Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Reagents
2.4. Protocol for Animal Experiments
2.5. Sample Preparation for the Protein Assay
2.6. Sample Preparation for the mRNA Assay
2.7. Microscopic Examination of Harvested Rectal Tissues
2.8. Western Blotting
2.9. ELISA
2.10. Real-Time PCR
2.11. Isolation of Peritoneal MΦ from Rats
2.12. Stimulation of MΦ
2.13. Statistical Analysis
3. Results
3.1. Changes in Body Weight
3.2. Changes in Rat Colon Lengths following Nicotine Administration
3.3. Changes in Rat Colon Lengths following Treatment with Nicotine Structural Analogs
3.4. Comparison of DAI Scores between the Treatment Groups
3.5. Microscopic Observation and Evaluation of Colonic Inflammation
3.6. Evaluation of nAChR7 Expression in the Large Intestine of All Groups
3.7. In-Depth Investigation of nAChR7 Expression in the Large Intestines of All Groups
3.8. Cytokine Secretion in Serum and Colon
3.9. Cytokine mRNA Expression in Colon Tissues
3.10. Evaluation of nAChR7 Expression in MΦ
3.11. nAChR7 and Cytokine Expression in MΦ
3.12. Changes in Cytokine mRNA Expression in MΦ
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegmund, B.; Leitner, E.; Pfannhauser, W. Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J. Agric. Food Chem. 1999, 47, 3113–3120. [Google Scholar] [CrossRef]
- Fagerström, K. Nicotine: Pharmacology, Toxicity and Therapeutic use. J. Smok. Cessat. 2014, 9, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Alkam, T.; Nabeshima, T. Molecular mechanisms for nicotine intoxication. Neurochem. Int. 2019, 125, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Kishioka, S.; Kiguchi, N.; Kobayashi, Y.; Saika, F. Nicotine Effects and the Endogenous Opioid System. J. Pharmacol. Sci. 2014, 125, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Expression and Function of the Cholinergic System in Immune Cells. Front. Immunol. 2017, 8, 1085. [Google Scholar] [CrossRef] [Green Version]
- Pomerleau, O.F. Nicotine and the central nervous system: Biobehavioral effects of cigarette smoking. Am. J. Med. 1992, 93, 2S–7S. [Google Scholar] [CrossRef] [Green Version]
- Mineur, Y.S.; Picciotto, M.R. Nicotine receptors and depression: Revisiting and revising the cholinergic hypothesis. Trends Pharmacol. Sci. 2010, 31, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Henningfield, J.E.; Zeller, M. Nicotine psychopharmacology: Policy and regulatory. Handb. Exp. Pharmacol. 2009, 192, 511–534. [Google Scholar]
- Wong, D.; Ogle, C.W. Chronic parenterally administered nicotine and stress- or ethanol-induced gastric mucosal damage in rats. Eur. J. Pharmacol. 1995, 292, 157–162. [Google Scholar] [CrossRef]
- Qiu, B.S.; Cho, C.H.; Hui, S.C.; Ogle, C.W. Chronic nicotine intake increases the responses to muscarinic receptor stimulation. Pharmacology 1992, 44, 41–47. [Google Scholar] [CrossRef]
- Cho, C.H.; Chen, B.W.; Hui, W.M.; Lam, S.K. The influence of acute or chronic nicotine treatment on ethanol-induced gastric mucosal damage in rats. Dig. Dis. Sci. 1990, 35, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.J.; Segal, A.W. Innate immunity in inflammatory bowel disease: A disease hypothesis. J. Pathol. 2008, 214, 260–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Berends, S.E.; Strik, A.S.; Löwenberg, M.; D’Haens, G.R.; Mathôt, R.A.A. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet. 2019, 58, 15–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, C.A.; Schmidt, P.T. Severe Defects in the Macrophage Barrier to Gut Microflora in Inflammatory Bowel Disease and Colon Cancer. Anticancer Res. 2018, 38, 3811–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashner, B.A.; Hanauer, S.B.; Silverstein, M.D. Testing nicotine gum for ulcerative colitis patients. Experience with single-patient trials. Dig. Dis. Sci. 1990, 35, 827–832. [Google Scholar] [CrossRef]
- Madretsma, G.S.; Donze, G.J.; van Dijk, A.P.; Tak, C.J.; Wilson, J.H.; Zijlstra, F.J. Nicotine inhibits the in vitro production of interleukin 2 and tumor necrosis factor-alpha by human mononuclear cells. Immunopharmacology 1996, 35, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.E.; Morgan, J.M.; Jasani, B.; Green, J.T.; Rhodes, J.; Williams, G.T.; Lindstrom, J.; Wonnacott, S.; Peel, S.; Thomas, G.A. Effect of smoking and transdermal nicotine on colonic nicotinic acetylcholine receptors in ulcerative colitis. QJM 2003, 96, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, Y.; Yasunaga, D.; Kiyoi, T.; Tanaka, M.; Tanaka, A.; Suemaru, K.; Araki, H. Involvement of stimulation of α7 nicotinic acetylcholine receptors in the suppressive effect of tropisetron on dextran sulfate sodium-induced colitis in mice. J. Pharmacol. Sci. 2015, 127, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkowitz, L.; Schultz, B.M.; Salazar, G.A.; Pardo-Roa, C.; Sebastián, V.P.; Álvarez-Lobos, M.M.; Bueno, S.M. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn’s Disease and Ulcerative Colitis. Front. Immunol. 2018, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Itoh, H.; Kamikubo, Y.; Adachi, S.; Ikemoto, M. Establishment of S100A8 Transgenic Rats to Understand Innate Property of S100A8 and Its Immunological Role. Inflammation 2018, 41, 59–72. [Google Scholar] [CrossRef]
- Okada, K.; Ikemoto, M. A new hybrid protein is a novel regulator for experimental colitis in rats. Inflammation 2022, 45, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Oriental Yeast Co. Ltd. Available online: https://www.oyc.co.jp/bio/LAD-equipment/LAD/ingredient.html (accessed on 22 February 2023).
- Yoshino, T.; Nakase, H.; Honzawa, Y.; Matsumura, K.; Yamamoto, S.; Takeda, Y.; Ueno, S.; Uza, N.; Masuda, S.; Inui, K.; et al. Immunosuppressive Effects of Tacrolimus on Macrophages Ameliorate Experimental Colitis. Inflamm. Bowel. Dis. 2010, 16, 2022–2033. [Google Scholar] [CrossRef] [Green Version]
- Kolgazi, M.; Uslu, U.; Yuksel, M.; Velioglu-Ogunc, A.; Ercan, F.; Alican, I. The Role of Cholinergic Anti-Inflammatory Pathway in Acetic Acid-Induced Colonic Inflammation in the Rat. Chem. Biol. Interact. 2013, 205, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, R.; Yasuda, M.; Hashimura, H.; Amagase, K.; Kato, S.; Takeuchi, K. Activation of Alpha7 Nicotinic Acetylcholine Receptors Ameliorates Indomethacin-Induced Small Intestinal Ulceration in Mice. Eur. J. Pharmacol. 2011, 650, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Mennillo, E.; Yang, X.; Paszek, M.; Auwerx, J.; Benner, C.; Chen, S. NCoR1 Protects Mice From Dextran Sodium Sulfate-Induced Colitis by Guarding Colonic Crypt Cells From Luminal Insult. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350–4354. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Troiano, R.P.; Pamuk, E.R.; Kuczmarski, R.J.; Campbell, S.M. The influence of smoking cessation on the prevalence of overweight in the United States. N. Engl. J. Med. 1995, 333, 1165–1170. [Google Scholar] [CrossRef]
- Srivastava, E.D.; Hallett, M.B.; Rhodes, J. Effect of nicotine and cotinine on the production of oxygen free radicals by neutrophils in smokers and non-smokers. Hum. Toxicol. 1989, 8, 461–463. [Google Scholar] [CrossRef]
- Mabley, J.; Gordon, S.; Pacher, P. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 2011, 34, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Sundrud, M.S.; Skepner, J.; Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends. Pharmacol. Sci. 2014, 35, 493–500. [Google Scholar] [CrossRef]
- Mito, K.; Sato, Y.; Kobayashi, T.; Miyamoto, K.; Nitta, E.; Iwama, A.; Matsumoto, M.; Nakamura, M.; Sato, K.; Miyamoto, T. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass. Sci. Rep. 2017, 7, 45597. [Google Scholar] [CrossRef]
- Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; León, R.; Lopez, M.G. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem. Pharmacol. 2015, 97, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Widbom, L.; Schneede, J.; Midttun, Ø.; Ueland, P.M.; Karling, P.; Hultdin, J. Elevated plasma cotinine is associated with an increased risk of developing IBD, especially among users of combusted tobacco. PLoS ONE 2020, 15, e0235536. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Castro, P.A.; Kogel, U.; Lo Sasso, G.; Phillips, B.W.; Sewer, A.; Titz, B.; Garcia, L.; Kondylis, A.; Guedj, E.; Peric, D.; et al. Anatabine ameliorates intestinal inflammation and reduces the production of pro-inflammatory factors in a dextran sulfate sodium mouse model of colitis. J. Inflamm. 2020, 17, 29. [Google Scholar] [CrossRef] [PubMed]
DAI Scores | |||
---|---|---|---|
Scores | Weight Loss (%) | Stool Consistency | Occult/Gross Bleeding |
0 | None | Normal | Normal |
1 | 1–5 | ||
2 | 6–10 | Loose stool | Occult bleeding |
3 | 11–20 | ||
4 | >20 | Diarrhea | Gross bleeding |
DAI Scores | |||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Nico | 6 | 0 | 0 | 0 | 0 |
UC | 0 | 0 | 2 | 4 | 0 |
UC + Nico | 0 | 2 | 3 | 1 | 0 |
UC + Nor | 0 | 2 | 1 | 3 | 0 |
UC + Coti | 0 | 0 | 2 | 4 | 0 |
UC + Anaba | 0 | 0 | 3 | 3 | 0 |
UC + Myos | 0 | 2 | 1 | 3 | 0 |
UC + Anata | 0 | 1 | 2 | 3 | 0 |
HIS Scores | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
Nico | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
UC | 0 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 1 |
UC + Nico | 0 | 3 | 2 | 0 | 1 | 0 | 0 | 0 | 0 |
UC + Nor | 0 | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 0 |
UC + Coti | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 |
UC + Anaba | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 2 | 0 |
UC + Myos | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 0 | 0 |
UC + Anata | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 1 | 0 |
Relative Amount of Colonic nAChR7 Levels (vs. Nico Group) | |||||||
---|---|---|---|---|---|---|---|
UC | UC + Nico | UC + Nor | UC + Coti | UC + Anaba | UC + Myos | UC + Anata | |
Median | 0.79 | 6.98 | 4.67 | 1.24 | 1.19 | 1.14 | 4.45 |
Max | 1.57 | 7.61 | 5.24 | 1.46 | 1.94 | 1.55 | 5.01 |
Min | 0.41 | 6.74 | 4.24 | 0.77 | 0.83 | 0.87 | 4.19 |
p-value | 0.022 | 0.039 | 0.484 | 0.528 | 0.452 | 0.041 | |
(vs. UC group) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, K.; Matsuo, K. Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats. Biomedicines 2023, 11, 922. https://doi.org/10.3390/biomedicines11030922
Okada K, Matsuo K. Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats. Biomedicines. 2023; 11(3):922. https://doi.org/10.3390/biomedicines11030922
Chicago/Turabian StyleOkada, Kohki, and Kano Matsuo. 2023. "Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats" Biomedicines 11, no. 3: 922. https://doi.org/10.3390/biomedicines11030922
APA StyleOkada, K., & Matsuo, K. (2023). Nicotine Exerts a Stronger Immunosuppressive Effect Than Its Structural Analogs and Regulates Experimental Colitis in Rats. Biomedicines, 11(3), 922. https://doi.org/10.3390/biomedicines11030922