human Disaster in Medieval Europe; Free Press: New York, NY, USA, 1983; pp. 7–10. [Google Scholar]
- Kenyon, T.A.; Valway, S.E.; Ihle, W.W.; Onorato, I.M.; Castro, K.G. Transmission of multidrug-resistant Mycobacterium tuberculosis during a long airplane flight. N. Engl. J. Med. 1996, 334, 933–938. [Google Scholar] [CrossRef]
- Bloch, A.B.; Orenstein, W.A.; Ewing, W.M.; Spain, W.H.; Mallison, G.F.; Herrmann, K.L.; Hinman, A.R. Measles outbreak in a pediatric practice: Airborne transmission in an office setting. Pediatrics 1985, 75, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Suzuki, J.B. SARS-CoV-2: Overview and Its Impact on Oral Health. Biomedicines 2021, 9, 1690. [Google Scholar] [PubMed]
- Ting, M.; Suzuki, J.B. COVID-19: Current Overview on SARS-CoV-2 and the Dental Implications. Oral Health. July 2022. Available online: https://www.oralhealthgroup.com/features/covid-19-current-overview-on-sars-cov-2-and-the-dental-implications/ (accessed on 1 December 2022).
- McDonald, L.C.; Simor, A.E.; Su, I.-J.; Maloney, S.; Ofner, M.; Chen, K.-T.; Lando, J.F.; McGeer, A.; Lee, M.-L.; Jernigan, D.B. SARS in Healthcare Facilities, Toronto and Taiwan. Emerg. Infect. Dis. 2004, 10, 777–781. [Google Scholar]
- Park, H.Y.; Lee, E.J.; Ryu, Y.W.; Kim, Y.; Kim, H.; Lee, H.; Yi, S.J. Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015. Euro Surveill. 2015, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fagbo, S.; Skakni, L.; Chu, D.K.W.; Garbati, M.; Joseph, M.; Peiris, M.; Hakawi, A.M. Molecular Epidemiology of Hospital Outbreak of Middle East Respiratory Syndrome, Riyadh, Saudi Arabia, 2014. Emerg. Infect. Dis. 2015, 21, 1981–1988. [Google Scholar]
- Assiri, A.; McGeer, A.; Perl, T.M.; Price, C.S.; Al Rabeeah, A.A.; Cummings, D.A.; Alabdullatif, Z.N.; Assad, M.; Almulhim, A.; Makhdoom, H.; et al. Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus. N. Engl. J. Med. 2013, 369, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Guery, B.; Poissy, J.; el Mansouf, L.; Séjourné, C.; Ettahar, N.; Lemaire, X.; Vuotto, F.; Goffard, A.; Behillil, S.; Enouf, V.; et al. Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission. Lancet 2013, 381, 2265–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Fu, J.-B.; Li, K.-F.; Liu, J.-N.; Wang, H.-L.; Liu, L.-J.; Chen, Y.; Zhang, Y.-L.; Liu, S.-L.; Tang, A.; et al. Transmission of COVID-19 in the terminal stages of the incubation period: A familial cluster. Int. J. Infect. Dis. 2020, 96, 452–453. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Micik, R.E.; Abel, C.; Ryge, G. Studies on Dental Aerobiology: II. Microbial Splatter Discharged from the Oral Cavity of Dental Patients. J. Dent. Res. 1971, 50, 621–625. [Google Scholar] [CrossRef]
- Tellier, R. Review of Aerosol Transmission of Influenza A Virus. Emerg. Infect. Dis. 2006, 12, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Lo, L.J.; Waring, M.S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 2020, 10, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Micik, R.E.; Miller, R.L.; Mazzarella, M.A.; Ryge, G. Studies on Dental Aerobiology: I. Bacterial Aerosols Generated during Dental Procedures. J. Dent. Res. 1969, 48, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Micik, R.E.; Miller, R.L.; Leong, A.C. Studies on Dental Aerobiology: III. Efficacy of Surgical Masks in Protecting Dental Personnel from Airborne Bacterial Particles. J. Dent. Res. 1971, 50, 626–630. [Google Scholar] [CrossRef]
- Miller, R.L.; Micik, R.E. Air pollution and its control in the dental office. Dent. Clin. N. Am. 1978, 22, 453–476. [Google Scholar] [CrossRef]
- Beaubien-Souligny, W.; Nadeau-Fredette, A.-C.; Nguyen, M.-N.; Rios, N.; Caron, M.-L.; Tom, A.; Suri, R.S. Infection control measures to prevent outbreaks of COVID-19 in Quebec hemodialysis units: A cross-sectional survey. CMAJ Open 2021, 9, E1232–E1241. [Google Scholar] [CrossRef] [PubMed]
- Varia, M.; Wilson, S.; Sarwal, S.; McGeer, A.; Gournis, E.; Galanis, E.; Henry, B.; Team, H.O.I. Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada. Can. Med. Assoc. J. 2003, 169, 285–292. [Google Scholar]
- Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G.M.; Ahuja, A.; Yung, M.Y.; Leung, C.; To, K.; et al. A Major Outbreak of Severe Acute Respiratory Syndrome in Hong Kong. N. Engl. J. Med. 2003, 348, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.D.; Loutfy, M.; McDonald, L.C.; Martinez, K.F.; Ofner, M.; Wong, T.; Wallington, T.; Gold, W.L.; Mederski, B.; Green, K.; et al. Possible SARS Coronavirus Transmission during Cardiopulmonary Resuscitation. Emerg. Infect. Dis. 2004, 10, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.-A.; Pappachan, J.V.; Bennett, A.M.; Mittal, H.; Macken, S.; Dove, B.K.; Nguyen-Van-Tam, J.S.; Copley, V.R.; O’Brien, S.; Hoffman, P.; et al. Influenza Aerosols in UK Hospitals during the H1N1 (2009) Pandemic–The Risk of Aerosol Generation during Medical Procedures. PLoS ONE 2013, 8, e56278. [Google Scholar] [CrossRef]
- Fowler, R.A.; Guest, C.B.; Lapinsky, S.E.; Sibbald, W.J.; Louie, M.; Tang, P.; Simor, A.E.; Stewart, T.E. Transmission of Severe Acute Respiratory Syndrome during Intubation and Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2004, 169, 1198–1202. [Google Scholar] [CrossRef] [Green Version]
- Cook, T.M. Risk to health from COVID-19 for anaesthetists and intensivists—A narrative review. Anaesthesia 2020, 75, 1494–1508. [Google Scholar] [CrossRef]
- Tran, K.; Cimon, K.; Severn, M.; Pessoa-Silva, C.L.; Conly, J. Aerosol Generating Procedures and Risk of Transmission of Acute Respiratory Infections to Healthcare Workers: A Systematic Review. PLoS ONE 2012, 7, e3579. [Google Scholar] [CrossRef] [Green Version]
- National Services Scotland. Supplementary Document 1, Assessing the Evidence Base for Medical Procedures Which May Create a Higher Risk of Respiratory Infection Transmission from Patient to Healthcare Worker. 2020. Available online: https://hpspubsrepo.blob.core.windows.net/hps-website/nss/3055/documents/2_agp-supplmentary-document.pdf (accessed on 11 September 2020).
- O’Neil, C.A.; Li, J.; Leavey, A.; Wang, Y.; Hink, M.; Wallace, M.; Biswas, P.; Burnham, C.-A.D.; Babcock, H.M.; for the Centers for Disease Control and Prevention Epicenters Program. Characterization of Aerosols Generated During Patient Care Activities. Clin. Infect. Dis. 2017, 65, 1342–1348. [Google Scholar] [CrossRef]
- Kotoda, M.; Hishiyama, S.; Mitsui, K.; Tanikawa, T.; Morikawa, S.; Takamino, A.; Matsukawa, T. Assessment of the potential for pathogen dispersal during high-flow nasal therapy. J. Hosp. Infect. 2020, 104, 534–537. [Google Scholar] [CrossRef]
- Association of Surgeons of Great Britain and Ireland. Delivering the Emergency General Surgery Service in the UK during the Coronavirus COVID-19 Pandemic. 2020. Available online: https://www.asgbi.org.uk/userfiles/file/news/asgbi-statement-the-delivery-of-emergency-general-surgery-and-covid-19.pdf (accessed on 16 September 2020).
- Bolton, L.; Mills, C.; Wallace, S.; Brady, M.C. Royal College of Speech and Language Therapists (RCSLT) COVID-19 Advisory Group. Aerosol generating procedures, dysphagia assessment and COVID-19: A rapid review. Int. J. Lang Commun. Disord. 2020, 55, 629–636. [Google Scholar] [CrossRef]
- Logothetis, D.D.; Gross, K.B.; Eberhart, A.; Drisko, C. Bacterial airborne contamination with an air-polishing device. Gen. Dent. 1988, 36, 496–499. [Google Scholar]
- Veena, H.; Mahantesha, S.; Joseph, P.A.; Patil, S.R.; Patil, S.H. Dissemination of aerosol and splatter during ultrasonic scaling: A pilot study. J. Infect. Public Health 2015, 8, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, G.; De Vito, D.; Rengo, S.; Tatullo, M. COVID-19 Outbreak: An Overview on Dentistry. Int. J. Environ. Res. Public Health 2020, 17, 2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrel, S.K.; Molinari, J. Aerosols and splatter in dentistry: A brief review of the literature and infection control implications. J. Am. Dent. Assoc. 2004, 135, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.C.C.; Lau, S.K.P.; Woo, P.C.Y.; Yuen, K.-Y. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clin. Microbiol. Rev. 2007, 20, 660–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.M.; Yuen, K.S.C.; Fan, D.S.P.; Lam, D.S.C.; Chan, P.; Sung, J.J.Y. Tears and conjunctival scrapings for coronavirus in patients with SARS. Br. J. Ophthalmol. 2004, 88, 968–969. [Google Scholar] [PubMed] [Green Version]
- Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet 2015, 386, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, C.; Zhao, G.; Chu, H.; Wang, D.; Yan, H.H.-N.; Poon, V.K.-M.; Wen, L.; Wong, B.H.-Y.; Zhao, X.; et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci. Adv. 2017, 3, eaao4966. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.-M.; Zhao, X.-S.; Wen, R.-F.; Huang, J.-J.; Pi, G.-H.; Zhang, S.-X.; Han, J.; Bi, S.; Ruan, L.; Dong, X.-P. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 2003, 16, 246–255. [Google Scholar]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Munster, V.J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ji, F.; Wang, L.; Wang, L.; Hao, J.; Dai, M.; Gu, B. Asymptomatic and Human-to-Human Transmission of SARS-CoV-2 in a 2-Family Cluster, Xuzhou, China. Emerg. Infect. Dis. 2020, 26, 1626–1628. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.-W.; Tsang, O.T.-Y.; Yip, C.C.-Y.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.-C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Ting, M.; Suzuki, J.B. The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2. Int. J. Transl. Med. 2022, 2, 387–397. [Google Scholar] [CrossRef]
- Wood, A.; Payne, D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J. Hosp. Infect. 1998, 38, 283–295. [Google Scholar] [CrossRef]
- Samaranayake, L.P.; Peiris, M. Severe acute respiratory syndrome and dentistry: A retrospective view. J. Am. Dent. Assoc. 2004, 135, 1292–1302. [Google Scholar] [CrossRef] [Green Version]
- Feres, M.; Figueiredo, L.C.; Faveri, M.; Stewart, B.; de Vizio, W. The Effectiveness of a Preprocedural Mouthrinse Containing Cetylpyridinium Chloride in Reducing Bacteria in the Dental Office. J. Am. Dent. Assoc. 2010, 141, 415–422. [Google Scholar] [CrossRef]
- Davies, K.; Buczkowski, H.; Welch, S.R.; Green, N.; Mawer, D.; Woodford, N.; Killip, M.J. Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes. J. Gen. Virol. 2021, 102, 001578. [Google Scholar] [CrossRef]
- Lo Giudice, R. The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) in Dentistry. Management of Biological Risk in Dental Practice. Int. J. Environ. Res. Public Health 2020, 17, 3067. [Google Scholar] [CrossRef]
- Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020, 12, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany, A.; Perez-Zsolt, D.; Raïch-Regué, D.; Muñoz-Basagoiti, J.; Ouchi, D.; Laporte-Villar, C.; Mitjà, O. Cetylpyridinium Chloride Mouthwash to Reduce Shedding of Infectious SARS-CoV-2: A Double-Blind Randomized Clinical Trial. J. Dent. Res. 2022, 101, 1450–1456. [Google Scholar] [CrossRef]
- de Paula Eduardo, F.; Corrêa, L.; Heller, D.; Daep, C.A.; Benitez, C.; Malheiros, Z.; Stewart, B.; Ryan, M.; Machado, C.M.; Hamerschlak, N.; et al. Salivary SARS-CoV-2 load reduction with mouthwash use: A randomized pilot clinical trial. Heliyon 2021, 7, e07346. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Melkonyan, A.; Meethil, A.; Saraswat, S.; Hall, D.L.; Cottle, J.; Wenzel, M.; Ayouty, N.; Bense, S.; Casanova, F.; et al. Estimating salivary carriage of severe acute respiratory syndrome coronavirus 2 in nonsymptomatic people and efficacy of mouthrinse in reducing viral load: A randomized controlled trial. J. Am. Dent. Assoc. 2021, 152, 903–908. [Google Scholar] [CrossRef]
- Saud, Z.; Tyrrell, V.J.; Zaragkoulias, A.; Protty, M.B.; Statkute, E.; Rubina, A.; Bentley, K.; White, D.A.; Rodrigues, P.D.S.; Murphy, R.C.; et al. The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses. J. Lipid Res. 2022, 63, 100208. [Google Scholar] [CrossRef] [PubMed]
- CDC. Recommended infection control practices for dentistry. Morb. Mortal Wkly Rpt. 1993, 42, 1–12. [Google Scholar]
- CDC. Guidelines for infection control in dental health-care settings. Morb. Mortal Wkly Rpt. Recomm. Rep. 2003, 52, 1–61. [Google Scholar]
- Cottone, J.A.; Molinari, J.A. State-of-the-art infection control in dentistry. J. Am. Dent. Assoc. 1991, 122, 33–41. [Google Scholar] [CrossRef]
- Larson, E. A causal link between handwashing and risk of infection? Examination of the evidence. Infect. Control 1988, 9, 28–36. [Google Scholar]
- Boyce, J.M.; Pittet, D.; Healthcare Infection Control Practices Advisory C, Force HSAIHHT. Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm. Rep. 2002, 51, 1–45. [Google Scholar]
- Andrews, N.; Cuny, E.; Molinari, J.A.; Harte, J.A. Antisepsis and hand hygiene. In Cottone’s Practical Infection Control in Dentistry, 3rd ed.; Molinari, J.A., Harte, J.A., Eds.; Wolters Kluwer Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 123–140. [Google Scholar]
- Molinari, J.A.; Harte, J.A. Dental Services. In APIC Text of Infection Control and Epidemiology 2009, 3rd ed.; Chapter 50; Assn for Professionals in Infection Control and Epidemiology: Washington, DC, USA, 2009; pp. 1–21. [Google Scholar]
- Lu, C.-W.; Liu, X.-F.; Jia, Z.-F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 2020, 395, e39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreenath, G.; Narayana, T.; Mohanty, L.; Vidhyadhari, P. Role of preprocedural rinse and high volume evacuator in reducing bacterial contamination in bioaerosols. J. Oral Maxillofac. Pathol. 2016, 20, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Takada, M.; Fukushima, T.; Ozawa, S.; Matsubara, S.; Suzuki, T.; Fukumoto, I.; Hanazawa, T.; Nagashima, T.; Uruma, R.; Otsuka, M.; et al. Infection control for COVID-19 in hospital examination room. Sci. Rep. 2022, 12, 18230. [Google Scholar] [CrossRef]
- COVID-19: Infection Prevention and Control Guidance. Available online: https://www.publichealth.hscni.net/sites/default/files/2020-10/COVID-19_Infection_prevention_and_control_guidance_complete.%203.2%20%2818_06_2020%29.pdf (accessed on 18 September 2020).
- Suman, R.; Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Nandan, D. Sustainability of Coronavirus on Different Surfaces. J. Clin. Exp. Hepatol. 2020, 10, 386–390. [Google Scholar] [CrossRef]
- CDC. Guidelines for environmental infection control in health-care facilities. Morb. Mortal Wkly Rpt. 2003, 52, 1–44. [Google Scholar]
- Molinari, J.A.; Harte, J.A. (Eds.) Environmental surface disinfection control: Disposable barriers and chemical disinfection. In Cottone’s Practical Infection Control in Dentistry, 3rd ed.; Wolters Kluwer Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 171–184. [Google Scholar]
- Drahl, C. A Conversation with Jose-Luis Jimenez. ACS Central Sci. 2020, 6, 2118–2119. [Google Scholar] [CrossRef]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [Google Scholar] [CrossRef]
- Ting, M.; Suzuki, J.B. Is the COVID-19 Pandemic Over? The Current Status of Boosters, Immunosenescence, Long Haul COVID, and Systemic Complications. Int. J. Transl. Med. 2022, 2, 230–241. [Google Scholar] [CrossRef]
- The Centers for Disease Control and Prevention (CDC). Interim Guidance for Managing Healthcare Personnel with SARS-CoV-2 Infection or Exposure to SARS-CoV-2. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html (accessed on 22 September 2022).
Aerosol Generation | Procedures |
---|---|
Head and neck | High-speed cutting, tracheal intubation and extubation, manual ventilation, suctioning of upper ear nose and throat airway, tracheotomy/tracheostomy procedures, sputum induction using nebulized saline |
Pulmonary | Bronchoscopy, respiratory tract procedures, high-frequency oscillatory ventilation, high-flow nasal oxygen |
Gastrointestinal | Endoscopy, colonoscopy |
Orthopedics | High-speed cutting |
Post-mortem | High-speed cutting |
Dental Devices | Procedures | Airborne Contamination |
---|---|---|
Ultrasonic and piezoelectric scalers | Oral prophylaxis Scaling and root planning | Greatest source of aerosolized contamination. HVE reduced aerosolized bacteria by almost 99% |
Air polishing | Oral prophylaxis Stain removal | Aerosolized bacterial counts were almost as high as ultrasonic scalers. Suction devices reduced aerosolized bacteria by greater than 95% |
Air-water syringe | Washing away debris. Air-drying tooth preparation | Bacterial counts aerosolized is almost as high as ultrasonic scalers. HVE reduced aerosolized bacteria by almost 99% |
Air turbine handpiece | Tooth preparation | Can be minimal if rubber dam is used |
Air abrasion | Tooth preparation | Extensive airborne contamination with abrasive particles, contamination with bacteria is unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, M.; Molinari, J.A.; Suzuki, J.B. Current SARS-CoV-2 Protective Strategies for Healthcare Professionals. Biomedicines 2023, 11, 808. https://doi.org/10.3390/biomedicines11030808
Ting M, Molinari JA, Suzuki JB. Current SARS-CoV-2 Protective Strategies for Healthcare Professionals. Biomedicines. 2023; 11(3):808. https://doi.org/10.3390/biomedicines11030808
Chicago/Turabian StyleTing, Miriam, John A. Molinari, and Jon B. Suzuki. 2023. "Current SARS-CoV-2 Protective Strategies for Healthcare Professionals" Biomedicines 11, no. 3: 808. https://doi.org/10.3390/biomedicines11030808
APA StyleTing, M., Molinari, J. A., & Suzuki, J. B. (2023). Current SARS-CoV-2 Protective Strategies for Healthcare Professionals. Biomedicines, 11(3), 808. https://doi.org/10.3390/biomedicines11030808