Low-Dose Radiotherapy for Patients with Pneumonia Due to COVID-19: A Single-Institution Prospective Study
Abstract
:1. Introduction
2. Material and Methods
Statistical Analyses
3. Results
LDRT Efficacy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Research Result. Available online: https://www.clinicaltrials.gov/ct2/home (accessed on 20 August 2021).
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Ñamendys-Silva, S. Respiratory support for patients with COVID-19 infection. Lancet Respir. Med. 2020, 8, e18. [Google Scholar] [CrossRef] [PubMed]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Rödel, F.; Keilholz, L.; Herrmann, M.; Sauer, R.; Hildebrandt, G. Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int. J. Radiat. Biol. 2007, 83, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Rodel, F.; Frey, B.; Gaipl, U.; Keilholz, L.; Fournier, C.; Manda, K.; Schollnberger, H.; Hildebrandt, G.; Rodel, C. Modulation of inflammatory immune reactions by low-dose ionizing radiation: Molecular mechanisms and clinical application. Curr. Med. Chem. 2012, 19, 1741–1750. [Google Scholar] [CrossRef]
- Arenas, M.; Sabater, S.; Hernández, V.; Rovirosa, A.; Lara, P.C.; Biete, A.; Panés, J. Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. Strahlenther. Onkol. 2012, 188, 975–981. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Dhawanet, G. How radiotherapy was historically used to treat pneumonia: Could it be useful today? J. Biol. Med. 2013, 86, 555–570. [Google Scholar]
- Micke, O.; Seegenschmied, M.H. German Working Group on Radiotherapy in Germany. Consensus guidelines for radiation therapy of benign diseases: A multicenter approach in Germany. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 496–513. [Google Scholar] [CrossRef]
- Seegenschmiedt, M.H.; Katalinic, A.; Makoski, H.; Haase, W.; Gademann, G.; Hassenstein, E. Radiation therapy for benign diseases: Patterns of care study in Germany. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 195–202. [Google Scholar] [CrossRef]
- Flisiak, R.; Horban, A.; Jaroszewicz, J.; Kozielewicz, D.; Pawłowska, M.; Parczewski, M.; Piekarska, A.; Simon, K.; Tomasiewicz, K.; Zarębska-Michaluk, D. Management of SARS-CoV-2 infection: Recommendations of the Polish Association of Epidemiologists and Infectiologists as of March 31, 2020. Pol. Arch. Intern. Med. 2020, 130, 352–357. [Google Scholar]
- Ślosarek, K.; Gądek, A.; Sroka, Ł.; Dolla, Ł.; Biały, A.; Radwan, M.; Bodusz, D.; Nachlik, M.; Rutkowski, T.; Jaroszewicz, J. Lung volume irradiation procedures in patients with pneumonia during COVID-19 infection—Physical aspects of treatment planning and dosimetry. Nowotwory J. Oncol. 2021, 71, 238–242. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.K.; Lam, C.W.K.; Wu, A.K.L.; Ip, W.K.; Lee, N.L.S.; Chan, I.H.S.; Lit, L.C.W.; Hui, D.S.C.; Chan, M.H.M.; Chung, S.S.C.; et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flisiak, R.; Rzymski, P.; Zarębska-Michaluk, D.; Rogalska, M.; Rorat, M.; Czupryna, P.; Lorenc, B.; Ciechanowski, P.; Kozielewicz, D.; Piekarska, A.; et al. Demographic and Clinical Overview of Hospitalized COVID-19 Patients during the First 17 Months of the Pandemic in Poland. J. Clin. Med. 2021, 11, 117. [Google Scholar] [CrossRef]
- Zarębska-Michaluk, D.; Jaroszewicz, J.; Rogalska, M.; Martonik, D.; Pabjan, P.; Berkan-Kawińska, A.; Bolewska, B.; Oczko-Grzesik, B.; Kozielewicz, D.; Tudrujek-Zdunek, M.; et al. Effectiveness of Tocilizumab with and without Dexamethasone in Patients with Severe COVID-19: A Retrospective Study. J. Inflamm. Res. 2021, 14, 3359–3366. [Google Scholar] [CrossRef]
- Flisiak, R.; Jaroszewicz, J.; Rogalska, M.; Łapiński, T.; Berkan-Kawińska, A.; Bolewska, B.; Tudrujek-Zdunek, M.; Kozielewicz, D.; Rorat, M.; Leszczyński, P.; et al. Tocilizumab Improves the Prognosis of COVID-19 in Patients with High IL-6. J. Clin. Med. 2021, 10, 1583. [Google Scholar] [CrossRef]
- Schröder, S.; Kriesen, S.; Paape, D.; Hildebrandt, G.; Manda, K. Modulation of Inflammatory Reactions by Low-Dose Ionizing Radiation: Cytokine Release of Murine Endothelial Cells Is Dependent on Culture Conditions. J. Immunol. Res. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Dunlap, N.E.; van Berkel, V.; Cai, L. COVID-19 and low-dose radiation therapy. Radiat. Med. Prot. 2021, 2, 139–145. [Google Scholar] [CrossRef]
- Hess, C.B.; Nasti, T.H.; Dhere, V.R.; Kleber, T.J.; Switchenko, J.M.; Buchwald, Z.S.; Stokes, W.A.; Weinberg, B.D.; Rouphael, N.; Steinberg, J.P.; et al. Immunomodulatory Low-Dose Whole-Lung Radiation for Patients with Coronavirus Disease 2019-Related Pneumonia. Int. J. Radiat. Oncol. Biol. Phys. 2021, 15, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.; Ameri, P.; Rahnama, N.; Mokhtari, M.; Sedaghat, M.; Hadavand, F.; Bozorgmehr, R.; Haghighi, M.; Taghizadeh-Hesary, F. Low-Dose Whole-Lung Irradiation for COVID-19 Pneumonia: Final Results of a Pilot Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Sanmamed, N.; Alcantara, P.; Cerezo, E.; Gaztañaga, M.; Cabello, N.; Gómez, S.; Bustos, A.; Doval, A.; Corona, J.; Rodriguez, G.; et al. Low-Dose Radiation Therapy in the Management of Coronavirus Disease 2019 (COVID-19) Pneumonia (LOWRAD-Cov19): Preliminary Report. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 880–885. [Google Scholar] [CrossRef]
- Sharma, D.N.; Guleria, R.; Wig, N.; Mohan, A.; Rath, G.; Subramani, V.; Bhatnagar, S.; Mallick, S.; Sharma, A.; Patil, P.; et al. Low-dose radiation therapy for COVID-19 pneumonia: A pilot study. Br. J. Radiol. 2021, 94, 20210187. [Google Scholar] [CrossRef]
- Ganesan, G.; Ponniah, S.; Sundaram, V.; Marimuthu, P.K.; Pitchaikannu, V.; Chandrasekaran, M.; Thangarasu, J.; Kannupaiyan, G.; Ramamoorthy, P.; Thangaraj, B.; et al. Whole lung irradiation as a novel treatment for COVID-19: Interim results of an ongoing phase 2 trial in India. Radiother. Oncol. 2021, 163, 83–90. [Google Scholar] [CrossRef]
- Bonet, M.; Vázquez, S.; García, E.; Visus, M.; Jové, D.; Ripol, O.; Solé, C.; Gutiérrez, L.; Morales-Rull, J.L.; Montero, Á.; et al. Saving time in the radiotherapy procedures for COVID-19 pneumonia treatment. A single-institution experience. Clin. Transl. Oncol. 2021, 23, 2344–2349. [Google Scholar] [CrossRef]
- Papachristofilou, A.; Finazzi, T.; Blum, A.; Zehnder, T.; Zellweger, N.; Lustenberger, J.; Bauer, T.; Dott, C.; Avcu, Y.; Kohler, G.; et al. Low-Dose Radiation Therapy for Severe COVID-19 Pneumonia: A Randomized Double-Blind Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1274–1282. [Google Scholar] [CrossRef]
- Abdollahi, H.; Shiri, I.; Bevelacqua, J.J.; Jafarzadeh, A.; Rahmim, A.; Zaidi, H.; Mortazavi, S.A.R.; Mortazavi, S.M.J. Low Dose Radiation Therapy and Convalescent Plasma: How a Hybrid Method May Maximize Benefits for COVID-19 Patients. J. Biomed. Phys. Eng. 2020, 10, 387–394. [Google Scholar]
- Verma, A.; Adhikary, A.; Woloschak, G.; Dwarakanath, B.S.; Papineni, R.V. A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management. Int. J. Radiat. Biol. 2020, 96, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Kong, Q.; Wang, G.; Jin, H.; Zhou, L.; Yu, D.; Niu, C.; Han, W.; Li, W.; Cui, J. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother. Radiopharm. 2014, 29, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Bevelacqua, J.J.; Mortazavi, S.A.R.; Mortazavi, S.M.J. Re: Low dose radiation therapy for COVID-19 pneumonia: Is there any supportive evidence? Int. J. Radiat. Biol. 2020, 96, 1236–1237. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P. Radiation and circulatory disease. Mutat. Res. Rev. 2016, 770, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Craft, A.W.; et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012, 380, 499–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirrmacher, V. Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021, 9, 293. [Google Scholar] [CrossRef] [PubMed]
- Cuttler, J.M. Remedy for radiation fear—Discard the politicized science. Dose Respons. 2014, 12, 170–184. [Google Scholar] [CrossRef]
- Jaworowski, Z. Radiation hormesis—A remedy for fear. Hum. Exp. Toxicol. 2010, 29, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Tubiana, M.; Feinendegen, L.E.; Yang, C.; Kaminski, J.M. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 2009, 251, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, K.R.; Kamprad, F. Estimation of cancer risks from radiotherapy of benign diseases. Strahlenther. Onkol. 2006, 182, 431–436. [Google Scholar] [CrossRef]
- Ghadimi-Moghadam, A.; Haghani, M.; Bevelacqua, J.J.; Jafarzadeh, A.; Kaveh-Ahangar, A.; Mortazavi, S.M.J.; Mortazavi, S.A.R. SAR COVID-19 Tragic Pandemic: Concerns over Unintentional “Directed Accelerated Evolution” of Novel Coronavirus (SARS-CoV-2) and Introducing a Modified Treatment Method for ARDS. J. Biomed. Phys. Eng. 2020, 10, 241–246. [Google Scholar]
- Gorman, E.; Millar, J.; McAuley, D.; O’Kane, C. Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: Optimizing the therapeutic potential. Expert Rev. Respir. Med. 2021, 15, 301–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.J.; Cai, L. Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol. Sci. 2000, 53, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.J.; Harman, R.J.; Bunnell, B.A.; Schreiber, M.A.; Xiang, C.; Wang, F.S.; Santidrian, A.F.; Minev, B.R. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J. Transl. Med. 2020, 18, 203. [Google Scholar] [CrossRef] [PubMed]
No | Age [yrs] | Gender (M/F) | BMI | Co-Morbidities | Symptoms Duration before LDRT | Co-Medications for COVID-19 | Baseline MEWS [Points] | The Lowest Sp02 [%], Days after LDRT. *—Oxygen Support | Duration of Hospitalization [Days] | Outcome, Day 28 | Outcome, Long-term Follow-Up | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | 1 | 3 | 7 | 14 | |||||||||||
1 | 49 | M | n/a | AH, DM | 10 days | RDV, LMWH, DEX | 1 | 88 * | 90 * | 94 * | 97 * | 92 | 20 | Released | Resolved |
2 | 62 | F | 26 | AH | 6 days | DEX, LMWH, RDV, FFP | 1 | 86 * | 89 * | 92 * | 95 * | 97 | 24 | Released | Resolved |
3 | 67 | M | 28 | AH, DM | 3 days | RDV, LMWH, DEX | 1 | 69 * | 87 * | 85 * | 84 * | 90 * | 28 | Released | Resolved |
4 | 70 | F | n/a | AH, dyslipidemia, stroke | 7 days | FFP, LMWH, DEX, RDV | 1 | 82 * | 84 * | 76 * | 85 * | 89 * | 28 | Released | Resolved |
5 | 78 | M | n/a | AH emphysema | 8 days | RDV, LMWH, DEX | 3 | 85 * | 86 * | 11 | Died | Died | |||
6 | 68 | M | 31 | AH | 8 days | RDV, LMWH, DEX | 1 | 78 * | 84 * | 6 | Died | Died | |||
7 | 69 | F | 39 | AH, DM | 9 days | LMWH | 1 | 85 * | 96 * | 95 * | 95 * | 95 | 24 | Released | Resolved |
8 | 61 | M | 31 | Acute kidney injury | 5 days | LMWH, DEX | 3 | 83 * | 88 * | 83 * | 83 * | 14 | Mechanical ventilation | Died | |
9 | 66 | F | 26 | AH, DM atrial fibrillation | 8 days | DEX, LMWH | 1 | 86 * | 90 * | 94 * | 86 | 15 | Released | Resolved | |
10 | 68 | M | 34 | AH, dyslipidemia, | 7 days | LMWH, DEX | 1 | 84 * | 60 * | 85 * | 85 * | 20 | Released | Resolved | |
11 | 65 | M | 35 | Hypothyroidism, CKD | 7 days | RDV, LMWH, DEX | 1 | 72 * | 80 * | 80 * | 7 | High flow | Lost to follow-up | ||
12 | 53 | F | 30 | AH, DM | 5 days | RDV, LMWH, DEX | 1 | 76 * | 80 * | 82 * | 77 * | 83 * | 23 | Released | Resolved |
13 | 56 | F | 31 | AH, DM, CKD, cardiomyopathy, pulmonary embolism | 5 days | RDV, LMWH, DEX | 1 | 81 * | 86 * | 95 * | 95 | 14 | Released | Resolved | |
14 | 53 | M | 35 | AH, DM, liver damage | 14 days | LMWH, DEX | 1 | 89 * | 96 * | 82 * | 95 * | 95 | 10 | Released | Resolved |
15 | 74 | M | 31 | AH, DM, UTI E. faecium VRE+ | 1 day | RDV, TCZ, DEX, LMWH | 1 | 87 * | 88 * | 92 * | 92 * | 91 * | 28 | Released | Resolved |
Baseline | Day 1 | p | Day 3 | p | Day 5 | p | Day 7 | p | Day 14 | p | Friedman ANOVA P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sp02 [%] | 84.5 (81.0–86.0) | 87.5 (84.0–90.0) | 0.016 | 92.0 (85.0–94.0) | 0.308 | 92.0 (90.0–94.0) | 0.463 | 89.0 (84.5–95.0) | 0.575 | 91.5 (89.5–95.0) | 0.249 | 0.007 |
WBC [103/uL] | 7.3 (5.4–9.2) | 8.7 (8.1–9.4) | 0.028 | 8.4 (8.3–9.6) | 0.345 | 10.1 (8.1–13.0) | 0.463 | 7.8 (7.3–11.2) | 0.575 | 7.6 (5.8–9.9) | 0.036 | 0.702 |
Neutrophils [103/uL] | 5.9 (4.6–7.9) | 7.4 (6.5–7.5) | 0.069 | 7.5 (7.1–10.2) | 0.180 | 8.6 (7.0–10.9) | n/a | 5.8 (5.3–8.7) | 0.285 | 4.5 (3.1–6.6) | 0.080 | n/a |
Platelets [103/uL] | 225 (175–237) | 359 (290–288) | 0.003 | 354 (310–387) | 0.753 | 344 (297–467) | 0.465 | 285 (251–339) | 0.025 | 196 (163–257) | 0.017 | 0.214 |
CRP [ng/mL] | 107.9 (91.2–161.5) | 51.4 (16.8–67.0) | 0.007 | 22.1 (13.3–68.2) | 0.017 | 9.3 (3.5–33.4) | 0.110 | 5.5 (2.2–10.7) | 0.018 | 1.9 (0.6–16.7) | 0.237 | <0.001 |
IL-6 [pg/mL] | 98.7 (32.8–168.3) | 26.9 (14.4–63.0) | 0.006 | 15.8 (14.1–43.5) | 0.138 | 14.7 (5.8–113.0) | 0.500 | 12.2 (3.4–18.5) | 0.674 | 24.2 (5.6–53.9) | 0.080 | 0.119 |
Fibrinogen [g/L] | 5.1 (4.6–5.8) | 3.6 (2.5–4.7) | 0.037 | 3.2 (2.7–4.7) | 0.018 | 2.8 (2.2–3.4) | 0.075 | 2.4 (1.8–3.0) | 0.028 | 2.7 (1.9–3.1) | 0.600 | 0.233 |
D-dimer [ng/mL] | 561 (434–1351) | 890 (577–3054) | 0.075 | 2012 (819–3628) | 0.401 | 1028 (700–2027) | 0.093 | 1044 (596–2325) | 0.161 | 809 (470–1195) | 0.021 | 0.625 |
LDH [U/L] | 660 (523–785) | 570 (419–875) | 0.203 | 547 (421-679) | 0.028 | 425 (349–626) | 0.028 | 364 (307–480) | 0.008 | 262 (247–378) | 0.028 | 0.017 |
Ferritin [ng/mL] | 2453 (912–2717) | 1128 (686–2456) | 0.249 | 1607 (390–2125) | 0.080 | 1106 (534–2251) | 1.000 | 797 (453–1992) | 0.267 | 720 (370–992) | 0.068 | n/a |
ALT [IU/mL] | 34.3 (25.7–45.3) | 54.4 (27.6–76.2) | 0.041 | 75.9 (32.8–114.9) | 0.327 | 48.0 (25.0–76.9) | 0.889 | 45.7 (28.8–66.0) | 1.000 | 40.4 (36.1–59.0) | 0.674 | 0.924 |
Bilirubin [umol/L] | 7.9 (6.5–10.6) | 7.2 (5.6–10.1) | 0.241 | 8.4 (4.4–9.9) | 0.600 | 8.7 (7.6–11.6) | 0.753 | 7.6 (5.3–11.4) | 0.735 | 8.8 (6.1–12.5) | 0.779 | 0.490 |
Troponin T [ng/L] | 14 (9–26) | 16 (11–19) | 0.675 | 12 (9–16) | 0.345 | 13 (9–14) | 0.273 | 13 (9–16) | 0.059 | 16 (11–22) | 0.012 | 0.428 |
eGFR [ml/min/1.73 m2] | 77.4 (63.8–84.8) | 85.6 (79.1–107.9) | 0.005 | 101.6 (89.0–110.8) | 0.018 | 98.7 (86.9–113.1) | 0.249 | 99.4 (89.1–110.5) | 0.173 | 103.4 (89.0–125.5) | 0.674 | 0.119 |
Baseline | Day 7 | p | Day 14 | p | |
---|---|---|---|---|---|
Sp02 [%] | 84.5 (81.0–86.0) | 89.0 (84.5–95.0) | 0.008 | 91.5 (89.5–95.0) | 0.018 |
WBC [103/uL] | 7.3 (5.4–9.2) | 7.8 (7.3–11.2) | 0.214 | 7.61 (5.79–9.93) | 0.799 |
Neutrophils [103/uL] | 5.9 (4.6–7.9) | 5.8 (5.3–8.7) | 0.866 | 4.49 (3.07–6.63) | 0.237 |
Platelets [103/uL] | 225 (175–237) | 285 (251–339) | 0.374 | 195.5 (163.0–257.0) | 0.241 |
CRP [ng/mL] | 107.9 (91.2–161.5) | 5.5 (2.2–10.7) | 0.008 | 1.91 (0.60–16.70) | 0.005 |
IL-6 [pg/mL] | 98.7 (32.8–168.3) | 12.2 (3.4–18.5) | 0.028 | 24.2 (5.6–53.9) | 0.116 |
Fibrinogen [g/L] | 5.1 (4.6–5.8) | 2.4 (1.8–3.0) | 0.028 | 2.7 (1.9–3.1) | 0.018 |
D-dimer [ng/mL] | 561 (434–1351) | 1044 (596–2325) | 0.093 | 809.0 (469.7–1194.9) | 0.657 |
LDH [U/L] | 660 (523–785) | 364 (307–480) | 0.008 | 262 (247–378) | 0.028 |
Ferritin [ng/mL] | 2453 (912–2717) | 797 (453–1992) | 0.173 | 720.2 (369.7–992.1) | 0.043 |
ALT [IU/mL] | 34.3 (25.7–45.3) | 45.7 (28.8–66.0) | 0.161 | 40.4 (36.1–59.0) | 0.037 |
Bilirubin [umol/L] | 7.9 (6.5–10.6) | 7.6 (5.3–11.4) | 0.263 | 8.8 (6.1–12.5) | 1.000 |
Tropnin T [ng/L] | 14 (9–26) | 13 (9–16) | 0.249 | 16.0 (11.0–22.0) | 0.753 |
eGFR [mL/min/1.73 m2] | 77.4 (63.8–84.8) | 99.4 (89.1–110.5) | 0.005 | 103.4 (89.0–125.5) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkowski, T.W.; Jaroszewicz, J.; Piotrowski, D.; Ślosarek, K.; Sobala-Szczygieł, B.; Słonina, D.; Włostowska, B.; Bodusz, D.; Piasecki, M.; Nachlik, M.; et al. Low-Dose Radiotherapy for Patients with Pneumonia Due to COVID-19: A Single-Institution Prospective Study. Biomedicines 2023, 11, 858. https://doi.org/10.3390/biomedicines11030858
Rutkowski TW, Jaroszewicz J, Piotrowski D, Ślosarek K, Sobala-Szczygieł B, Słonina D, Włostowska B, Bodusz D, Piasecki M, Nachlik M, et al. Low-Dose Radiotherapy for Patients with Pneumonia Due to COVID-19: A Single-Institution Prospective Study. Biomedicines. 2023; 11(3):858. https://doi.org/10.3390/biomedicines11030858
Chicago/Turabian StyleRutkowski, Tomasz Wojciech, Jerzy Jaroszewicz, Damian Piotrowski, Krzysztof Ślosarek, Barbara Sobala-Szczygieł, Dorota Słonina, Bożena Włostowska, Dawid Bodusz, Maciej Piasecki, Michał Nachlik, and et al. 2023. "Low-Dose Radiotherapy for Patients with Pneumonia Due to COVID-19: A Single-Institution Prospective Study" Biomedicines 11, no. 3: 858. https://doi.org/10.3390/biomedicines11030858
APA StyleRutkowski, T. W., Jaroszewicz, J., Piotrowski, D., Ślosarek, K., Sobala-Szczygieł, B., Słonina, D., Włostowska, B., Bodusz, D., Piasecki, M., Nachlik, M., Oczko-Grzesik, B., Gądek, A., Kowal, D., Rutkowski, R., Wojarska-Tręda, E., & Składowski, K. (2023). Low-Dose Radiotherapy for Patients with Pneumonia Due to COVID-19: A Single-Institution Prospective Study. Biomedicines, 11(3), 858. https://doi.org/10.3390/biomedicines11030858