Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Variants in Dopaminergic Genes and Response to Antipsychotics
Study Design | Model/ Subjects | Methodology | Main Outcomes | Reference |
---|---|---|---|---|
Preclinical human study | 107 TRS (70 males 37 females) | PCR-based restriction fragment length and direct sequencing | COMT rs4680 polymorphism Val/Val allele could influence the favorable negative symptoms’ response to clozapine. | [75] |
Prospective human study | 208 TRS | Real-time PCR and genotyping | Association between DRD2 rs2514218 and response to clozapine. | [73] |
Genetic Association human study | 49 TRS 33 UTRS 88 treatment responders | Genotyping | Treatment response could associate with the Val (COMT/ Val158Met) and Ser (DRD3/Ser9Gly) alleles TRS may correlate with the G allele (DRD2/A-241G), UTRS may associate with the Met allele (COMT/Val158Met) and Gly allele from Ser9Gly (DRD3). | [80] |
Genetic Association human study | 171 TRS 592 treatment responders 447 HC | Genotyping | Rates of treatment resistant patients with the Met allele of rs4680 on the COMT gene and the C/C homozygote of rs3470934 on the GAD1 gene were significantly higher than treatment responders and HC. | [79] |
3.2. D2R-Related Mechanisms
3.2.1. D2R Levels
3.2.2. D2R Low vs. High-Affinity State
3.2.3. Dopamine Supersensitivity
Study Design | Model/Subjects | Methodology | Main Outcomes | References |
---|---|---|---|---|
Longitudinal population study | 323 FEP patients (at baseline and after 10-year follow-up) | All patients were drug-naïve or recently treated at baseline and medicated at the endpoint Patients belonged to the AESOP-10 cohort. Medication and clinical history were assessed longitudinally TRS definition based on NICE 2014 criteria (Clinical guideline 178) | Most treatment resistant patients do not respond to antipsychotic treatment, even at the time of FEP It is not clear whether FEP may be already affected by dopamine supersensitivity | [97] |
Retrospective population study | 246 FEP patients (with a follow-up period of 5 years) | All patients were drug-naïve or recently treated at baseline and medicated at the endpoint EPCRs database interrogation allowed to reconstruct retrospectively medication and clinical history TRS definition based on: 1. clozapine use during the course of the illness; or 2. NICE 2014 criteria (Clinical guideline 178) | [96] | |
Cross-sectional study | 611 patients with schizophrenia or schizoaffective disorder (DSM-IV-TR) (147 TRS of which: 106 DSP 41 without DSP) | In outpatient and inpatient settings, patients suffering from chronic schizophrenia and in active antipsychotic treatment TRS diagnosis was defined according to the Broadest Eligibility Criteria [117] DSP diagnosed according to research criteria proposed by Chouinard [99] | [98] | |
Retrospective population study | 265 patients with schizophrenia or schizoaffective disorder (DSM-IV-TR) (treatment resistant and treatment responders) | In outpatient and inpatient settings, patients suffering from chronic schizophrenia and in active antipsychotic treatment TRS diagnosis was defined according to the Broadest Eligibility Criteria [117] DSP diagnosed according to research criteria proposed by Chouinard [99] | DSP has been regarded as a pivotal factor in treatment resistant schizophrenia, at least the acquired subtype | [101] |
In vitro preclinical study | Cultures of prolactin-secreting pituitary-derived MMQ, and HEK293T cells | ELISA and Western blot analysis | Multiple antipsychotics, but not clozapine, cause time and concentration-dependent increase of surface D2R expression. | [113] |
In vitro preclinical study | HEK293T Cells | NanoBiT®, and Western blot analysis | Distinct D2R antagonists may differently affect D2R dimerization levels, which may have effects on downstream postreceptor signaling and may putatively contribute to explain differences in response to antipsychotics. | [118] |
Preclinical study | WT rats and transgenic mice | In vivo Ca2+ imaging, Western blot analysis, ex vivo electrophysiology | Behavioral supersensitivity results from mechanisms of synaptic plasticity, insertion of Ca2+-permeable AMPA receptors, and loss of D2R-dependent IPSCs in the NA. The chemogenetic restoration of IPSCs in D2-MSNs has been shown to prevent supersensitivity | [116] |
3.2.4. D2R Dimerization
3.2.5. D2R-Containing Heteromeric Complexes
3.2.6. D2Short/D2Long Levels
3.2.7. Extrastriatal D2Rs
3.3. Presynaptic Dopamine Synthesis
Baseline and Stimulated Dopamine Levels
Study Design | Model/Subjects | Methodology | Main Outcomes | References |
---|---|---|---|---|
Prospective human study | 10 schizophrenia patients | [18F]N-methylspiroperidol PET | Similar D2R striatal occupancy in both responder and nonresponder patients. | [187] |
Cross-sectional human study | 18 treatment responders 18 HC | SPECT | Higher dopamine synthesis capacity associated with better response to antipsychotics. | [169] |
Postmortem study | Human brain tissue | Immunocytochemical | TH labeled axodendritic synapses’ density was greater in treatment responders than in either treatment resistant ones or HC. | [193] |
Cross-sectional human study | 12 treatment resistant 12 treatment responders 12 HC | [18F]-DOPA PET | Responder patients had lower D2R binding potential than non-responder ones. | [181] |
Prospective human study | 28 antipsychotic-naïve schizophrenia patients 26 HC | SPECT with [123I]iodobenzamide | Negative correlation between low striatal D2R binding potential at baseline and amelioration of positive symptoms after a 6-week treatment with amisulpride in antipsychotic-naïve schizophrenia patients. | [180] |
Cross-sectional human study | 21 treatment resistant 20 treatment responders | H-MRS | Treatment responders have elevated striatal dopamine synthesis but normal glutamate levels in the anterior cingulate cortex. | [197] |
Cross-sectional human study | 12 treatment resistant 12 treatment responders 12 HC | [18F]-DOPA PET | Treatment resistant showed lower striatal dopamine synthesis capacity than treatment responder ones. | [192] |
Cross-sectional human study | 21 treatment resistant 21 treatment responders 24 HC | fMRI | Attenuation of reward prediction error-related activation in multiple brain areas of treatment resistant patients compared to HC. | [199] |
Cross-sectional human study | 27 treatment resistant 26 UTRS 21 treatment responders 26 HC | H-MRS | Glutamatergic metabolites in the anterior cingulate cortex are higher in treatment resistant patients compared to HC. | [198] |
Prospective human study | 20 FEP or antipsychotic-naïve psychotic patients | [18F]-DOPA PET | [18F]-DOPA uptake is higher in responders compared to non-responders and HC Significant positive correlations with improvements in PANSS-positive, negative, and total scores after 4-week of antipsychotics. | [191] |
Meta-analysis | 983 schizophrenia patients 968 HC | Meta-analysis of variance | Higher dopamine synthesis capacity is found in treatment responders, but not in treatment resistant patients compared to HC. | [194] |
Cross-sectional human study | 40 patients with psychosis | [18F]-DOPA PET MRI | Treatment responders have a negative correlation between prefrontal grey matter volume and striatal dopamine synthesis capacity, but this is not evident in treatment resistant patients. | [183] |
Multicenter cross-sectional study | 92 patients across 4 sites (44 treatment resistant 48 treatment responders) 54 patients at 2 sites (29 treatment resistant 25 treatment responders) | H-MRS [18F]-DOPA PET | Treatment resistant patients may have normal striatal dopamine synthesis capacity but elevated anterior cingulate glutamate levels. | [195] |
Cross-sectional human study | 24 schizophrenia patients 12 HC | [18F]-DOPA PET DTI | Dopamine synthesis capacity may represent a putative biological signature to differentiate treatment resistant from treatment responders patients. | [182] |
3.4. Postsynaptic D2Rs
3.4.1. Modulation of D2R Internalization
3.4.2. β-arrestin Signaling
3.4.3. D2R-Mediated Action on Scaffolding Proteins
4. Discussion
4.1. Methodological Considerations
4.2. Theoretical Considerations
4.3. Future Perspectives
- (a)
- (b)
- Should patients with non-responsive non-positive symptoms be included within TRS? Since antipsychotics are not considered to have an efficacious impact on negative and/or cognitive symptoms [255], patients with prominent and non-responsive non-positive symptoms should not be included among TRS or at least should be classified otherwise. Nonetheless, a recent report from our group has demonstrated that disorganization symptoms are as relevant as positive symptoms to categorize schizophrenia patients as TRS with the current operative criteria [256]. It could be hypothesized that treatment resistant patients with prominent non-positive symptoms may fall within the so-called normodopaminergic B subtype of schizophrenia. However, there is no clear evidence that positive symptoms may derive only from hyperdopaminergic state. On the contrary, clozapine, which is not a potent dopamine blocker, is efficacious against positive symptoms in individuals who did not respond to conventional antipsychotics, possibly implicating that their positive symptoms were not dopaminergic in origin. Moreover, suppose patients with non-positive non-responsive symptoms are to be excluded from the TRS definition. In that case, the operative measures to assess non-response should be changed since at the moment the most widely accepted measure of non-response is the lack of substantial reduction of PANSS total score, therefore also including non-positive symptom-related items.
- (c)
- Should non-response to antipsychotics be considered a trans-diagnostic condition rather than limited to schizophrenia? In fact, antipsychotic agents are not intended to treat schizophrenia as a whole but only to ameliorate positive symptoms (or more conservatively to ameliorate those symptoms that derive from high D2R-mediated transmission). Excluding affective psychoses, whose treatment also includes non-antipsychotic agents, the field of non-affective psychoses exhibiting positive symptoms is not merely restricted to schizophrenia. Therefore, the definition of TRS may be excessively narrow and other definitions and inclusion criteria should be provided, e.g., “treatment resistant positive symptom syndrome” which includes patients suffering from non-affective psychosis whose positive symptoms are not ameliorated by antipsychotics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iasevoli, F.; Giordano, S.; Balletta, R.; Latte, G.; Formato, M.V.; Prinzivalli, E.; De Berardis, D.; Tomasetti, C.; de Bartolomeis, A. Treatment resistant schizophrenia is associated with the worst community functioning among severely-ill highly-disabling psychiatric conditions and is the most relevant predictor of poorer achievements in functional milestones. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 65, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; McCutcheon, R.; Agid, O.; de Bartolomeis, A.; van Beveren, N.J.; Birnbaum, M.L.; Bloomfield, M.A.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; et al. Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology. Am. J. Psychiatry 2017, 174, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Lehman, A.F.; Lieberman, J.A.; Dixon, L.B.; McGlashan, T.H.; Miller, A.L.; Perkins, D.O.; Kreyenbuhl, J.; American Psychiatric, A.; Steering Committee on Practice Guidelines. Practice guideline for the treatment of patients with schizophrenia, second edition. Am. J. Psychiatry 2004, 161 (Suppl. S2), 1–56. [Google Scholar] [PubMed]
- Altamura, A.C. A multidimensional (pharmacokinetic and clinical-biological) approach to neuroleptic response in schizophrenia. With particular reference to drug resistance. Schizophr. Res. 1993, 8, 187–198. [Google Scholar] [CrossRef]
- Kane, J.M.; Garcia-Ribera, C. Clinical guideline recommendations for antipsychotic long-acting injections. Br. J. Psychiatry 2009, 52, S63–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, J.M.; Agid, O.; Baldwin, M.L.; Howes, O.; Lindenmayer, J.P.; Marder, S.; Olfson, M.; Potkin, S.G.; Correll, C.U. Clinical Guidance on the Identification and Management of Treatment-Resistant Schizophrenia. J. Clin. Psychiatry 2019, 80, 2783. [Google Scholar] [CrossRef] [Green Version]
- Pardinas, A.F.; Nalmpanti, M.; Pocklington, A.J.; Legge, S.E.; Medway, C.; King, A.; Jansen, J.; Helthuis, M.; Zammit, S.; MacCabe, J.; et al. Pharmacogenomic Variants and Drug Interactions Identified through the Genetic Analysis of Clozapine Metabolism. Am. J. Psychiatry 2019, 176, 477–486. [Google Scholar] [CrossRef]
- Nucifora, F.C., Jr.; Woznica, E.; Lee, B.J.; Cascella, N.; Sawa, A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol. Dis. 2019, 131, 104257. [Google Scholar] [CrossRef]
- Tost, H.; Alam, T.; Meyer-Lindenberg, A. Dopamine and psychosis: Theory, pathomechanisms and intermediate phenotypes. Neurosci. Biobehav. Rev. 2011, 34, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Scott, J.G. Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Transl. Psychiatry 2018, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Howes, O.D.; Kambeitz, J.; Kim, E.; Stahl, D.; Slifstein, M.; Abi-Dargham, A.; Kapur, S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 2012, 69, 776–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; et al. Schizophrenia. Nat. Rev. Dis. Primers 2015, 1, 15067. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [Green Version]
- de Bartolomeis, A.; Iasevoli, F.; Tomasetti, C.; Buonaguro, E.F. MicroRNAs in Schizophrenia: Implications for Synaptic Plasticity and Dopamine-Glutamate Interaction at the Postsynaptic Density. New Avenues for Antipsychotic Treatment under a Theranostic Perspective. Mol. Neurobiol. 2015, 52, 1771–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, R.S.; Sommer, I.E. The neurobiology and treatment of first-episode schizophrenia. Mol. Psychiatry 2015, 20, 84–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bartolomeis, A.; Vellucci, L.; De Simone, G.; Mazza, B.; Barone, A.; Ciccarelli, M. Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics’ Treatment of Schizophrenia. Cells 2023, 12, 574. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019, 42, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Grunder, G.; Hippius, H.; Carlsson, A. The ‘atypicality’ of antipsychotics: A concept re-examined and re-defined. Nat. Rev. 2009, 8, 197–202. [Google Scholar] [CrossRef]
- Solmi, M.; Murru, A.; Pacchiarotti, I.; Undurraga, J.; Veronese, N.; Fornaro, M.; Stubbs, B.; Monaco, F.; Vieta, E.; Seeman, M.V.; et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: A state-of-the-art clinical review. Ther. Clin. Risk Manag. 2017, 13, 757–777. [Google Scholar] [CrossRef] [Green Version]
- Kondej, M.; Stepnicki, P.; Kaczor, A.A. Multi-Target Approach for Drug Discovery against Schizophrenia. Int. J. Mol. Sci. 2018, 19, 3105. [Google Scholar] [CrossRef] [Green Version]
- Trichard, C.; Paillere-Martinot, M.L.; Attar-Levy, D.; Recassens, C.; Monnet, F.; Martinot, J.L. Binding of antipsychotic drugs to cortical 5-HT2A receptors: A PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am. J. Psychiatry 1998, 155, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Perrault, G.; Depoortere, R.; Morel, E.; Sanger, D.J.; Scatton, B. Psychopharmacological profile of amisulpride: An antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J. Pharmacol. Exp. Ther. 1997, 280, 73–82. [Google Scholar] [PubMed]
- Anam, A.; Lynch, S.; Mosharraf, N.; Soukas, C.; Gekhman, D. Aripiprazole: Examining the clinical implications of D2 affinity. Int. Clin. Psychopharmacol. 2023, 38, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Nutt, D.J.; Davies, S.J. Visualizing classification of drugs used in psychotic disorders: A ‘subway map’ representing mechanisms, established classes and informal categories. J. Psychopharmacol. 2022, 36, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Juza, R.; Stefkova, K.; Dehaen, W.; Randakova, A.; Petrasek, T.; Vojtechova, I.; Kobrlova, T.; Pulkrabkova, L.; Muckova, L.; Mecava, M.; et al. Synthesis and in vitro Evaluation of Novel Dopamine Receptor D(2) 3,4-dihydroquinolin-2(1H)-one Derivatives Related to Aripiprazole. Biomolecules 2021, 11, 1262. [Google Scholar] [CrossRef]
- Stark, A.D.; Jordan, S.; Allers, K.A.; Bertekap, R.L.; Chen, R.; Mistry Kannan, T.; Molski, T.F.; Yocca, F.D.; Sharp, T.; Kikuchi, T.; et al. Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT 2A receptors: Functional receptor-binding and in vivo electrophysiological studies. Psychopharmacology 2007, 190, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Hope, J.; Keks, N.A. Cariprazine: A new partial dopamine agonist with a familiar profile. Australas Psychiatry 2022, 30, 382–385. [Google Scholar] [CrossRef]
- Wheeler, F.J.; Rushton, B.L.; Parsons, D.K.; Nigg, D.W. Reactor physics design for an epithermal neutron beam at the Power Burst reactor Facility. Strahlenther. Onkol. 1989, 165, 69–71. [Google Scholar]
- Kiss, B.; Nemethy, Z.; Fazekas, K.; Kurko, D.; Gyertyan, I.; Saghy, K.; Laszlovszky, I.; Farkas, B.; Kirschner, N.; Bolf-Terjeki, E.; et al. Preclinical pharmacodynamic and pharmacokinetic characterization of the major metabolites of cariprazine. Drug Des. Devel. Ther. 2019, 13, 3229–3248. [Google Scholar] [CrossRef] [Green Version]
- Proudman, R.G.W.; Pupo, A.S.; Baker, J.G. The affinity and selectivity of alpha-adrenoceptor antagonists, antidepressants, and antipsychotics for the human alpha1A, alpha1B, and alpha1D-adrenoceptors. Pharmacol. Res. Perspect. 2020, 8, e00602. [Google Scholar] [CrossRef]
- Kapur, S.; Seeman, P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J. Psychiatry Neurosci. 2000, 25, 161–166. [Google Scholar] [PubMed]
- Seeman, P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 1992, 7, 261–284. [Google Scholar] [PubMed]
- Seeman, P.; Tallerico, T. Rapid release of antipsychotic drugs from dopamine D2 receptors: An explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am. J. Psychiatry 1999, 156, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.L.; Tandra, S.; Burgess, L.H.; Sibley, D.R.; Meltzer, H.Y. D4 dopamine receptor binding affinity does not distinguish between typical and atypical antipsychotic drugs. Psychopharmacology 1995, 120, 365–368. [Google Scholar] [CrossRef]
- Snyder, G.L.; Vanover, K.E.; Zhu, H.; Miller, D.B.; O’Callaghan, J.P.; Tomesch, J.; Li, P.; Zhang, Q.; Krishnan, V.; Hendrick, J.P.; et al. Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission. Psychopharmacology 2015, 232, 605–621. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Matsumoto, R.; Yamamoto, Y.; Fukuyama, K. Effects of Subchronic Administrations of Vortioxetine, Lurasidone, and Escitalopram on Thalamocortical Glutamatergic Transmission Associated with Serotonin 5-HT7 Receptor. Int. J. Mol. Sci. 2021, 22, 1351. [Google Scholar] [CrossRef] [PubMed]
- Zareba, P.; Drabczyk, A.K.; Jaskowska, J.; Satala, G. Chemical puzzles in the search for new, flexible derivatives of lurasidone as antipsychotic drugs. Bioorg. Med. Chem. 2020, 28, 115459. [Google Scholar] [CrossRef]
- Nakazawa, S.; Yokoyama, C.; Nishimura, N.; Horisawa, T.; Kawasaki, A.; Mizuma, H.; Doi, H.; Onoe, H. Evaluation of dopamine D(2)/D(3) and serotonin 5-HT(2)A receptor occupancy for a novel antipsychotic, lurasidone, in conscious common marmosets using small-animal positron emission tomography. Psychopharmacology 2013, 225, 329–339. [Google Scholar] [CrossRef]
- Ichikawa, O.; Okazaki, K.; Nakahira, H.; Maruyama, M.; Nagata, R.; Tokuda, K.; Horisawa, T.; Yamazaki, K. Structural insight into receptor-selectivity for lurasidone. Neurochem. Int. 2012, 61, 1133–1143. [Google Scholar] [CrossRef]
- Kozielska, M.; Johnson, M.; Pilla Reddy, V.; Vermeulen, A.; Li, C.; Grimwood, S.; de Greef, R.; Groothuis, G.M.; Danhof, M.; Proost, J.H. Pharmacokinetic-pharmacodynamic modeling of the D(2) and 5-HT (2A) receptor occupancy of risperidone and paliperidone in rats. Pharm. Res. 2012, 29, 1932–1948. [Google Scholar] [CrossRef] [Green Version]
- Saller, C.F.; Salama, A.I. Seroquel: Biochemical profile of a potential atypical antipsychotic. Psychopharmacology 1993, 112, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Leysen, J.E.; Gommeren, W.; Eens, A.; de Chaffoy de Courcelles, D.; Stoof, J.C.; Janssen, P.A. Biochemical profile of risperidone, a new antipsychotic. J. Pharmacol. Exp. Ther. 1988, 247, 661–670. [Google Scholar] [PubMed]
- Leysen, J.E.; Janssen, P.M.; Megens, A.A.; Schotte, A. Risperidone: A novel antipsychotic with balanced serotonin-dopamine antagonism, receptor occupancy profile, and pharmacologic activity. J. Clin. Psychiatry 1994, 55 (Suppl. S5), 5–12. [Google Scholar] [PubMed]
- Seeger, T.F.; Seymour, P.A.; Schmidt, A.W.; Zorn, S.H.; Schulz, D.W.; Lebel, L.A.; McLean, S.; Guanowsky, V.; Howard, H.R.; Lowe, J.A., 3rd; et al. Ziprasidone (CP-88,059): A new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J. Pharmacol. Exp. Ther. 1995, 275, 101–113. [Google Scholar] [PubMed]
- Schmidt, A.W.; Lebel, L.A.; Howard, H.R., Jr.; Zorn, S.H. Ziprasidone: A novel antipsychotic agent with a unique human receptor binding profile. Eur. J. Pharmacol. 2001, 425, 197–201. [Google Scholar] [CrossRef]
- Kiss, B.; Laszlovszky, I.; Horvath, A.; Nemethy, Z.; Schmidt, E.; Bugovics, G.; Fazekas, K.; Gyertyan, I.; Agai-Csongor, E.; Domany, G.; et al. Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: I. neurochemical characterisation of RG-15. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008, 378, 515–528. [Google Scholar] [CrossRef]
- Natesan, S.; Reckless, G.E.; Barlow, K.B.; Nobrega, J.N.; Kapur, S. Amisulpride the ‘atypical’ atypical antipsychotic--comparison to haloperidol, risperidone and clozapine. Schizophr. Res. 2008, 105, 224–235. [Google Scholar] [CrossRef]
- Schoemaker, H.; Claustre, Y.; Fage, D.; Rouquier, L.; Chergui, K.; Curet, O.; Oblin, A.; Gonon, F.; Carter, C.; Benavides, J.; et al. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J. Pharmacol. Exp. Ther. 1997, 280, 83–97. [Google Scholar]
- Seeman, P. Glutamate and dopamine components in schizophrenia. J. Psychiatry Neurosci. 2009, 34, 143–149. [Google Scholar]
- Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003, 28, 1400–1411. [Google Scholar] [CrossRef] [Green Version]
- Tadori, Y.; Forbes, R.A.; McQuade, R.D.; Kikuchi, T. In vitro pharmacology of aripiprazole, its metabolite and experimental dopamine partial agonists at human dopamine D2 and D3 receptors. Eur. J. Pharmacol. 2011, 668, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Sugino, H.; Akazawa, H.; Amada, N.; Shimada, J.; Futamura, T.; Yamashita, H.; Ito, N.; McQuade, R.D.; Mork, A.; et al. Brexpiprazole I: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J. Pharmacol. Exp. Ther. 2014, 350, 589–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, B.; Horvath, A.; Nemethy, Z.; Schmidt, E.; Laszlovszky, I.; Bugovics, G.; Fazekas, K.; Hornok, K.; Orosz, S.; Gyertyan, I.; et al. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: In vitro and neurochemical profile. J. Pharmacol. Exp. Ther. 2010, 333, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Hals, P.A.; Hall, H.; Dahl, S.G. Phenothiazine drug metabolites: Dopamine D2 receptor, alpha 1- and alpha 2-adrenoceptor binding. Eur. J. Pharmacol. 1986, 125, 373–381. [Google Scholar] [CrossRef]
- Seeman, P.; Van Tol, H.H. Deriving the therapeutic concentrations for clozapine and haloperidol: The apparent dissociation constant of a neuroleptic at the dopamine D2 or D4 receptor varies with the affinity of the competing radioligand. Eur. J. Pharmacol. 1995, 291, 59–66. [Google Scholar] [CrossRef]
- Graff-Guerrero, A.; Mamo, D.; Shammi, C.M.; Mizrahi, R.; Marcon, H.; Barsoum, P.; Rusjan, P.; Houle, S.; Wilson, A.A.; Kapur, S. The effect of antipsychotics on the high-affinity state of D2 and D3 receptors: A positron emission tomography study With [11C]-(+)-PHNO. Arch. Gen. Psychiatry 2009, 66, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, T.; Horisawa, T.; Tokuda, K.; Ishiyama, T.; Ogasa, M.; Tagashira, R.; Matsumoto, K.; Nishikawa, H.; Ueda, Y.; Toma, S.; et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J. Pharmacol. Exp. Ther. 2010, 334, 171–181. [Google Scholar] [CrossRef] [Green Version]
- McCormick, P.N.; Kapur, S.; Graff-Guerrero, A.; Raymond, R.; Nobrega, J.N.; Wilson, A.A. The antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. Neuropsychopharmacology 2010, 35, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E.; Hendrick, J.; Zhang, L.; Yao, W.; Wennogle, L.P.; Zhu, H.W.; Snyder, G.L.; Vanover, K.; Mates, S. The Novel Pharmacology of Iti-007 Is Enhanced and Extended by Its Metabolic Back Conversion from Ic200131. Schizophr. Res. 2014, 153, S116. [Google Scholar] [CrossRef]
- Shahid, M.; Walker, G.B.; Zorn, S.H.; Wong, E.H. Asenapine: A novel psychopharmacologic agent with a unique human receptor signature. J. Psychopharmacol. 2009, 23, 65–73. [Google Scholar] [CrossRef]
- Schotte, A.; Janssen, P.F.; Gommeren, W.; Luyten, W.H.; Van Gompel, P.; Lesage, A.S.; De Loore, K.; Leysen, J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 1996, 124, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, W.K.; Hufeisen, S.J.; Popadak, B.A.; Renock, S.M.; Steinberg, S.; Ernsberger, P.; Jayathilake, K.; Meltzer, H.Y.; Roth, B.L. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003, 28, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, B.; Horti, F.; Bobok, A. Cariprazine, a D-3/D-2 Dopamine Receptor Partial Agonist Antipsychotic, Displays Greater D-3 Receptor Occupancy in vivo Compared with Other Antipsychotics. Schizophr. Res. 2012, 136, S190. [Google Scholar] [CrossRef]
- Inta, D.; Monyer, H.; Sprengel, R.; Meyer-Lindenberg, A.; Gass, P. Mice with genetically altered glutamate receptors as models of schizophrenia: A comprehensive review. Neurosci. Biobehav. Rev. 2010, 34, 285–294. [Google Scholar] [CrossRef]
- Yang, A.C.; Tsai, S.J. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int. J. Mol. Sci. 2017, 18, 1689. [Google Scholar] [CrossRef] [PubMed]
- Radua, J.; Borgwardt, S.; Crescini, A.; Mataix-Cols, D.; Meyer-Lindenberg, A.; McGuire, P.K.; Fusar-Poli, P. Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neurosci. Biobehav. Rev. 2012, 36, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Iasevoli, F.; D’Ambrosio, L.; Ciccarelli, M.; Barone, A.; Gaudieri, V.; Cocozza, S.; Pontillo, G.; Brunetti, A.; Cuocolo, A.; de Bartolomeis, A.; et al. Altered Patterns of Brain Glucose Metabolism Involve More Extensive and Discrete Cortical Areas in Treatment-resistant Schizophrenia Patients Compared to Responder Patients and Controls: Results from a Head-to-Head 2-[18F]-FDG-PET Study. Schizophr. Bull. 2022. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III--the final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Blanc, O.; Brousse, G.; Meary, A.; Leboyer, M.; Llorca, P.M. Pharmacogenetic of response efficacy to antipsychotics in schizophrenia: Pharmacodynamic aspects. Review and implications for clinical research. Fundam. Clin. Pharmacol. 2010, 24, 139–160. [Google Scholar] [CrossRef]
- Zhang, J.P.; Lencz, T.; Malhotra, A.K. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: A meta-analysis. Am. J. Psychiatry 2010, 167, 763–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.P.; Robinson, D.G.; Gallego, J.A.; John, M.; Yu, J.; Addington, J.; Tohen, M.; Kane, J.M.; Malhotra, A.K.; Lencz, T. Association of a Schizophrenia Risk Variant at the DRD2 Locus with Antipsychotic Treatment Response in First-Episode Psychosis. Schizophr. Bull. 2015, 41, 1248–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, E.; Maciukiewicz, M.; Zai, C.C.; Tiwari, A.K.; Li, J.; Potkin, S.G.; Lieberman, J.A.; Meltzer, H.Y.; Muller, D.J.; Kennedy, J.L. Preliminary evidence for association of genome-wide significant DRD2 schizophrenia risk variant with clozapine response. Pharmacogenomics 2016, 17, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Zai, C.C.; Lisoway, A.; Maciukiewicz, M.; Felsky, D.; Tiwari, A.K.; Bishop, J.R.; Ikeda, M.; Molero, P.; Ortuno, F.; et al. Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: A Meta-Analysis. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP) 2016, 19, pyv132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosia, M.; Lorenzi, C.; Pirovano, A.; Guglielmino, C.; Cocchi, F.; Spangaro, M.; Bramanti, P.; Smeraldi, E.; Cavallaro, R. COMT Val158Met and 5-HT1A-R-1019 C/G polymorphisms: Effects on the negative symptom response to clozapine. Pharmacogenomics 2015, 16, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J.; et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 2004, 75, 807–821. [Google Scholar] [CrossRef] [Green Version]
- Bilder, R.M.; Volavka, J.; Lachman, H.M.; Grace, A.A. The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 2004, 29, 1943–1961. [Google Scholar] [CrossRef] [Green Version]
- Valenti, O.; Cifelli, P.; Gill, K.M.; Grace, A.A. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. J. Neurosci. 2011, 31, 12330–12338. [Google Scholar] [CrossRef] [Green Version]
- Kogure, M.; Kanahara, N.; Miyazawa, A.; Oishi, K.; Nakata, Y.; Oda, Y.; Iyo, M. Interacting Roles of COMT and GAD1 Genes in Patients with Treatment-Resistant Schizophrenia: A Genetic Association Study of Schizophrenia Patients and Healthy Controls. J. Mol. Neurosci. 2021, 71, 2575–2582. [Google Scholar] [CrossRef]
- Escamilla, R.; Camarena, B.; Saracco-Alvarez, R.; Fresan, A.; Hernandez, S.; Aguilar-Garcia, A. Association study between COMT, DRD2, and DRD3 gene variants and antipsychotic treatment response in Mexican patients with schizophrenia. Neuropsychiatr. Dis. Treat. 2018, 14, 2981–2987. [Google Scholar] [CrossRef] [Green Version]
- Lencz, T.; Malhotra, A.K. Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin. Neurosci. 2009, 11, 405–415. [Google Scholar] [CrossRef] [PubMed]
- de Matos, L.P.; Santana, C.V.; Souza, R.P. Meta-analysis of dopamine receptor D1 rs4532 polymorphism and susceptibility to antipsychotic treatment response. Psychiatry Res. 2015, 229, 586–588. [Google Scholar] [CrossRef]
- Wong, D.F.; Wagner, H.N., Jr.; Tune, L.E.; Dannals, R.F.; Pearlson, G.D.; Links, J.M.; Tamminga, C.A.; Broussolle, E.P.; Ravert, H.T.; Wilson, A.A.; et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 1986, 234, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Hietala, J.; Syvalahti, E.; Vuorio, K.; Nagren, K.; Lehikoinen, P.; Ruotsalainen, U.; Rakkolainen, V.; Lehtinen, V.; Wegelius, U. Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch. Gen. Psychiatry 1994, 51, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, A.L.; Farde, L.; Eriksson, L.; Halldin, C. No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone. Psychiatry Res. 1995, 61, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Laruelle, M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q. J. Nucl. Med. 1998, 42, 211–221. [Google Scholar] [PubMed]
- Kestler, L.P.; Walker, E.; Vega, E.M. Dopamine receptors in the brains of schizophrenia patients: A meta-analysis of the findings. Behav. Pharmacol. 2001, 12, 355–371. [Google Scholar] [CrossRef]
- Seeman, P.; Weinshenker, D.; Quirion, R.; Srivastava, L.K.; Bhardwaj, S.K.; Grandy, D.K.; Premont, R.T.; Sotnikova, T.D.; Boksa, P.; El-Ghundi, M.; et al. Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc. Natl. Acad. Sci. USA 2005, 102, 3513–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeman, P.; Schwarz, J.; Chen, J.F.; Szechtman, H.; Perreault, M.; McKnight, G.S.; Roder, J.C.; Quirion, R.; Boksa, P.; Srivastava, L.K.; et al. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006, 60, 319–346. [Google Scholar] [CrossRef]
- Seeman, P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci. Ther. 2011, 17, 118–132. [Google Scholar] [CrossRef]
- McCormick, P.N.; Kapur, S.; Seeman, P.; Wilson, A.A. Dopamine D2 receptor radiotracers [(11)C](+)-PHNO and [(3)H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo. Nucl. Med. Biol. 2008, 35, 11–17. [Google Scholar] [CrossRef]
- Seeman, P. Dopamine agonist radioligand binds to both D2High and D2Low receptors, explaining why alterations in D2High are not detected in human brain scans. Synapse 2012, 66, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Suridjan, I.; Rusjan, P.; Addington, J.; Wilson, A.A.; Houle, S.; Mizrahi, R. Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J. Psychiatry Neurosci. 2013, 38, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Narendran, R.; Slifstein, M.; Guillin, O.; Hwang, Y.; Hwang, D.R.; Scher, E.; Reeder, S.; Rabiner, E.; Laruelle, M. Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse 2006, 60, 485–495. [Google Scholar] [CrossRef]
- Kubota, M.; Nagashima, T.; Takano, H.; Kodaka, F.; Fujiwara, H.; Takahata, K.; Moriguchi, S.; Kimura, Y.; Higuchi, M.; Okubo, Y.; et al. Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP) 2017, 20, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Lally, J.; Ajnakina, O.; Di Forti, M.; Trotta, A.; Demjaha, A.; Kolliakou, A.; Mondelli, V.; Reis Marques, T.; Pariante, C.; Dazzan, P.; et al. Two distinct patterns of treatment resistance: Clinical predictors of treatment resistance in first-episode schizophrenia spectrum psychoses. Psychol. Med. 2016, 46, 3231–3240. [Google Scholar] [CrossRef] [Green Version]
- Demjaha, A.; Lappin, J.M.; Stahl, D.; Patel, M.X.; MacCabe, J.H.; Howes, O.D.; Heslin, M.; Reininghaus, U.A.; Donoghue, K.; Lomas, B.; et al. Antipsychotic treatment resistance in first-episode psychosis: Prevalence, subtypes and predictors. Psychol. Med. 2017, 47, 1981–1989. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Kanahara, N.; Yamanaka, H.; Takase, M.; Kimura, H.; Watanabe, H.; Iyo, M. Dopamine supersensitivity psychosis as a pivotal factor in treatment-resistant schizophrenia. Psychiatry Res. 2015, 227, 278–282. [Google Scholar] [CrossRef]
- Chouinard, G. Severe cases of neuroleptic-induced supersensitivity psychosis. Diagnostic criteria for the disorder and its treatment. Schizophr. Res. 1991, 5, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Iyo, M.; Tadokoro, S.; Kanahara, N.; Hashimoto, T.; Niitsu, T.; Watanabe, H.; Hashimoto, K. Optimal extent of dopamine D2 receptor occupancy by antipsychotics for treatment of dopamine supersensitivity psychosis and late-onset psychosis. J. Clin. Psychopharmacol. 2013, 33, 398–404. [Google Scholar] [CrossRef]
- Yamanaka, H.; Kanahara, N.; Suzuki, T.; Takase, M.; Moriyama, T.; Watanabe, H.; Hirata, T.; Asano, M.; Iyo, M. Impact of dopamine supersensitivity psychosis in treatment-resistant schizophrenia: An analysis of multi-factors predicting long-term prognosis. Schizophr. Res. 2016, 170, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Fallon, P.; Dursun, S.; Deakin, B. Drug-induced supersensitivity psychosis revisited: Characteristics of relapse in treatment-compliant patients. Ther. Adv. Psychopharmacol. 2012, 2, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouinard, G.; Jones, B.D.; Annable, L. Neuroleptic-induced supersensitivity psychosis. Am. J. Psychiatry 1978, 135, 1409–1410. [Google Scholar] [PubMed] [Green Version]
- Samaha, A.N.; Seeman, P.; Stewart, J.; Rajabi, H.; Kapur, S. “Breakthrough” dopamine supersensitivity during ongoing antipsychotic treatment leads to treatment failure over time. J. Neurosci. 2007, 27, 2979–2986. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, S.; Seeman, M.V.; Negrete, J.C.; Houle, S.; Shammi, C.M.; Remington, G.J.; Kapur, S.; Zipursky, R.B.; Wilson, A.A.; Christensen, B.K.; et al. Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: A clinical PET study. Psychopharmacology 2000, 152, 174–180. [Google Scholar] [CrossRef]
- Burt, D.R.; Creese, I.; Snyder, S.H. Antischizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain. Science 1977, 196, 326–328. [Google Scholar] [CrossRef]
- Laruelle, M.; Jaskiw, G.E.; Lipska, B.K.; Kolachana, B.; Casanova, M.F.; Kleinman, J.E.; Weinberger, D.R. D1 and D2 receptor modulation in rat striatum and nucleus accumbens after subchronic and chronic haloperidol treatment. Brain Res. 1992, 575, 47–56. [Google Scholar] [CrossRef]
- Rupniak, N.M.; Mann, S.; Hall, M.D.; Fleminger, S.; Kilpatrick, G.; Jenner, P.; Marsden, C.D. Differential effects of continuous administration for 1 year of haloperidol or sulpiride on striatal dopamine function in the rat. Psychopharmacology 1984, 84, 503–511. [Google Scholar] [CrossRef]
- Savasta, M.; Dubois, A.; Benavides, J.; Scatton, B. Different plasticity changes in D1 and D2 receptors in rat striatal subregions following impairment of dopaminergic transmission. Neurosci. Lett. 1988, 85, 119–124. [Google Scholar] [CrossRef]
- Mandel, R.J.; Hartgraves, S.L.; Severson, J.A.; Woodward, J.J.; Wilcox, R.E.; Randall, P.K. A quantitative estimate of the role of striatal D-2 receptor proliferation in dopaminergic behavioral supersensitivity: The contribution of mesolimbic dopamine to the magnitude of 6-OHDA lesion-induced agonist sensitivity in the rat. Behav. Brain Res. 1993, 59, 53–64. [Google Scholar] [CrossRef]
- Alburges, M.E.; Narang, N.; Wamsley, J.K. Alterations in the dopaminergic receptor system after chronic administration of cocaine. Synapse 1993, 14, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Mileson, B.E.; Lewis, M.H.; Mailman, R.B. Dopamine receptor ‘supersensitivity’ occurring without receptor up-regulation. Brain Res. 1991, 561, 1–10. [Google Scholar] [CrossRef]
- Schrader, J.M.; Irving, C.M.; Octeau, J.C.; Christian, J.A.; Aballo, T.J.; Kareemo, D.J.; Conti, J.; Camberg, J.L.; Lane, J.R.; Javitch, J.A.; et al. The differential actions of clozapine and other antipsychotic drugs on the translocation of dopamine D2 receptors to the cell surface. J. Biol. Chem. 2019, 294, 5604–5615. [Google Scholar] [CrossRef]
- Kara, E.; Lin, H.; Strange, P.G. Co-operativity in agonist binding at the D2 dopamine receptor: Evidence from agonist dissociation kinetics. J. Neurochem. 2010, 112, 1442–1453. [Google Scholar] [CrossRef] [PubMed]
- Vivo, M.; Lin, H.; Strange, P.G. Investigation of cooperativity in the binding of ligands to the D(2) dopamine receptor. Mol. Pharmacol. 2006, 69, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruyer, A.; Parrilla-Carrero, J.; Powell, C.; Brandt, L.; Gutwinski, S.; Angelis, A.; Chalhoub, R.M.; Jhou, T.C.; Kalivas, P.W.; Amato, D. Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity. Mol. Psychiatry 2021, 26, 6159–6169. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Reyes, M.G.; Shumway, M.; Battle, C.; Bacchetti, P.; Hansen, M.S.; Hargreaves, W.A. Clozapine eligibility: The effect of stringent criteria on ethnic, gender and age subgroups of schizophrenic patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1996, 20, 1341–1352. [Google Scholar] [CrossRef]
- Wouters, E.; Marin, A.R.; Dalton, J.A.R.; Giraldo, J.; Stove, C. Distinct Dopamine D(2) Receptor Antagonists Differentially Impact D(2) Receptor Oligomerization. Int. J. Mol. Sci. 2019, 20, 1686. [Google Scholar] [CrossRef] [Green Version]
- Zawarynski, P.; Tallerico, T.; Seeman, P.; Lee, S.P.; O’Dowd, B.F.; George, S.R. Dopamine D2 receptor dimers in human and rat brain. FEBS Lett. 1998, 441, 383–386. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Pei, L.; Fletcher, P.J.; Kapur, S.; Seeman, P.; Liu, F. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: Increased dopamine D2 receptor dimerization. Mol. Brain 2010, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Escuela, D.O.; Pintsuk, J.; Schafer, T.; Friedland, K.; Ferraro, L.; Tanganelli, S.; Liu, F.; Fuxe, K. Multiple D2 heteroreceptor complexes: New targets for treatment of schizophrenia. Ther. Adv. Psychopharmacol. 2016, 6, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Perreault, M.L.; O’Dowd, B.F.; George, S.R. Dopamine receptor homooligomers and heterooligomers in schizophrenia. CNS Neurosci. Ther. 2011, 17, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.P.; So, C.H.; Rashid, A.J.; Varghese, G.; Cheng, R.; Lanca, A.J.; O’Dowd, B.F.; George, S.R. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem. 2004, 279, 35671–35678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, A.J.; So, C.H.; Kong, M.M.; Furtak, T.; El-Ghundi, M.; Cheng, R.; O’Dowd, B.F.; George, S.R. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA 2007, 104, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, C.H.; Varghese, G.; Curley, K.J.; Kong, M.M.; Alijaniaram, M.; Ji, X.; Nguyen, T.; O’Dowd, B.F.; George, S.R. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol. Pharmacol. 2005, 68, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Perreault, M.L.; Hasbi, A.; Alijaniaram, M.; Fan, T.; Varghese, G.; Fletcher, P.J.; Seeman, P.; O’Dowd, B.F.; George, S.R. The dopamine D1–D2 receptor heteromer localizes in dynorphin/enkephalin neurons: Increased high affinity state following amphetamine and in schizophrenia. J. Biol. Chem. 2010, 285, 36625–36634. [Google Scholar] [CrossRef] [Green Version]
- Faron-Gorecka, A.; Gorecki, A.; Kusmider, M.; Wasylewski, Z.; Dziedzicka-Wasylewska, M. The role of D1–D2 receptor hetero-dimerization in the mechanism of action of clozapine. Eur. Neuropsychopharmacol. 2008, 18, 682–691. [Google Scholar] [CrossRef]
- Frederick, A.L.; Yano, H.; Trifilieff, P.; Vishwasrao, H.D.; Biezonski, D.; Meszaros, J.; Urizar, E.; Sibley, D.R.; Kellendonk, C.; Sonntag, K.C.; et al. Evidence against dopamine D1/D2 receptor heteromers. Mol. Psychiatry 2015, 20, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Saitoh, O.; Yoshioka, K.; Nakata, H. Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem. Biophys. Res. Commun. 2003, 306, 544–549. [Google Scholar] [CrossRef]
- Ferre, S.; Agnati, L.F.; Ciruela, F.; Lluis, C.; Woods, A.S.; Fuxe, K.; Franco, R. Neurotransmitter receptor heteromers and their integrative role in ‘local modules’: The striatal spine module. Brain Res. Rev. 2007, 55, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Ferre, S.; O’Connor, W.T.; Snaprud, P.; Ungerstedt, U.; Fuxe, K. Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 1994, 63, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Fuxe, K.; Ferre, S.; Canals, M.; Torvinen, M.; Terasmaa, A.; Marcellino, D.; Goldberg, S.R.; Staines, W.; Jacobsen, K.X.; Lluis, C.; et al. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J. Mol. Neurosci. 2005, 26, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Valle-Leon, M.; Callado, L.F.; Aso, E.; Cajiao-Manrique, M.M.; Sahlholm, K.; Lopez-Cano, M.; Soler, C.; Altafaj, X.; Watanabe, M.; Ferre, S.; et al. Decreased striatal adenosine A(2A)-dopamine D(2) receptor heteromerization in schizophrenia. Neuropsychopharmacology 2021, 46, 665–672. [Google Scholar] [CrossRef]
- Valle-Leon, M.; Casajuana-Martin, N.; Del Torrent, C.L.; Argerich, J.; Gomez-Acero, L.; Sahlholm, K.; Ferre, S.; Pardo, L.; Ciruela, F. Unique effect of clozapine on adenosine A(2A)-dopamine D(2) receptor heteromerization. Biomed. Pharmacother. 2023, 160, 114327. [Google Scholar] [CrossRef]
- Albizu, L.; Holloway, T.; Gonzalez-Maeso, J.; Sealfon, S.C. Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 2011, 61, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Escuela, D.O.; Romero-Fernandez, W.; Tarakanov, A.O.; Marcellino, D.; Ciruela, F.; Agnati, L.F.; Fuxe, K. Dopamine D2 and 5-hydroxytryptamine 5-HT((2)A) receptors assemble into functionally interacting heteromers. Biochem. Biophys. Res. Commun. 2010, 401, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Lukasiewicz, S.; Blasiak, E.; Szafran-Pilch, K.; Dziedzicka-Wasylewska, M. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics-in vitro studies. J. Neurochem. 2016, 137, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Szlachta, M.; Kusmider, M.; Pabian, P.; Solich, J.; Kolasa, M.; Zurawek, D.; Dziedzicka-Wasylewska, M.; Faron-Gorecka, A. Repeated Clozapine Increases the Level of Serotonin 5-HT(1A)R Heterodimerization with 5-HT(2A) or Dopamine D(2) Receptors in the Mouse Cortex. Front. Mol. Neurosci. 2018, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Escuela, D.O.; Ravani, A.; Tarakanov, A.O.; Brito, I.; Narvaez, M.; Romero-Fernandez, W.; Corrales, F.; Agnati, L.F.; Tanganelli, S.; Ferraro, L.; et al. Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochem. Biophys. Res. Commun. 2013, 435, 140–146. [Google Scholar] [CrossRef]
- Fuxe, K.; Borroto-Escuela, D.O.; Tarakanov, A.O.; Romero-Fernandez, W.; Ferraro, L.; Tanganelli, S.; Perez-Alea, M.; Di Palma, M.; Agnati, L.F. Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: Novel targets for antipsychotic drugs. Prog. Brain Res. 2014, 211, 113–139. [Google Scholar]
- Brandon, N.J.; Sawa, A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat. Rev. Neurosci. 2011, 12, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Ge, X.; Frank, C.L.; Madison, J.M.; Koehler, A.N.; Doud, M.K.; Tassa, C.; Berry, E.M.; Soda, T.; Singh, K.K.; et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009, 136, 1017–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, P.; Li, S.; Chen, S.; Lipina, T.V.; Wang, M.; Lai, T.K.; Lee, F.H.; Zhang, H.; Zhai, D.; Ferguson, S.S.; et al. A dopamine D2 receptor-DISC1 protein complex may contribute to antipsychotic-like effects. Neuron 2014, 84, 1302–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipina, T.V.; Beregovoy, N.A.; Tkachenko, A.A.; Petrova, E.S.; Starostina, M.V.; Zhou, Q.; Li, S. Uncoupling DISC1 × D2R Protein-Protein Interactions Facilitates Latent Inhibition in Disc1-L100P Animal Model of Schizophrenia and Enhances Synaptic Plasticity via D2 Receptors. Front. Synaptic Neurosci. 2018, 10, 31. [Google Scholar] [CrossRef]
- De Mei, C.; Ramos, M.; Iitaka, C.; Borrelli, E. Getting specialized: Presynaptic and postsynaptic dopamine D2 receptors. Curr. Opin. Pharmacol. 2009, 9, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.U.; Mrzljak, L.; Gutierrez, A.; de la Calle, A.; Goldman-Rakic, P.S. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. USA 1998, 95, 7731–7736. [Google Scholar] [CrossRef] [Green Version]
- Usiello, A.; Baik, J.H.; Rouge-Pont, F.; Picetti, R.; Dierich, A.; LeMeur, M.; Piazza, P.V.; Borrelli, E. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000, 408, 199–203. [Google Scholar] [CrossRef]
- Kaalund, S.S.; Newburn, E.N.; Ye, T.; Tao, R.; Li, C.; Deep-Soboslay, A.; Herman, M.M.; Hyde, T.M.; Weinberger, D.R.; Lipska, B.K.; et al. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol. Psychiatry 2014, 19, 1258–1266. [Google Scholar] [CrossRef]
- Xu, R.; Hranilovic, D.; Fetsko, L.A.; Bucan, M.; Wang, Y. Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol. Psychiatry 2002, 7, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Centonze, D.; Usiello, A.; Costa, C.; Picconi, B.; Erbs, E.; Bernardi, G.; Borrelli, E.; Calabresi, P. Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J. Neurosci. 2004, 24, 8214–8222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bertolino, A.; Fazio, L.; Blasi, G.; Rampino, A.; Romano, R.; Lee, M.L.; Xiao, T.; Papp, A.; Wang, D.; et al. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. USA 2007, 104, 20552–20557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolino, A.; Fazio, L.; Caforio, G.; Blasi, G.; Rampino, A.; Romano, R.; Di Giorgio, A.; Taurisano, P.; Papp, A.; Pinsonneault, J.; et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 2009, 132, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Bertolino, A.; Taurisano, P.; Pisciotta, N.M.; Blasi, G.; Fazio, L.; Romano, R.; Gelao, B.; Lo Bianco, L.; Lozupone, M.; Di Giorgio, A.; et al. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance. PLoS ONE 2010, 5, e9348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, E.H.; Kellendonk, C.; Kandel, E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 2010, 65, 585–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellendonk, C.; Simpson, E.H.; Polan, H.J.; Malleret, G.; Vronskaya, S.; Winiger, V.; Moore, H.; Kandel, E.R. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 2006, 49, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Scheggia, D.; Mastrogiacomo, R.; Mereu, M.; Sannino, S.; Straub, R.E.; Armando, M.; Manago, F.; Guadagna, S.; Piras, F.; Zhang, F.; et al. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat. Commun. 2018, 9, 2265. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Yang, F.; Papaleo, F.; Wang, H.X.; Gao, W.J.; Weinberger, D.R.; Lu, B. Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc. Natl. Acad. Sci. USA 2009, 106, 19593–19598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaleo, F.; Yang, F.; Garcia, S.; Chen, J.; Lu, B.; Crawley, J.N.; Weinberger, D.R. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol. Psychiatry 2012, 17, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Papaleo, F.; Burdick, M.C.; Callicott, J.H.; Weinberger, D.R. Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol. Psychiatry 2014, 19, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Buchsbaum, M.S.; Christian, B.T.; Lehrer, D.S.; Narayanan, T.K.; Shi, B.; Mantil, J.; Kemether, E.; Oakes, T.R.; Mukherjee, J. D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia. Schizophr. Res. 2006, 85, 232–244. [Google Scholar] [CrossRef]
- Suhara, T.; Okubo, Y.; Yasuno, F.; Sudo, Y.; Inoue, M.; Ichimiya, T.; Nakashima, Y.; Nakayama, K.; Tanada, S.; Suzuki, K.; et al. Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch. Gen. Psychiatry 2002, 59, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Yasuno, F.; Suhara, T.; Okubo, Y.; Sudo, Y.; Inoue, M.; Ichimiya, T.; Takano, A.; Nakayama, K.; Halldin, C.; Farde, L. Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am. J. Psychiatry 2004, 161, 1016–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuppurainen, H.; Kuikka, J.; Viinamaki, H.; Husso-Saastamoinen, M.; Bergstrom, K.; Tiihonen, J. Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol. Psychiatry 2003, 8, 453–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, L.C.; Samanez-Larkin, G.R.; Castrellon, J.J.; Perkins, S.F.; Cowan, R.L.; Zald, D.H. Individual differences in dopamine D(2) receptor availability correlate with reward valuation. Cogn. Affect. Behav. Neurosci. 2018, 18, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, N.S.; Buchsbaum, M.S.; Lehrer, D.S.; Merrill, B.M.; DeCastro, A.; Doninger, N.A.; Christian, B.T.; Mukherjee, J. D2/D3 dopamine receptor binding with [F-18]fallypride correlates of executive function in medication-naive patients with schizophrenia. Schizophr. Res. 2018, 192, 442–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, Y.H.; Kim, J.H.; Son, Y.D.; Kim, H.K.; Shin, Y.J.; Lee, S.Y.; Kim, J.H. The relationship between excitement symptom severity and extrastriatal dopamine D(2/3) receptor availability in patients with schizophrenia: A high-resolution PET study with [(18)F]fallypride. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 529–540. [Google Scholar] [CrossRef]
- Norbak-Emig, H.; Ebdrup, B.H.; Fagerlund, B.; Svarer, C.; Rasmussen, H.; Friberg, L.; Allerup, P.N.; Rostrup, E.; Pinborg, L.H.; Glenthoj, B.Y. Frontal D2/3 Receptor Availability in Schizophrenia Patients before and after Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP) 2016, 19, pyw006. [Google Scholar]
- Glenthoj, B.Y.; Mackeprang, T.; Svarer, C.; Rasmussen, H.; Pinborg, L.H.; Friberg, L.; Baare, W.; Hemmingsen, R.; Videbaek, C. Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol. Psychiatry 2006, 60, 621–629. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Rodenhiser, J.; Printz, D.; Zea-Ponce, Y.; Gil, R.; Kegeles, L.S.; Weiss, R.; Cooper, T.B.; Mann, J.J.; Van Heertum, R.L.; et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc. Natl. Acad. Sci. USA 2000, 97, 8104–8109. [Google Scholar] [CrossRef] [Green Version]
- Laruelle, M.; Abi-Dargham, A.; van Dyck, C.H.; Gil, R.; D’Souza, C.D.; Erdos, J.; McCance, E.; Rosenblatt, W.; Fingado, C.; Zoghbi, S.S.; et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl. Acad. Sci. USA 1996, 93, 9235–9240. [Google Scholar] [CrossRef] [Green Version]
- Breier, A.; Su, T.P.; Saunders, R.; Carson, R.E.; Kolachana, B.S.; de Bartolomeis, A.; Weinberger, D.R.; Weisenfeld, N.; Malhotra, A.K.; Eckelman, W.C.; et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA 1997, 94, 2569–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi-Dargham, A.; Gil, R.; Krystal, J.; Baldwin, R.M.; Seibyl, J.P.; Bowers, M.; van Dyck, C.H.; Charney, D.S.; Innis, R.B.; Laruelle, M. Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. Am. J. Psychiatry 1998, 155, 761–767. [Google Scholar] [PubMed]
- Moya, N.A.; Yun, S.; Fleps, S.W.; Martin, M.M.; Nadel, J.A.; Beutler, L.R.; Zweifel, L.S.; Parker, J.G. The effect of selective nigrostriatal dopamine excess on behaviors linked to the cognitive and negative symptoms of schizophrenia. Neuropsychopharmacology 2022, 48, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Hietala, J.; Syvalahti, E.; Vuorio, K.; Rakkolainen, V.; Bergman, J.; Haaparanta, M.; Solin, O.; Kuoppamaki, M.; Kirvela, O.; Ruotsalainen, U.; et al. Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 1995, 346, 1130–1131. [Google Scholar] [CrossRef]
- McGowan, S.; Lawrence, A.D.; Sales, T.; Quested, D.; Grasby, P. Presynaptic dopaminergic dysfunction in schizophrenia: A positron emission tomographic [18F]fluorodopa study. Arch. Gen. Psychiatry 2004, 61, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrom, L.H.; Gefvert, O.; Hagberg, G.; Lundberg, T.; Bergstrom, M.; Hartvig, P.; Langstrom, B. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol. Psychiatry 1999, 46, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Hietala, J.; Syvalahti, E.; Vilkman, H.; Vuorio, K.; Rakkolainen, V.; Bergman, J.; Haaparanta, M.; Solin, O.; Kuoppamaki, M.; Eronen, E.; et al. Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr. Res. 1999, 35, 41–50. [Google Scholar] [CrossRef]
- Mizrahi, R.; Addington, J.; Rusjan, P.M.; Suridjan, I.; Ng, A.; Boileau, I.; Pruessner, J.C.; Remington, G.; Houle, S.; Wilson, A.A. Increased stress-induced dopamine release in psychosis. Biol. Psychiatry 2012, 71, 561–567. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Meyer-Lindenberg, A. Striatal presynaptic dopamine in schizophrenia, Part I: Meta-analysis of dopamine active transporter (DAT) density. Schizophr. Bull. 2013, 39, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Wulff, S.; Pinborg, L.H.; Svarer, C.; Jensen, L.T.; Nielsen, M.O.; Allerup, P.; Bak, N.; Rasmussen, H.; Frandsen, E.; Rostrup, E.; et al. Striatal D(2/3) Binding Potential Values in Drug-Naive First-Episode Schizophrenia Patients Correlate with Treatment Outcome. Schizophr. Bull. 2015, 41, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Demjaha, A.; Murray, R.M.; McGuire, P.K.; Kapur, S.; Howes, O.D. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am. J. Psychiatry 2012, 169, 1203–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.; Jung, W.H.; McCutcheon, R.; Veronese, M.; Beck, K.; Lee, J.S.; Lee, Y.S.; Howes, O.D.; Kim, E.; Kwon, J.S. The Relationship between Frontostriatal Connectivity and Striatal Dopamine Function in Schizophrenia: An 18F-DOPA PET and Diffusion Tensor Imaging Study in Treatment Responsive and Resistant Patients. Psychiatry Investig. 2022, 19, 570–579. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, E.; Jauhar, S.; Kim, S.; Veronese, M.; Rogdaki, M.; Pepper, F.; Bonoldi, I.; Kotoula, V.; Kempton, M.J.; Turkheimer, F.; et al. The relationship between grey matter volume and striatal dopamine function in psychosis: A multimodal (18)F-DOPA PET and voxel-based morphometry study. Mol. Psychiatry 2021, 26, 1332–1345. [Google Scholar] [CrossRef]
- Gillespie, A.L.; Samanaite, R.; Mill, J.; Egerton, A.; MacCabe, J.H. Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? A systematic review. BMC Psychiatry 2017, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Amato, D.; Vernon, A.C.; Papaleo, F. Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci. Biobehav. Rev. 2018, 85, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Amato, D.; Canneva, F.; Cumming, P.; Maschauer, S.; Groos, D.; Dahlmanns, J.K.; Gromer, T.W.; Chiofalo, L.; Dahlmanns, M.; Zheng, F.; et al. A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: The role of the dopamine transporter. Mol. Psychiatry 2020, 25, 2101–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkin, A.; Barouche, F.; Wolf, A.P.; Rotrosen, J.; Fowler, J.S.; Shiue, C.Y.; Cooper, T.B.; Brodie, J.D. Dopamine blockade and clinical response: Evidence for two biological subgroups of schizophrenia. Am. J. Psychiatry 1989, 146, 905–908. [Google Scholar]
- Grunder, G.; Vernaleken, I.; Muller, M.J.; Davids, E.; Heydari, N.; Buchholz, H.G.; Bartenstein, P.; Munk, O.L.; Stoeter, P.; Wong, D.F.; et al. Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology 2003, 28, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Vernaleken, I.; Kumakura, Y.; Cumming, P.; Buchholz, H.G.; Siessmeier, T.; Stoeter, P.; Muller, M.J.; Bartenstein, P.; Grunder, G. Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge. Neuroimage 2006, 30, 1332–1339. [Google Scholar] [CrossRef]
- Grace, A.A.; Bunney, B.S.; Moore, H.; Todd, C.L. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci. 1997, 20, 31–37. [Google Scholar] [CrossRef]
- Jauhar, S.; Veronese, M.; Nour, M.M.; Rogdaki, M.; Hathway, P.; Natesan, S.; Turkheimer, F.; Stone, J.; Egerton, A.; McGuire, P.; et al. The Effects of Antipsychotic Treatment on Presynaptic Dopamine Synthesis Capacity in First-Episode Psychosis: A Positron Emission Tomography Study. Biol. Psychiatry 2019, 85, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Howes, O.D.; Veronese, M.; Beck, K.; Seo, S.; Park, J.W.; Lee, J.S.; Lee, Y.S.; Kwon, J.S. Presynaptic Dopamine Capacity in Patients with Treatment-Resistant Schizophrenia Taking Clozapine: An [(18)F]DOPA PET Study. Neuropsychopharmacology 2017, 42, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.C.; Roche, J.K.; Conley, R.R.; Lahti, A.C. Dopaminergic synapses in the caudate of subjects with schizophrenia: Relationship to treatment response. Synapse 2009, 63, 520–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugger, S.P.; Angelescu, I.; Abi-Dargham, A.; Mizrahi, R.; Shahrezaei, V.; Howes, O.D. Heterogeneity of Striatal Dopamine Function in Schizophrenia: Meta-analysis of Variance. Biol. Psychiatry 2020, 87, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Egerton, A.; Murphy, A.; Donocik, J.; Anton, A.; Barker, G.J.; Collier, T.; Deakin, B.; Drake, R.; Eliasson, E.; Emsley, R.; et al. Dopamine and Glutamate in Antipsychotic-Responsive Compared with Antipsychotic-Nonresponsive Psychosis: A Multicenter Positron Emission Tomography and Magnetic Resonance Spectroscopy Study (STRATA). Schizophr. Bull. 2021, 47, 505–516. [Google Scholar] [CrossRef]
- Demjaha, A.; Egerton, A.; Murray, R.M.; Kapur, S.; Howes, O.D.; Stone, J.M.; McGuire, P.K. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol. Psychiatry 2014, 75, e11–e13. [Google Scholar] [CrossRef]
- Mouchlianitis, E.; Bloomfield, M.A.; Law, V.; Beck, K.; Selvaraj, S.; Rasquinha, N.; Waldman, A.; Turkheimer, F.E.; Egerton, A.; Stone, J.; et al. Treatment-Resistant Schizophrenia Patients Show Elevated Anterior Cingulate Cortex Glutamate Compared to Treatment-Responsive. Schizophr. Bull. 2016, 42, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Iwata, Y.; Nakajima, S.; Plitman, E.; Caravaggio, F.; Kim, J.; Shah, P.; Mar, W.; Chavez, S.; De Luca, V.; Mimura, M.; et al. Glutamatergic Neurometabolite Levels in Patients with Ultra-Treatment-Resistant Schizophrenia: A cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study. Biol. Psychiatry 2019, 85, 596–605. [Google Scholar] [CrossRef]
- Vanes, L.D.; Mouchlianitis, E.; Collier, T.; Averbeck, B.B.; Shergill, S.S. Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychol. Med. 2018, 48, 2418–2427. [Google Scholar] [CrossRef]
- Purves-Tyson, T.D.; Owens, S.J.; Rothmond, D.A.; Halliday, G.M.; Double, K.L.; Stevens, J.; McCrossin, T.; Shannon Weickert, C. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain. Transl. Psychiatry 2017, 7, e1003. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.L.; Urban, N.; Slifstein, M.; Xu, X.; Kegeles, L.S.; Girgis, R.R.; Beckerman, Y.; Harkavy-Friedman, J.M.; Gil, R.; Abi-Dargham, A. Striatal dopamine release in schizophrenia comorbid with substance dependence. Mol. Psychiatry 2013, 18, 909–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadalko, O.I.; Siuta, M.; Poe, A.; Erreger, K.; Matthies, H.J.; Niswender, K.; Galli, A. mTORC2/rictor signaling disrupts dopamine-dependent behaviors via defects in striatal dopamine neurotransmission. J. Neurosci. 2015, 35, 8843–8854. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Abe, Y.; Sotoyama, H.; Kakita, A.; Kominami, R.; Hirokawa, S.; Ozaki, M.; Takahashi, H.; Nawa, H. Transient exposure of neonatal mice to neuregulin-1 results in hyperdopaminergic states in adulthood: Implication in neurodevelopmental hypothesis for schizophrenia. Mol. Psychiatry 2011, 16, 307–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revel, F.G.; Moreau, J.L.; Gainetdinov, R.R.; Bradaia, A.; Sotnikova, T.D.; Mory, R.; Durkin, S.; Zbinden, K.G.; Norcross, R.; Meyer, C.A.; et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc. Natl. Acad. Sci. USA 2011, 108, 8485–8490. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.F.; Xu, J.C.; Tereshchenko, Y.; Novak, D.; Schachner, M.; Kleene, R. Neural cell adhesion molecule modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization. J. Neurosci. 2009, 29, 14752–14763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, G.K.; Tomasiewicz, H.; Rutishauser, U.; Magnuson, T.; Quirion, R.; Rochford, J.; Srivastava, L.K. NCAM-180 knockout mice display increased lateral ventricle size and reduced prepulse inhibition of startle. Neuroreport 1998, 9, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Pillai-Nair, N.; Panicker, A.K.; Rodriguiz, R.M.; Gilmore, K.L.; Demyanenko, G.P.; Huang, J.Z.; Wetsel, W.C.; Maness, P.F. Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J. Neurosci. 2005, 25, 4659–4671. [Google Scholar] [CrossRef] [Green Version]
- Barbeau, D.; Liang, J.J.; Robitalille, Y.; Quirion, R.; Srivastava, L.K. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc. Natl. Acad. Sci. USA 1995, 92, 2785–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vawter, M.P.; Hemperly, J.J.; Freed, W.J.; Garver, D.L. CSF N-CAM in neuroleptic-naive first-episode patients with schizophrenia. Schizophr. Res. 1998, 34, 123–131. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shibuya, M.; Someya, T. DRD2 Ser311Cys polymorphism and risk of schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 224–228. [Google Scholar] [CrossRef]
- Lane, H.Y.; Lee, C.C.; Chang, Y.C.; Lu, C.T.; Huang, C.H.; Chang, W.H. Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int. J. Neuropsychopharmacol. Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP) 2004, 7, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahari, Z.; Teh, L.K.; Ismail, R.; Razali, S.M. Influence of DRD2 polymorphisms on the clinical outcomes of patients with schizophrenia. Psychiatr. Genet. 2011, 21, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Sotnikova, T.D.; Yao, W.D.; Kockeritz, L.; Woodgett, J.R.; Gainetdinov, R.R.; Caron, M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA 2004, 101, 5099–5104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, J.M.; Sotnikova, T.D.; Marion, S.; Lefkowitz, R.J.; Gainetdinov, R.R.; Caron, M.G. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005, 122, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Korlatowicz, A.; Kusmider, M.; Szlachta, M.; Pabian, P.; Solich, J.; Dziedzicka-Wasylewska, M.; Faron-Gorecka, A. Identification of Molecular Markers of Clozapine Action in Ketamine-Induced Cognitive Impairment: A GPCR Signaling PathwayFinder Study. Int. J. Mol. Sci. 2021, 22, 12203. [Google Scholar] [CrossRef]
- Emamian, E.S.; Hall, D.; Birnbaum, M.J.; Karayiorgou, M.; Gogos, J.A. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 2004, 36, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Alimohamad, H.; Rajakumar, N.; Seah, Y.H.; Rushlow, W. Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol. Psychiatry 2005, 57, 533–542. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci. 2007, 28, 166–172. [Google Scholar] [CrossRef]
- Li, J.X.; Rice, K.C.; France, C.P. Behavioral effects of dipropyltryptamine in rats: Evidence for 5-HT1A and 5-HT2A agonist activity. Behav. Pharmacol. 2007, 18, 283–288. [Google Scholar] [CrossRef]
- Roh, M.S.; Seo, M.S.; Kim, Y.; Kim, S.H.; Jeon, W.J.; Ahn, Y.M.; Kang, U.G.; Juhnn, Y.S.; Kim, Y.S. Haloperidol and clozapine differentially regulate signals upstream of glycogen synthase kinase 3 in the rat frontal cortex. Exp. Mol. Med. 2007, 39, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Masri, B.; Salahpour, A.; Didriksen, M.; Ghisi, V.; Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc. Natl. Acad. Sci. USA 2008, 105, 13656–13661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.A.; Yost, J.M.; Setola, V.; Chen, X.; Sassano, M.F.; Chen, M.; Peterson, S.; Yadav, P.N.; Huang, X.P.; Feng, B.; et al. Discovery of beta-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. USA 2011, 108, 18488–18493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.M.; Chen, M.; Schmerberg, C.M.; Dulman, R.S.; Rodriguiz, R.M.; Caron, M.G.; Jin, J.; Wetsel, W.C. Effects of beta-Arrestin-Biased Dopamine D2 Receptor Ligands on Schizophrenia-Like Behavior in Hypoglutamatergic Mice. Neuropsychopharmacology 2016, 41, 704–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urs, N.M.; Peterson, S.M.; Caron, M.G. New Concepts in Dopamine D(2) Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol. Psychiatry 2017, 81, 78–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prickaerts, J.; Moechars, D.; Cryns, K.; Lenaerts, I.; van Craenendonck, H.; Goris, I.; Daneels, G.; Bouwknecht, J.A.; Steckler, T. Transgenic mice overexpressing glycogen synthase kinase 3beta: A putative model of hyperactivity and mania. J. Neurosci. 2006, 26, 9022–9029. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.M.; Pack, T.F.; Wilkins, A.D.; Urs, N.M.; Urban, D.J.; Bass, C.E.; Lichtarge, O.; Caron, M.G. Elucidation of G-protein and beta-arrestin functional selectivity at the dopamine D2 receptor. Proc. Natl. Acad. Sci. USA 2015, 112, 7097–7102. [Google Scholar] [CrossRef] [Green Version]
- Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A. Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: Relevance for neuropsychiatric diseases. Neurochem. Res. 2013, 38, 1–22. [Google Scholar] [CrossRef]
- Tomasetti, C.; Iasevoli, F.; Buonaguro, E.F.; De Berardis, D.; Fornaro, M.; Fiengo, A.L.; Martinotti, G.; Orsolini, L.; Valchera, A.; Di Giannantonio, M.; et al. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions. Int. J. Mol. Sci. 2017, 18, 135. [Google Scholar] [CrossRef] [Green Version]
- Iasevoli, F.; Polese, D.; Ambesi-Impiombato, A.; Muscettola, G.; de Bartolomeis, A. Ketamine-related expression of glutamatergic postsynaptic density genes: Possible implications in psychosis. Neurosci. Lett. 2007, 416, 1–5. [Google Scholar] [CrossRef]
- Polese, D.; de Serpis, A.A.; Ambesi-Impiombato, A.; Muscettola, G.; de Bartolomeis, A. Homer 1a gene expression modulation by antipsychotic drugs: Involvement of the glutamate metabotropic system and effects of D-cycloserine. Neuropsychopharmacology 2002, 27, 906–913. [Google Scholar] [CrossRef] [Green Version]
- de Bartolomeis, A.; De Simone, G.; Ciccarelli, M.; Castiello, A.; Mazza, B.; Vellucci, L.; Barone, A. Antipsychotics-Induced Changes in Synaptic Architecture and Functional Connectivity: Translational Implications for Treatment Response and Resistance. Biomedicines 2022, 10, 3183. [Google Scholar] [CrossRef] [PubMed]
- Takaki, M.; Kodama, M.; Mizuki, Y.; Kawai, H.; Yoshimura, B.; Kishimoto, M.; Sakamoto, S.; Okahisa, Y.; Yamada, N. Effects of the antipsychotics haloperidol, clozapine, and aripiprazole on the dendritic spine. Eur. Neuropsychopharmacol. 2018, 28, 610–619. [Google Scholar] [CrossRef]
- Iasevoli, F.; Tomasetti, C.; Ambesi-Impiombato, A.; Muscettola, G.; de Bartolomeis, A. Dopamine receptor subtypes contribution to Homer1a induction: Insights into antipsychotic molecular action. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 813–821. [Google Scholar] [CrossRef] [PubMed]
- de Bartolomeis, A.; Marmo, F.; Buonaguro, E.F.; Latte, G.; Tomasetti, C.; Iasevoli, F. Switching antipsychotics: Imaging the differential effect on the topography of postsynaptic density transcripts in antipsychotic-naive vs. antipsychotic-exposed rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 70, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Buonaguro, E.F.; Tomasetti, C.; Chiodini, P.; Marmo, F.; Latte, G.; Rossi, R.; Avvisati, L.; Iasevoli, F.; de Bartolomeis, A. Postsynaptic density protein transcripts are differentially modulated by minocycline alone or in add-on to haloperidol: Implications for treatment resistant schizophrenia. J. Psychopharmacol. 2017, 31, 406–417. [Google Scholar] [CrossRef]
- Iasevoli, F.; Buonaguro, E.F.; Sarappa, C.; Marmo, F.; Latte, G.; Rossi, R.; Eramo, A.; Tomasetti, C.; de Bartolomeis, A. Regulation of postsynaptic plasticity genes’ expression and topography by sustained dopamine perturbation and modulation by acute memantine: Relevance to schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 54, 299–314. [Google Scholar] [CrossRef]
- Iasevoli, F.; Buonaguro, E.F.; Avagliano, C.; Barone, A.; Eramo, A.; Vellucci, L.; de Bartolomeis, A. The Effects of Antipsychotics on the Synaptic Plasticity Gene Homer1a Depend on a Combination of Their Receptor Profile, Dose, Duration of Treatment, and Brain Regions Targeted. Int. J. Mol. Sci. 2020, 21, 5555. [Google Scholar] [CrossRef]
- Barone, A.; Signoriello, S.; Latte, G.; Vellucci, L.; Giordano, G.; Avagliano, C.; Buonaguro, E.F.; Marmo, F.; Tomasetti, C.; Iasevoli, F.; et al. Modulation of glutamatergic functional connectivity by a prototypical antipsychotic: Translational inference from a postsynaptic density immediate-early gene-based network analysis. Behav. Brain Res. 2021, 404, 113160. [Google Scholar] [CrossRef]
- Spellmann, I.; Rujescu, D.; Musil, R.; Mayr, A.; Giegling, I.; Genius, J.; Zill, P.; Dehning, S.; Opgen-Rhein, M.; Cerovecki, A.; et al. Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients. J. Psychiatr. Res. 2011, 45, 234–241. [Google Scholar] [CrossRef]
- de Bartolomeis, A.; Fiore, G.; Iasevoli, F. Dopamine-glutamate interaction and antipsychotics mechanism of action: Implication for new pharmacological strategies in psychosis. Curr. Pharm. Des. 2005, 11, 3561–3594. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, W.; Zhang, C.; Zhang, C.; Liu, M.D.; Han, F.; Yao, L.B.; Han, H.; Luo, P.; Su, N.; et al. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury. Cell Death Dis. 2015, 6, e1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bartolomeis, A.; Prinzivalli, E.; Callovini, G.; D’Ambrosio, L.; Altavilla, B.; Avagliano, C.; Iasevoli, F. Treatment resistant schizophrenia and neurological soft signs may converge on the same pathology: Evidence from explanatory analysis on clinical, psychopathological, and cognitive variables. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 81, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Iasevoli, F.; D’Ambrosio, L.; Notar Francesco, D.; Razzino, E.; Buonaguro, E.F.; Giordano, S.; Patterson, T.L.; de Bartolomeis, A. Clinical evaluation of functional capacity in treatment resistant schizophrenia patients: Comparison and differences with non-resistant schizophrenia patients. Schizophr. Res. 2018, 202, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Takeuchi, H.; Fervaha, G.; Sin, G.L.; Foussias, G.; Agid, O.; Farooq, S.; Remington, G. Subtyping Schizophrenia by Treatment Response: Antipsychotic Development and the Central Role of Positive Symptoms. Can. J. Psychiatry 2015, 60, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Howes, O.D.; Kapur, S. A neurobiological hypothesis for the classification of schizophrenia: Type A (hyperdopaminergic) and type B (normodopaminergic). Br. J. Psychiatry 2014, 205, 1–3. [Google Scholar] [CrossRef]
- Yoshimura, R.; Ueda, N.; Shinkai, K.; Nakamura, J. Plasma levels of homovanillic acid and the response to risperidone in first episode untreated acute schizophrenia. Int. Clin. Psychopharmacol. 2003, 18, 107–111. [Google Scholar] [CrossRef]
- Dziedzicka-Wasylewska, M.; Faron-Gorecka, A.; Gorecki, A.; Kusemider, M. Mechanism of action of clozapine in the context of dopamine D1–D2 receptor hetero-dimerization--a working hypothesis. Pharmacol. Rep. 2008, 60, 581–587. [Google Scholar]
- Bertoldi, M. Mammalian Dopa decarboxylase: Structure, catalytic activity and inhibition. Arch. Biochem. Biophys. 2014, 546, 1–7. [Google Scholar] [CrossRef]
- Lin, A.S.; Chang, S.S.; Lin, S.H.; Peng, Y.C.; Hwu, H.G.; Chen, W.J. Minor physical anomalies and craniofacial measures in patients with treatment-resistant schizophrenia. Psychol. Med. 2015, 45, 1839–1850. [Google Scholar] [CrossRef]
- Iasevoli, F.; Avagliano, C.; Altavilla, B.; Barone, A.; D’Ambrosio, L.; Matrone, M.; Notar Francesco, D.; Razzino, E.; de Bartolomeis, A. Disease Severity in Treatment Resistant Schizophrenia Patients Is Mainly Affected by Negative Symptoms, Which Mediate the Effects of Cognitive Dysfunctions and Neurological Soft Signs. Front. Psychiatry 2018, 9, 553. [Google Scholar] [CrossRef]
- Mittal, V.A.; Dean, D.J.; Bernard, J.A.; Orr, J.M.; Pelletier-Baldelli, A.; Carol, E.E.; Gupta, T.; Turner, J.; Leopold, D.R.; Robustelli, B.L.; et al. Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: A longitudinal perspective. Schizophr. Bull. 2014, 40, 1204–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.P.; Wigton, R.; Joyce, D.W.; Collier, T.; Fornito, A.; Shergill, S.S. Dysfunctional Striatal Systems in Treatment-Resistant Schizophrenia. Neuropsychopharmacology 2016, 41, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Kinon, B.J. The Group of Treatment Resistant Schizophrenias. Heterogeneity in Treatment Resistant Schizophrenia (TRS). Front. Psychiatry 2018, 9, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKay, M.B.; Paylor, J.W.; Wong, J.T.F.; Winship, I.R.; Baker, G.B.; Dursun, S.M. Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front. Psychiatry 2018, 9, 537. [Google Scholar] [CrossRef]
- Remington, G.; Foussias, G.; Fervaha, G.; Agid, O.; Takeuchi, H.; Lee, J.; Hahn, M. Treating Negative Symptoms in Schizophrenia: An Update. Curr. Treat. Options Psychiatry 2016, 3, 133–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone, A.; De Prisco, M.; Altavilla, B.; Avagliano, C.; Balletta, R.; Buonaguro, E.F.; Ciccarelli, M.; D’Ambrosio, L.; Giordano, S.; Latte, G.; et al. Disorganization domain as a putative predictor of Treatment Resistant Schizophrenia (TRS) diagnosis: A machine learning approach. J. Psychiatr. Res. 2022, 155, 572–578. [Google Scholar] [CrossRef]
Antipsychotic | D1 | D2 | D3 | D4 | 5-HT1A | 5-HT1D | 5-HT2A | 5-HT2B | 5-HT2c | 5-HT6 | 5-HT7 | AchR | α1 | α2 | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amisulpride | - | ++++ | ++ | - | n.t. | n.t. | - | ++ | - | n.t. | - | - | - | - | [21,22] |
Aripiprazole | - | ++++ | ++ | + | ++ | + | +++ | ++++ | + | + | ++ | n.t. | + | + | [23,24,25,26] |
Brexpirazole | + | ++++ | +++ | ++ | ++++ | n.t. | ++++ | +++ | ++++ | + | ++ | n.t. | ++ | +++ | [24,27,28] |
Cariprazine | - | ++++ | ++++ | - | +++ | n.t. | ++ | ++++ | - | n.t. | n.t. | n.t. | +++ | +++ | [24,27,29] |
Chlorpromazine | ++ | +++ | +++ | ++ | n.t. | n.t. | ++ | n.t. | ++ | ++ | ++ | + | +++ | - | [21,30,31] |
Clozapine | + | + | + | ++ | - | - | +++ | +++ | ++ | ++ | ++ | +++ | +++ | + | [21,31,32,33,34] |
Haloperidol | + | ++++ | +++ | ++ | - | - | + | n.t. | - | - | - | - | +++ | - | [31,32,34] |
Lumateperone | ++ | ++ | n.t. | n.t. | n.t. | n.t. | ++++ | n.t. | n.t. | n.t. | n.t. | n.t. | ++ | n.t. | [35] |
Lurasidone | - | +++ | ++ | ++++ | +++ | n.t. | +++ | n.t. | - | n.t. | +++ | n.t. | + | ++ | [36,37,38,39] |
Olanzapine | ++ | ++ | + | ++ | - | - | +++ | ++ | ++ | ++ | - | +++ | ++ | + | [31,32,34] |
Paliperidone | ++ | +++ | +++ | + | + | - | +++ | ++ | n.t. | +++ | n.t. | +++ | ++ | [30,40] | |
Quetiapine | - | + | - | - | - | - | ++ | ++ | - | - | - | - | +++ | - | [31,33,41] |
Risperidone | + | +++ | ++ | - | - | + | ++++ | ++ | ++ | - | +++ | - | +++ | ++ | [32,34,42,43] |
Ziprasidone | + | +++ | ++ | ++ | +++ | +++ | ++++ | ++ | ++++ | + | ++ | - | ++ | - | [44,45] |
Antipsychotic | D1 | D2 | D3 | D4 | 5-HT1A | 5-HT2A | 5-HT2B | 5-HT2c | 5-HT7 | M1 | α1A/B | α2A | α2c | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amisulpride | 1.3 | 1.8 ** | 3.2 *** | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | [46,47,48] |
Aripiprazole | n.t. | 1.8 ** | 0.8 † | 514 | 1.7 † | n.t | n.t. | n.t. | n.t. | 6800 † | 26/35 † | n.t. | 38 † | [49,50,51] |
Brexpirazole | n.t. | 0.3† | 1.1 † | n.t. | 0.12 † | 0.47 † | 1.9 † | n.t. | 3.7 † | >1000 † | 3.8/0.17 † | n.t. | 0.59 † | [52] |
Cariprazine | n.t. | 0.49 † | 0.09 † | n.t. | 2.6 † | 18.6 † | 0.58 † | n.t. | 112 † | n.t. | n.t. | n.t. | n.t. | [53] |
Chlorpromazine | 16.5 * | 1.2 **/$ | 1.4 *** | 9.6 # | n.t. | 2 § | n.t. | n.t. | n.t. | 378 $ | 14.0 £ | n.t. | n.t. | [34,49,54,55] |
Clozapine | 90 * | 76 ** | 190 *** | 22 # | 123 ± 5 | 4 § | n.t. | n.t. | 42.2 ± 12.0 | n.t. | 17.5 ± 5.0 | 147 ± 14 | 15.6 ± 2.0 | [49,55,56,57] |
Haloperidol | 55 * | 0.74 ** | 8.8 *** | 2 # | >1000 (IC50 value) | 74 § | n.t. | n.t. | >1000 (IC50 value) | n.t. | 17.9 ± 1.5 | >1000 (IC50 value) | >1000 (IC50 value) | [49,55,57,58] |
Lumateperone | 52 | 32 | n.t. | n.t. | n.t. | 0.54 | n.t. | 173 | n.t. | n.t. | 73 | n.t. | n.t. | [35,59] |
Lurasidone | n.t. | 1† | 15.7 | 29.7 | 6.4 † | 0.5 † | n.t. | 415 | 0.5 † | >1000 (IC50 value) † | 47.9 ± 7.8 | 40.7 ± 7.7 | 10.8 ± 0.64 | [57] |
Olanzapine | 9.2 * | 7.4 ** | 14 *** | 15 # | >1000 (IC50 value) | 3.4§ | n.t. | n.t. | n.t. | n.t. | 22.1 ± 7.7 | n.t. | n.t. | [49,55,57,60] |
Paliperidone | 670 | 4 | 7.50 | n.t. | 380 | 0.25 | n.t. | n.t. | 1.3 | 3570 | 4.0 | 17 | n.t. | [61] |
Quetiapine | 290 * | 140 ** | 240 *** | 2000 # | 1000 † | 135 § | n.t. | n.t. | 1800 † | 1100 † | 22/15 † | n.t. | 29 † | [49,60,62] |
Risperidone | 42 * | 1.09 ** | 3.5 *** | 4.4 # | 210 † | 0.2 § | n.t. | n.t. | 3.0 † | 2800 † | 0.60/9.0 † | 13.7 ± 1.1 | 9.1 † | [49,55,57,60] |
Ziprasidone | 9 * | 2.7 ** | 1.5 *** | 8 # | n.t. | 3 § | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | [49,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iasevoli, F.; Avagliano, C.; D’Ambrosio, L.; Barone, A.; Ciccarelli, M.; De Simone, G.; Mazza, B.; Vellucci, L.; de Bartolomeis, A. Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023, 11, 895. https://doi.org/10.3390/biomedicines11030895
Iasevoli F, Avagliano C, D’Ambrosio L, Barone A, Ciccarelli M, De Simone G, Mazza B, Vellucci L, de Bartolomeis A. Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines. 2023; 11(3):895. https://doi.org/10.3390/biomedicines11030895
Chicago/Turabian StyleIasevoli, Felice, Camilla Avagliano, Luigi D’Ambrosio, Annarita Barone, Mariateresa Ciccarelli, Giuseppe De Simone, Benedetta Mazza, Licia Vellucci, and Andrea de Bartolomeis. 2023. "Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal" Biomedicines 11, no. 3: 895. https://doi.org/10.3390/biomedicines11030895
APA StyleIasevoli, F., Avagliano, C., D’Ambrosio, L., Barone, A., Ciccarelli, M., De Simone, G., Mazza, B., Vellucci, L., & de Bartolomeis, A. (2023). Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines, 11(3), 895. https://doi.org/10.3390/biomedicines11030895