Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury
Abstract
:1. Introduction
2. Cellular and Molecular Mechanisms of LIRI
3. Mitochondrial Function and Dynamics during Liver I/R
3.1. Mitochondrial Biogenesis
3.2. Mitochondrial Fission and Fusion
3.3. Mitophagy
4. Impact of Liver Conditions on LIRI
4.1. Fatty Liver Disease
4.2. Aging
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Bodzin, A.S.; Baker, T.B. Liver Transplantation Today: Where We Are Now and Where We Are Going. Liver Transpl. 2018, 24, 1470–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapero-Marugán, M.; Little, E.C.; Berenguer, M. Stretching the Boundaries for Liver Transplant in the 21st Century. Lancet Gastroenterol. Hepatol. 2018, 3, 803–811. [Google Scholar] [CrossRef]
- Busuttil, R.W.; Tanaka, K. The Utility of Marginal Donors in Liver Transplantation. Liver Transpl. 2003, 9, 651–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirao, H.; Nakamura, K.; Kupiec-Weglinski, J.W. Liver Ischaemia–Reperfusion Injury: A New Understanding of the Role of Innate Immunity. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 239–256. [Google Scholar] [CrossRef]
- Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia–Reperfusion Injury in Liver Transplantation—From Bench to Bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89. [Google Scholar] [CrossRef]
- Morio, B.; Panthu, B.; Bassot, A.; Rieusset, J. Role of Mitochondria in Liver Metabolic Health and Diseases. Cell Calcium 2021, 94, 102336. [Google Scholar] [CrossRef]
- Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and Metabolic Dysfunction in Ageing and Age-Related Diseases. Nat. Rev. Endocrinol. 2022, 18, 243–258. [Google Scholar] [CrossRef]
- Teodoro, J.S.; Silva, R.T.D.; Machado, I.F.; Panisello-Roselló, A.; Roselló-Catafau, J.; Rolo, A.P.; Palmeira, C.M. Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022, 11, 688. [Google Scholar] [CrossRef]
- Alexandrino, H.; Rolo, A.; Tralhão, J.G.; Castro e Sousa, F.; Palmeira, C. Mitochondria in Liver Regeneration: Energy Metabolism and Posthepatectomy Liver Dysfunction. In Mitochondrial Biology and Experimental Therapeutics; Oliveira, P.J., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 127–152. [Google Scholar]
- Bernal, W.; Lee, W.M.; Wendon, J.; Larsen, F.S.; Williams, R. Acute Liver Failure: A Curable Disease by 2024? J. Hepatol. 2015, 62, S112–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Moshe, S.; Itzkovitz, S. Spatial Heterogeneity in the Mammalian Liver. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 395–410. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.G.; Jia, Y.; Li, L.; Yoon, J.; Zhang, S.; Wang, Z.; Zhang, Y.; Zhu, M.; Sharma, T.; et al. Liver Homeostasis Is Maintained by Midlobular Zone 2 Hepatocytes. Science 2021, 371, eabb1625. [Google Scholar] [CrossRef]
- Branum, G.D.; Selim, N.; Liu, X.; Whalen, R.; Boyer, T.D. Ischaemia and Reperfusion Injury of Rat Liver Increases Expression of Glutathione S-Transferase A1/A2 in Zone 3 of the Hepatic Lobule. Biochem. J. 1998, 330, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, H.; Bald, C.; Brill, T.; Fend, F.; Von Weihern, C.H.; Kriner, M.; Hüser, N.; Thorban, S.; Stangl, M.; Matevossian, E. The Influence of Retrograde Reperfusion on the Ischaemia-/ Reperfusion Injury after Liver Transplantation in the Rat. Int. J. Exp. Path. 2008, 89, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Nakanuma, S.; Tajima, H.; Takamura, H.; Sakai, S.; Gabata, R.; Okazaki, M.; Shinbashi, H.; Ohbatake, Y.; Makino, I.; Hayashi, H.; et al. Pretreatment with a Phosphodiesterase-3 Inhibitor, Milrinone, Reduces Hepatic Ischemia-Reperfusion Injury, Minimizing Pericentral Zone-Based Liver and Small Intestinal Injury in Rats. Ann. Transplant. 2020, 25, e922306. [Google Scholar] [CrossRef]
- Broughan, T.A.; Naukam, R.; Tan, C.; Van De Wiele, C.J.; Refai, H.; Teague, T.K. Effects of Hepatic Zonal Oxygen Levels on Hepatocyte Stress Responses. J. Surg. Res. 2008, 145, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Yang, T.; Wu, X.; Wu, Y.; Liu, Y.; Liu, X.; Jiang, M.; Gao, W. Spatial Transcriptomics Analysis of Zone-Dependent Hepatic Ischemia-Reperfusion Injury Murine Model. Commun. Biol. 2023, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Gujral, J.S.; Bucci, T.J.; Farhood, A.; Jaeschke, H. Mechanism of Cell Death during Warm Hepatic Ischemia-Reperfusion in Rats: Apoptosis or Necrosis? Hepatology 2001, 33, 397–405. [Google Scholar] [CrossRef]
- Rauen, U.; Elling, B.; Gizewski, E.R.; Korth, H.-G.; Sustmann, R.; de Groot, H. Involvement of Reactive Oxygen Species in the Preservation Injury to Cultured Liver Endothelial Cells. Free Radic. Biol. Med. 1997, 22, 17–24. [Google Scholar] [CrossRef]
- Montalvo-Jave, E.E.; Escalante-Tattersfield, T.; Ortega-Salgado, J.A.; Piña, E.; Geller, D.A. Factors in the Pathophysiology of the Liver Ischemia-Reperfusion Injury. J. Surg. Res. 2008, 147, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Halestrap, A.P. What Is the Mitochondrial Permeability Transition Pore? J. Mol. Cell. Cardiol. 2009, 46, 821–831. [Google Scholar] [CrossRef]
- Kwong, J.Q.; Molkentin, J.D. Physiological and Pathological Roles of the Mitochondrial Permeability Transition Pore in the Heart. Cell Metab. 2015, 21, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Go, K.L.; Lee, S.; Zendejas, I.; Behrns, K.E.; Kim, J.-S. Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury. BioMed Res. Int. 2015, 2015, 183469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; He, K.; Li, J.; Liu, Z.; Gong, J. The Role of Kupffer Cells in Hepatic Diseases. Mol. Immunol. 2017, 85, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Caldwell-Kenkel, J.C.; Thurman, R.G.; Lemasters, J.J. Selective Loss of Nonparenchymal Cell Viability after Cold Ischemic Storage of Rat Livers. Transplantation 1988, 45, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.; Jiménez-Castro, M.B.; Gracia-Sancho, J. Hepatic Ischemia and Reperfusion Injury: Effects on the Liver Sinusoidal Milieu. J. Hepatol. 2013, 59, 1094–1106. [Google Scholar] [CrossRef] [Green Version]
- Russo, L.; Gracia-Sancho, J.; García-Calderó, H.; Marrone, G.; García-Pagán, J.C.; García-Cardeña, G.; Bosch, J. Addition of Simvastatin to Cold Storage Solution Prevents Endothelial Dysfunction in Explanted Rat Livers. Hepatology 2012, 55, 921–930. [Google Scholar] [CrossRef]
- Pfanner, N.; Warscheid, B.; Wiedemann, N. Mitochondrial Proteins: From Biogenesis to Functional Networks. Nat. Rev. Mol. Cell Biol. 2019, 20, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Gattolliat, C.-H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef] [Green Version]
- Chaves Cayuela, N.; Kiyomi Koike, M.; Jacysyn, J.; Rasslan, R.; Azevedo Cerqueira, A.; Pereira Costa, S.; Picanço Diniz-Júnior, J.; Massazo Utiyama, E.; Frasson de Souza Montero, E. N-Acetylcysteine Reduced Ischemia and Reperfusion Damage Associated with Steatohepatitis in Mice. Int. J. Mol. Sci. 2020, 21, 4106. [Google Scholar] [CrossRef]
- Sun, Y.; Pu, L.-Y.; Lu, L.; Wang, X.-H.; Zhang, F.; Rao, J.-H. N-Acetylcysteine Attenuates Reactive-Oxygen-Species-Mediated Endoplasmic Reticulum Stress during Liver Ischemia-Reperfusion Injury. World J. Gastroenterol. 2014, 20, 15289. [Google Scholar] [CrossRef] [Green Version]
- Portakal, O.; İnal-Erden, M. Effects of Pentoxifylline and Coenzyme Q10 in Hepatic Ischemia/Reperfusion Injury. Clin. Biochem. 1999, 32, 461–466. [Google Scholar] [CrossRef]
- Genova, M.L.; Bonacorsi, E.; D’Aurelio, M.; Formiggini, G.; Nardo, B.; Cuccomarino, S.; Turi, P.; Pich, M.M.; Lenaz, G.; Bovina, C. Protective Effect of Exogenous Coenzyme Q in Rats Subjected to Partial Hepatic Ischemia and Reperfusion. BioFactors 1999, 9, 345–349. [Google Scholar] [CrossRef]
- Annesley, S.J.; Fisher, P.R. Mitochondria in Health and Disease. Cells 2019, 8, 680. [Google Scholar] [CrossRef] [Green Version]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Balancing Mitochondrial Biogenesis and Mitophagy to Maintain Energy Metabolism Homeostasis. Cell Death Differ. 2015, 22, 1399–1401. [Google Scholar] [CrossRef] [Green Version]
- Quirós, P.M.; Mottis, A.; Auwerx, J. Mitonuclear Communication in Homeostasis and Stress. Nat. Rev. Mol. Cell Biol. 2016, 17, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Palikaras, K.; Tavernarakis, N. Mitochondrial Homeostasis: The Interplay between Mitophagy and Mitochondrial Biogenesis. Exp. Gerontol. 2014, 56, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; van der Bliek, A.M. Mitochondrial Fission, Fusion, and Stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yan, Q.; Wang, X.; Chen, X.; Chen, Y.; Du, J.; Chen, L. The Role of Mitochondria in Liver Ischemia-Reperfusion Injury: From Aspects of Mitochondrial Oxidative Stress, Mitochondrial Fission, Mitochondrial Membrane Permeable Transport Pore Formation, Mitophagy, and Mitochondria-Related Protective Measures. Oxid. Med. Cell. Longev. 2021, 2021, 6670579. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Zhang, J.; Ren, Y.; Du, Z.; Li, Q.; Wang, Y.; Wei, S.; Yang, L.; Zhang, J.; Liu, C.; et al. Irisin Alleviates Liver Ischemia-Reperfusion Injury by Inhibiting Excessive Mitochondrial Fission, Promoting Mitochondrial Biogenesis and Decreasing Oxidative Stress. Redox Biol. 2019, 20, 296–306. [Google Scholar] [CrossRef]
- Nardo, B.; Caraceni, P.; Pasini, P.; Domenicali, M.; Catena, F.; Cavallari, G.; Santoni, B.; Maiolini, E.; Grattagliano, I.; Vendemiale, G.; et al. Increased Generation of Reactive Oxygen Species in Isolated Rat Fatty Liver during Postischemic Reoxygenation. Transplantation 2001, 71, 1816–1820. [Google Scholar] [CrossRef]
- Chang, W.J.; Chehab, M.; Kink, S.; Toledo-Pereyra, L.H. Intracellular Calcium Signaling Pathways during Liver Ischemia and Reperfusion. J. Investig. Surg. 2010, 23, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Marchi, S.; Pinton, P. The Machineries, Regulation and Cellular Functions of Mitochondrial Calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef]
- Wang, J.; Toan, S.; Zhou, H. Mitochondrial Quality Control in Cardiac Microvascular Ischemia-Reperfusion Injury: New Insights into the Mechanisms and Therapeutic Potentials. Pharmacol. Res. 2020, 156, 104771. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; He, L.; Lemasters, J.J. Mitochondrial Permeability Transition: A Common Pathway to Necrosis and Apoptosis. Biochem. Biophys. Res. Commun. 2003, 304, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Puigserver, P.; Spiegelman, B.M. Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α): Transcriptional Coactivator and Metabolic Regulator. Endocr. Rev. 2003, 24, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Ward, W.F. PGC-1α: A Key Regulator of Energy Metabolism. Adv. Physiol. Educ. 2006, 30, 145–151. [Google Scholar] [CrossRef]
- Larsson, N.-G. Somatic Mitochondrial DNA Mutations in Mammalian Aging. Annu. Rev. Biochem. 2010, 79, 683–706. [Google Scholar] [CrossRef]
- Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA Mutations in Human Disease. Nat. Rev. Genet. 2005, 6, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.-K.; Lee, S.-M. Genipin Protects the Liver from Ischemia/Reperfusion Injury by Modulating Mitochondrial Quality Control. Toxicol. Appl. Pharmacol. 2017, 328, 25–33. [Google Scholar] [CrossRef]
- Halestrap, A.P. Calcium, Mitochondria and Reperfusion Injury: A Pore Way to Die. Biochem. Soc. Trans. 2006, 34, 232–237. [Google Scholar] [CrossRef]
- Jassem, W.; Heaton, N.D. The Role of Mitochondria in Ischemia/Reperfusion Injury in Organ Transplantation. Kidney Int. 2004, 66, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Khader, A.; Yang, W.-L.; Godwin, A.; Prince, J.M.; Nicastro, J.M.; Coppa, G.F.; Wang, P. Sirtuin 1 Stimulation Attenuates Ischemic Liver Injury and Enhances Mitochondrial Recovery and Autophagy. Crit. Care Med. 2016, 44, e651–e663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, R.; Pinto Rolo, A.; Soeiro Teodoro, J.; Furtado, E.; Caetano Oliveira, R.; Tralhão, J.; Marques Palmeira, C. Addition of Berberine to Preservation Solution in an Animal Model of Ex Vivo Liver Transplant Preserves Mitochondrial Function and Bioenergetics from the Damage Induced by Ischemia/Reperfusion. Int. J. Mol. Sci. 2018, 19, 284. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, J.S.; Duarte, F.V.; Gomes, A.P.; Varela, A.T.; Peixoto, F.M.; Rolo, A.P.; Palmeira, C.M. Berberine Reverts Hepatic Mitochondrial Dysfunction in High-Fat Fed Rats: A Possible Role for SirT3 Activation. Mitochondrion 2013, 13, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.P.; Duarte, F.V.; Nunes, P.; Hubbard, B.P.; Teodoro, J.S.; Varela, A.T.; Jones, J.G.; Sinclair, D.A.; Palmeira, C.M.; Rolo, A.P. Berberine Protects against High Fat Diet-Induced Dysfunction in Muscle Mitochondria by Inducing SIRT1-Dependent Mitochondrial Biogenesis. Biochim. Biophys. Acta 2012, 1822, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joe, Y.; Zheng, M.; Kim, H.J.; Uddin, M.J.; Kim, S.-K.; Chen, Y.; Park, J.; Cho, G.J.; Ryter, S.W.; Chung, H.T. Cilostazol Attenuates Murine Hepatic Ischemia and Reperfusion Injury via Heme Oxygenase-Dependent Activation of Mitochondrial Biogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G21–G29. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.-M.; Lee, S.-M. Heme Oxygenase-1 Protects Liver against Ischemia/Reperfusion Injury via Phosphoglycerate Mutase Family Member 5-Mediated Mitochondrial Quality Control. Life Sci. 2018, 200, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Fang, H.; Yang, H.; Wu, T.; Shi, X.; Pang, C. Isolongifolene Alleviates Liver Ischemia/Reperfusion Injury by Regulating AMPK-PGC1α Signaling Pathway-Mediated Inflammation, Apoptosis, and Oxidative Stress. Int. Immunopharmacol. 2022, 113, 109185. [Google Scholar] [CrossRef]
- Biel, T.G.; Lee, S.; Flores-Toro, J.A.; Dean, J.W.; Go, K.L.; Lee, M.-H.; Law, B.K.; Law, M.E.; Dunn, W.A.; Zendejas, I.; et al. Sirtuin 1 Suppresses Mitochondrial Dysfunction of Ischemic Mouse Livers in a Mitofusin 2-Dependent Manner. Cell Death Differ. 2016, 23, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.-J.; Li, W.; An, W. Adenoviral Gene Transfer of Hepatic Stimulator Substance Confers Resistance against Hepatic Ischemia–Reperfusion Injury by Improving Mitochondrial Function. Hum. Gene Ther. 2013, 24, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, J.; An, W. Hepatic Stimulator Substance Resists Hepatic Ischemia/Reperfusion Injury by Regulating Drp1 Translocation and Activation. Hepatology 2017, 66, 1989–2001. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Xie, P.; Dong, Y.; An, W. Inhibition of Drp1 SUMOylation by ALR Protects the Liver from Ischemia-Reperfusion Injury. Cell Death Differ. 2021, 28, 1174–1192. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.D.; Guo, W.Y.; Han, C.H.; Wang, Y.; Chen, X.S.; Li, D.W.; Liu, J.L.; Zhang, M.; Zhu, N.; Wang, X. N6-Methyladenosine Demethylase FTO Impairs Hepatic Ischemia–Reperfusion Injury via Inhibiting Drp1-Mediated Mitochondrial Fragmentation. Cell Death Dis. 2021, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jia, Y.; Liu, B.; Wang, G.; Zhang, Y. TLR4 Knockout Upregulates the Expression of Mfn2 and PGC-1α in a High-Fat Diet and Ischemia-Reperfusion Mice Model of Liver Injury. Life Sci. 2020, 254, 117762. [Google Scholar] [CrossRef] [PubMed]
- Qajari, N.M.; Shafaroudi, M.M.; Gholami, M.; Khonakdar-Tarsi, A. Silibinin Treatment Results in Reducing OPA1&MFN1 Genes Expression in a Rat Model Hepatic Ischemia–Reperfusion. Mol. Biol. Rep. 2020, 47, 3271–3280. [Google Scholar] [CrossRef]
- Cho, H.-I.; Seo, M.-J.; Lee, S.-M. 2-Methoxyestradiol Protects against Ischemia/Reperfusion Injury in Alcoholic Fatty Liver by Enhancing Sirtuin 1-Mediated Autophagy. Biochem. Pharmacol. 2017, 131, 40–51. [Google Scholar] [CrossRef]
- Zhijun, K.; Xudong, Z.; Baoqiang, W.; Chunfu, Z.; Qiang, Y.; Yuan, G.; Xihu, Q. Increased Oxidative Stress Caused by Impaired Mitophagy Aggravated Liver Ischemia and Reperfusion Injury in Diabetic Mice. J. Diabetes Investig. 2023, 14, 28–36. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.; Lu, T.; Zhang, Y.; Sui, X.; Li, Y.; Huang, X.; He, L.; Cai, J.; Zhou, C.; et al. MSCs Ameliorate Hepatocellular Apoptosis Mediated by PINK1-Dependent Mitophagy in Liver Ischemia/Reperfusion Injury through AMPKα Activation. Cell Death Dis. 2020, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Zhao, G.; Wei, S.; Guo, C.; Wu, X.; Zhao, R.C.; Di, G. Pterostilbene Alleviates Liver Ischemia/Reperfusion Injury via PINK1-Mediated Mitophagy. J. Pharmacol. Sci. 2022, 148, 19–30. [Google Scholar] [CrossRef]
- Cao, Q.; Luo, J.; Xiong, Y.; Liu, Z.; Ye, Q. 25-Hydroxycholesterol Mitigates Hepatic Ischemia Reperfusion Injury via Mediating Mitophagy. Int. Immunopharmacol. 2021, 96, 107643. [Google Scholar] [CrossRef]
- Kang, J.-W.; Choi, H.-S.; Lee, S.-M. Resolvin D1 Attenuates Liver Ischaemia/Reperfusion Injury through Modulating Thioredoxin 2-Mediated Mitochondrial Quality Control: Role of Resolvin D1 in Mitochondrial Quality Control. Br. J. Pharmacol. 2018, 175, 2441–2453. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Rao, Z.; Xia, Y.; Wang, Q.; Liu, Z.; Wang, P.; Cheng, F.; Zhou, H. CCAAT/Enhancer-Binding Protein Homologous Protein Promotes ROS-Mediated Liver Ischemia and Reperfusion Injury by Inhibiting Mitophagy in Hepatocytes. Transplantation 2023, 107, 129–139. [Google Scholar] [CrossRef]
- Kong, W.; Li, W.; Bai, C.; Dong, Y.; Wu, Y.; An, W. Augmenter of Liver Regeneration-Mediated Mitophagy Protects against Hepatic Ischemia/Reperfusion Injury. Am. J. Transplant. 2022, 22, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nat. Rev. Mol. Cell Biol. 2017, 19, 121–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab. 2012, 15, 675–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, R.; Wu, W.; Sun, Z.; Li, Z. AMP-Activated Protein Kinase: An Attractive Therapeutic Target for Ischemia-Reperfusion Injury. Eur. J. Pharmacol. 2020, 888, 173484. [Google Scholar] [CrossRef]
- Gomes, A.P.; Price, N.L.; Ling, A.J.Y.; Moslehi, J.J.; Montgomery, M.K.; Rajman, L.; White, J.P.; Teodoro, J.S.; Wrann, C.D.; Hubbard, B.P.; et al. Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell 2013, 155, 1624–1638. [Google Scholar] [CrossRef] [Green Version]
- Pantazi, E.; Zaouali, M.A.; Bejaoui, M.; Serafin, A.; Folch-Puy, E.; Petegnief, V.; De Vera, N.; Abdennebi, H.B.; Rimola, A.; Roselló-Catafau, J. Silent Information Regulator 1 Protects the Liver against Ischemia-Reperfusion Injury: Implications in Steatotic Liver Ischemic Preconditioning. Transpl. Int. 2014, 27, 493–503. [Google Scholar] [CrossRef]
- Hoitzing, H.; Johnston, I.G.; Jones, N.S. What Is the Function of Mitochondrial Networks? A Theoretical Assessment of Hypotheses and Proposal for Future Research. BioEssays 2015, 37, 687–700. [Google Scholar] [CrossRef] [Green Version]
- Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The Cell Biology of Mitochondrial Membrane Dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21, 204–224. [Google Scholar] [CrossRef]
- Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial Dynamics: Overview of Molecular Mechanisms. Essays Biochem. 2018, 62, 341–360. [Google Scholar] [CrossRef] [Green Version]
- Filadi, R.; Pendin, D.; Pizzo, P. Mitofusin 2: From Functions to Disease. Cell Death Dis. 2018, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Scimia, M.C.; Wilkinson, D.; Trelles, R.D.; Wood, M.R.; Bowtell, D.; Dillin, A.; Mercola, M.; Ronai, Z.A. Fine-Tuning of Drp1/Fis1 Availability by AKAP121/Siah2 Regulates Mitochondrial Adaptation to Hypoxia. Mol. Cell 2011, 44, 532–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Zhao, Y.; Yang, Z.; Lu, Q.; Zhou, L.; Zheng, S. USP15 Regulates P66Shc Stability Associated with Drp1 Activation in Liver Ischemia/Reperfusion. Cell Death Dis. 2022, 13, 823. [Google Scholar] [CrossRef]
- Tang, J.; Hu, Z.; Tan, J.; Yang, S.; Zeng, L. Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation. Oxid. Med. Cell. Longev. 2016, 2016, 8474303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, D.; Xu, L.; Yu, Y.; Zhu, W.; Andrews, D.W.; Yoon, Y.; Kuo, T.H. Regulation of Ca2+-Induced Permeability Transition by Bcl-2 Is Antagonized by Drp1 and HFis1. Mol. Cell. Biochem. 2005, 272, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; Karbowski, M. Mitochondrial Fission in Apoptosis. Nat. Rev. Mol. Cell Biol. 2005, 6, 657–663. [Google Scholar] [CrossRef]
- Ong, S.-B.; Subrayan, S.; Lim, S.Y.; Yellon, D.M.; Davidson, S.M.; Hausenloy, D.J. Inhibiting Mitochondrial Fission Protects the Heart against Ischemia/Reperfusion Injury. Circulation 2010, 121, 2012–2022. [Google Scholar] [CrossRef] [Green Version]
- Wasiak, S.; Zunino, R.; McBride, H.M. Bax/Bak Promote Sumoylation of DRP1 and Its Stable Association with Mitochondria during Apoptotic Cell Death. J. Cell Biol. 2007, 177, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-R.; Blackstone, C. Cyclic AMP-Dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology. J. Biol. Chem. 2007, 282, 21583–21587. [Google Scholar] [CrossRef] [Green Version]
- Strubbe-Rivera, J.O.; Schrad, J.R.; Pavlov, E.V.; Conway, J.F.; Parent, K.N.; Bazil, J.N. The Mitochondrial Permeability Transition Phenomenon Elucidated by Cryo-EM Reveals the Genuine Impact of Calcium Overload on Mitochondrial Structure and Function. Sci. Rep. 2021, 11, 1037. [Google Scholar] [CrossRef] [PubMed]
- Santulli, G.; Xie, W.; Reiken, S.R.; Marks, A.R. Mitochondrial Calcium Overload Is a Key Determinant in Heart Failure. Proc. Natl. Acad. Sci. USA 2015, 112, 11389–11394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, C.; Baldassari, F.; Bononi, A.; Bonora, M.; De Marchi, E.; Marchi, S.; Missiroli, S.; Patergnani, S.; Rimessi, A.; Suski, J.M.; et al. Mitochondrial Ca2+ and Apoptosis. Cell Calcium 2012, 52, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Mehrpour, M.; Esclatine, A.; Beau, I.; Codogno, P. Overview of Macroautophagy Regulation in Mammalian Cells. Cell Res. 2010, 20, 748–762. [Google Scholar] [CrossRef] [PubMed]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of Mitophagy in Cellular Homeostasis, Physiology and Pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Bakula, D.; Scheibye-Knudsen, M. MitophAging: Mitophagy in Aging and Disease. Front. Cell Dev. Biol. 2020, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular Mechanisms and Physiological Functions of Mitophagy. EMBO J. 2021, 40, e104705. [Google Scholar] [CrossRef]
- Sekine, S.; Youle, R.J. PINK1 Import Regulation; a Fine System to Convey Mitochondrial Stress to the Cytosol. BMC Biol. 2018, 16, 2. [Google Scholar] [CrossRef] [Green Version]
- Narendra, D.; Tanaka, A.; Suen, D.-F.; Youle, R.J. Parkin Is Recruited Selectively to Impaired Mitochondria and Promotes Their Autophagy. J. Cell Biol. 2008, 183, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Okatsu, K.; Oka, T.; Iguchi, M.; Imamura, K.; Kosako, H.; Tani, N.; Kimura, M.; Go, E.; Koyano, F.; Funayama, M.; et al. PINK1 Autophosphorylation upon Membrane Potential Dissipation Is Essential for Parkin Recruitment to Damaged Mitochondria. Nat. Commun. 2012, 3, 1016. [Google Scholar] [CrossRef] [Green Version]
- Jaeschke, H.; Lemasters, J.J. Apoptosis versus Oncotic Necrosis in Hepatic Ischemia/Reperfusion Injury. Gastroenterology 2003, 125, 1246–1257. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, L.; Zhang, F.; Li, L. Regulation of Autophagy Protects against Liver Injury in Liver Surgery-induced Ischaemia/Reperfusion. J. Cell. Mol. Med. 2021, 25, 9905–9917. [Google Scholar] [CrossRef] [PubMed]
- Denton, D.; Kumar, S. Autophagy-Dependent Cell Death. Cell Death Differ. 2019, 26, 605–616. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Zhang, J.; Zhao, J.; Ma, N.; Kim, S.W.; Qiao, S.; Ma, X. Autophagy: The Last Defense against Cellular Nutritional Stress. Adv. Nutr. 2018, 9, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Zhou, M.; Chen, C.; Wu, X.; Wang, X. Role of AMPK Mediated Pathways in Autophagy and Aging. Biochimie 2022, 195, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R.I.; Simon, A.K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N.; et al. Autophagy in Healthy Aging and Disease. Nat. Aging 2021, 1, 634–650. [Google Scholar] [CrossRef] [PubMed]
- Sheng, R.; Qin, Z. The Divergent Roles of Autophagy in Ischemia and Preconditioning. Acta Pharmacol. Sin. 2015, 36, 411–420. [Google Scholar] [CrossRef]
- Cursio, R.; Colosetti, P.; Gugenheim, J. Autophagy and Liver Ischemia-Reperfusion Injury. BioMed Res. Int. 2015, 2015, 417590. [Google Scholar] [CrossRef]
- Chun, S.K.; Go, K.; Yang, M.-J.; Zendejas, I.; Behrns, K.E.; Kim, J.-S. Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction. Toxicol. Res. 2016, 32, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Nitta, T.; Mohuczy, D.; O’Malley, K.A.; Moldawer, L.L.; Dunn, W.A.; Behrns, K.E. Impaired Autophagy: A Mechanism of Mitochondrial Dysfunction in Anoxic Rat Hepatocytes. Hepatology 2008, 47, 1725–1736. [Google Scholar] [CrossRef] [Green Version]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in Health and Disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, D.; Olmer, M.; Fouassier, A.M.; Valdés, P.; Andreux, P.A.; Rinsch, C.; Lotz, M. Urolithin A Improves Mitochondrial Health, Reduces Cartilage Degeneration, and Alleviates Pain in Osteoarthritis. Aging Cell 2022, 21, e13662. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chen, X.; Liu, X.; Li, Z.; Shi, A.; Tang, X.; Xia, P.; Zhang, J.; Yu, P. AMPK: The Key to Ischemia-reperfusion Injury. J. Cell. Physiol. 2022, 237, 4079–4096. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Celenza, G.; Petricca, S. Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis. Cells 2021, 11, 30. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, T.; Guo, J.; Chen, K.; Li, H.; Wang, J. PINK1 Activation and Translocation to Mitochondria-Associated Membranes Mediates Mitophagy and Protects against Hepatic Ischemia/Reperfusion Injury. Shock 2020, 54, 783–793. [Google Scholar] [CrossRef]
- Ning, X.; Yan, X.; Wang, Y.; Wang, R.; Fan, X.; Zhong, Z.; Ye, Q. Parkin Deficiency Elevates Hepatic Ischemia/Reperfusion Injury Accompanying Decreased Mitochondrial Autophagy, Increased Apoptosis, Impaired DNA Damage Repair and Altered Cell Cycle Distribution. Mol. Med. Rep. 2018, 18, 5663–5668. [Google Scholar] [CrossRef] [Green Version]
- Northup, P.G.; Intagliata, N.M.; Shah, N.L.; Pelletier, S.J.; Berg, C.L.; Argo, C.K. Excess Mortality on the Liver Transplant Waiting List: Unintended Policy Consequences and Model for End-Stage Liver Disease (MELD) Inflation. Hepatology 2015, 61, 285–291. [Google Scholar] [CrossRef]
- Evans, Z.P.; Ellett, J.D.; Schmidt, M.G.; Schnellmann, R.G.; Chavin, K.D. Mitochondrial Uncoupling Protein-2 Mediates Steatotic Liver Injury Following Ischemia/Reperfusion. J. Biol. Chem. 2008, 283, 8573–8579. [Google Scholar] [CrossRef] [Green Version]
- Evans, Z.P.; Palanisamy, A.P.; Sutter, A.G.; Ellett, J.D.; Ramshesh, V.K.; Attaway, H.; Schmidt, M.G.; Schnellmann, R.G.; Chavin, K.D. Mitochondrial Uncoupling Protein-2 Deficiency Protects Steatotic Mouse Hepatocytes from Hypoxia/Reoxygenation. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G336–G342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Gu, J.; Guo, J.; Chen, K.; Li, H.; Wang, J. Renalase Attenuates Mouse Fatty Liver Ischemia/Reperfusion Injury through Mitigating Oxidative Stress and Mitochondrial Damage via Activating SIRT1. Oxid. Med. Cell. Longev. 2019, 2019, 7534285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hide, D.; Warren, A.; Fernández-Iglesias, A.; Maeso-Díaz, R.; Peralta, C.; Couteur, D.G.L.; Bosch, J.; Cogger, V.C.; Gracia-Sancho, J. Ischemia/Reperfusion Injury in the Aged Liver: The Importance of the Sinusoidal Endothelium in Developing Therapeutic Strategies for the Elderly. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 75, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selzner, M.; Selzner, N.; Jochum, W.; Graf, R.; Clavien, P.-A. Increased Ischemic Injury in Old Mouse Liver: An ATP-Dependent Mechanism. Liver Transpl. 2007, 13, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.K.; Lee, S.; Flores-Toro, J.; U, R.Y.; Yang, M.-J.; Go, K.L.; Biel, T.G.; Miney, C.E.; Pierre Louis, S.; Law, B.K.; et al. Loss of Sirtuin 1 and Mitofusin 2 Contributes to Enhanced Ischemia/Reperfusion Injury in Aged Livers. Aging Cell 2018, 17, e12761. [Google Scholar] [CrossRef]
- Flores-Toro, J.; Chun, S.-K.; Shin, J.-K.; Campbell, J.; Lichtenberger, M.; Chapman, W.; Zendejas, I.; Behrns, K.; Leeuwenburgh, C.; Kim, J.-S. Critical Roles of Calpastatin in Ischemia/Reperfusion Injury in Aged Livers. Cells 2021, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhan, F.; Rao, Z.; Pan, X.; Zhong, W.; Sun, Y.; Wang, P.; Lu, L.; Zhou, H.; Wang, X. Combined Ischemic and Rapamycin Preconditioning Alleviated Liver Ischemia and Reperfusion Injury by Restoring Autophagy in Aged Mice. Int. Immunopharmacol. 2019, 74, 105711. [Google Scholar] [CrossRef]
- Liu, A.; Yang, J.; Hu, Q.; Dirsch, O.; Dahmen, U.; Zhang, C.; Gewirtz, D.A.; Fang, H.; Sun, J. Young Plasma Attenuates Age-dependent Liver Ischemia Reperfusion Injury. FASEB J. 2019, 33, 3063–3073. [Google Scholar] [CrossRef]
- Pi-Sunyer, X. The Medical Risks of Obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.-S.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic Fatty Liver Disease. Nat. Rev. Dis. Primers 2015, 1, 15080. [Google Scholar] [CrossRef]
- Basaranoglu, M.; Neuschwander-Tetri, B.A. Nonalcoholic Fatty Liver Disease: Clinical Features and Pathogenesis. Gastroenterol. Hepatol. 2006, 2, 282–291. [Google Scholar]
- An, P.; Wei, L.-L.; Zhao, S.; Sverdlov, D.Y.; Vaid, K.A.; Miyamoto, M.; Kuramitsu, K.; Lai, M.; Popov, Y.V. Hepatocyte Mitochondria-Derived Danger Signals Directly Activate Hepatic Stellate Cells and Drive Progression of Liver Fibrosis. Nat. Commun. 2020, 11, 2362. [Google Scholar] [CrossRef]
- Kaufmann, B.; Reca, A.; Wang, B.; Friess, H.; Feldstein, A.E.; Hartmann, D. Mechanisms of Nonalcoholic Fatty Liver Disease and Implications for Surgery. Langenbecks Arch. Surg. 2021, 406, 1–17. [Google Scholar] [CrossRef]
- Orci, L.A.; Lacotte, S.; Oldani, G.; Slits, F.; De Vito, C.; Crowe, L.A.; Rubbia-Brandt, L.; Vallée, J.-P.; Morel, P.; Toso, C. Effect of Ischaemic Preconditioning on Recurrence of Hepatocellular Carcinoma in an Experimental Model of Liver Steatosis. Br. J. Surg. 2016, 103, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, Y.; Ren, H.; Wang, J.; Shang, L.; Liu, Y.; Zhu, W.; Shi, X. Ischemia Reperfusion Injury Promotes Recurrence of Hepatocellular Carcinoma in Fatty Liver via ALOX12-12HETE-GPR31 Signaling Axis. J. Exp. Clin. Cancer. Res. 2019, 38, 489. [Google Scholar] [CrossRef] [Green Version]
- Grąt, M.; Krawczyk, M.; Wronka, K.M.; Stypułkowski, J.; Lewandowski, Z.; Wasilewicz, M.; Krawczyk, P.; Grąt, K.; Patkowski, W.; Zieniewicz, K. Ischemia-Reperfusion Injury and the Risk of Hepatocellular Carcinoma Recurrence after Deceased Donor Liver Transplantation. Sci. Rep. 2018, 8, 8935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Wang, T.; Ju, W.; Li, F.; Zhang, Q.; Chen, Z.; Gong, J.; Zhao, Q.; Wang, D.; Chen, M.; et al. Ischemic-Free Liver Transplantation Reduces the Recurrence of Hepatocellular Carcinoma after Liver Transplantation. Front. Oncol. 2021, 11, 773535. [Google Scholar] [CrossRef]
- Man, K.; Ng, K.T.; Lo, C.M.; Ho, J.W.; Sun, B.S.; Sun, C.K.; Lee, T.K.; Poon, R.T.P.; Fan, S.T. Ischemia-Reperfusion of Small Liver Remnant Promotes Liver Tumor Growth and Metastases—Activation of Cell Invasion and Migration Pathways. Liver. Transpl. 2007, 13, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Mori, A.; Fujimoto, Y.; Ito, T.; Iida, T.; Yagi, S.; Okajima, H.; Kaido, T.; Uemoto, S. Longer Warm Ischemia Can Accelerate Tumor Growth through the Induction of HIF-1α and the IL-6-JAK-STAT3 Signaling Pathway in a Rat Hepatocellular Carcinoma Model: Longer Warm Ischemia Can Accelerate Tumor Growth through the Induction of HIF-1α and the IL-6-JAK-STAT3 Signaling Pathway in a Rat HCC Model. J. Hepatobiliary. Pancreat. Sci. 2016, 23, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.T.-P.; Yeung, O.W.-H.; Lam, Y.F.; Liu, J.; Liu, H.; Pang, L.; Yang, X.X.; Zhu, J.; Zhang, W.; Lau, M.Y.H.; et al. Glutathione S-Transferase A2 Promotes Hepatocellular Carcinoma Recurrence after Liver Transplantation through Modulating Reactive Oxygen Species Metabolism. Cell Death Discov. 2021, 7, 188. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, D.; Wang, Y.; Qin, H.; Yang, W.; Cui, R.; Sheng, J. Mitochondrial Quality Control in Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 713721. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, J.; Wu, Y.; Dai, H.-Q.; Zhu, G.-Z.; Chen, P.-H.; Wang, L.-M.; Lu, G.; Liao, X.-W.; Lu, P.-Z.; et al. Simultaneous Treatment with Sorafenib and Glucose Restriction Inhibits Hepatocellular Carcinoma in Vitro and in Vivo by Impairing SIAH1-Mediated Mitophagy. Exp. Mol. Med. 2022, 54, 2007–2021. [Google Scholar] [CrossRef] [PubMed]
- Selzner, M.; RüDiger, H.A.; Sindram, D.; Madden, J.; Clavien, P.-A. Mechanisms of Ischemic Injury Are Different in the Steatotic and Normal Rat Liver. Hepatology 2000, 32, 1280–1288. [Google Scholar] [CrossRef]
- Nassir, F.; Ibdah, J. Role of Mitochondria in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 8713–8742. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Shen, J.; Yuan, R.; Jia, B.; Zhang, Y.; Wang, S.; Zhang, Y.; Liu, M.; Wang, T. Mitochondrial Targeting Therapeutics: Promising Role of Natural Products in Non-Alcoholic Fatty Liver Disease. Front. Pharmacol. 2021, 12, 796207. [Google Scholar] [CrossRef]
- Indo, H.P.; Yen, H.-C.; Nakanishi, I.; Matsumoto, K.; Tamura, M.; Nagano, Y.; Matsui, H.; Gusev, O.; Cornette, R.; Okuda, T.; et al. A Mitochondrial Superoxide Theory for Oxidative Stress Diseases and Aging. J. Clin. Biochem. Nutr. 2015, 56, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Caraceni, P.; Bianchi, C.; Domenicali, M.; Maria Pertosa, A.; Maiolini, E.; Parenti Castelli, G.; Nardo, B.; Trevisani, F.; Lenaz, G.; Bernardi, M. Impairment of Mitochondrial Oxidative Phosphorylation in Rat Fatty Liver Exposed to Preservation-Reperfusion Injury. J. Hepatol. 2004, 41, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.J.; Premkumar, R.; Hickey, A.J.; Jiang, Y.; Delahunt, B.; Phillips, A.R.; Bartlett, A.S. Steatotic Livers Are Susceptible to Normothermic Ischemia-Reperfusion Injury from Mitochondrial Complex-I Dysfunction. World J. Gastroenterol. 2016, 22, 4673. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Toda, C.; Diano, S. Mitochondrial UCP2 in the Central Regulation of Metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 757–764. [Google Scholar] [CrossRef]
- Li, S.; Fujino, M.; Takahara, T.; Li, X.-K. Protective Role of Heme Oxygenase-1 in Fatty Liver Ischemia–Reperfusion Injury. Med. Mol. Morphol. 2019, 52, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Longo, V.D.; Anderson, R.M. Nutrition, Longevity and Disease: From Molecular Mechanisms to Interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Green, C.L.; Lamming, D.W.; Fontana, L. Molecular Mechanisms of Dietary Restriction Promoting Health and Longevity. Nat. Rev. Mol. Cell Biol. 2022, 23, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Fuentealba, M.; Kennedy, B.K. The Quest to Slow Ageing through Drug Discovery. Nat. Rev. Drug. Discov. 2020, 19, 513–532. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, S0092867422013770. [Google Scholar] [CrossRef]
- Kitada, M.; Koya, D. Autophagy in Metabolic Disease and Ageing. Nat. Rev. Endocrinol. 2021, 17, 647–661. [Google Scholar] [CrossRef]
- Finkel, T. The Metabolic Regulation of Aging. Nat. Med. 2015, 21, 1416–1423. [Google Scholar] [CrossRef]
- Lima, T.; Li, T.Y.; Mottis, A.; Auwerx, J. Pleiotropic Effects of Mitochondria in Aging. Nat. Aging 2022, 2, 199–213. [Google Scholar] [CrossRef]
- Hoare, M.; Das, T.; Alexander, G. Ageing, Telomeres, Senescence, and Liver Injury. J. Hepatol. 2010, 53, 950–961. [Google Scholar] [CrossRef] [Green Version]
- Hunt, N.J.; Kang, S.W.; Lockwood, G.P.; Le Couteur, D.G.; Cogger, V.C. Hallmarks of Aging in the Liver. Comput. Struct. Biotechnol. J. 2019, 17, 1151–1161. [Google Scholar] [CrossRef]
- Kan, C.; Ungelenk, L.; Lupp, A.; Dirsch, O.; Dahmen, U. Ischemia-Reperfusion Injury in Aged Livers—The Energy Metabolism, Inflammatory Response, and Autophagy. Transplantation 2018, 102, 368–377. [Google Scholar] [CrossRef]
- Fortner, J.G.; Lincer, R.M. Hepatic Resection in the Elderly. Ann. Surg. 1990, 211, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Yanaga, K.; Kanematsu, T.; Takenaka, K.; Matsumata, T.; Yoshida, Y.; Sugimachi, K. Hepatic Resection for Hepatocellular Carcinoma in Elderly Patients. Am. J. Surg. 1988, 155, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Busquets, J.; Xiol, X.; Figueras, J.; Jaurrieta, E.; Torras, J.; Ramos, E.; Rafecas, A.; Fabregat, J.; Lama, C.; Ibañez, L.; et al. The Impact of Donor Age on Liver Transplantation: Influence of Donor Age on Early Liver Function and on Subsequent Patient and Graft Survival. Transplantation 2001, 71, 1765–1771. [Google Scholar] [CrossRef]
- Lai, Q.; Melandro, F.; Sandri, G.B.L.; Mennini, G.; Corradini, S.G.; Merli, M.; Berloco, P.B.; Rossi, M. Use of Elderly Donors for Liver Transplantation: Has the Limit Been Reached? J. Gastrointest. Liver Dis. 2011, 20, 383–387. [Google Scholar]
- Ghanie, A.; Formica, M.K.; Dhir, M. Systematic Review and Meta-Analysis of 90-Day and 30-Day Mortality after Liver Resection in the Elderly. Surgery 2022, 172, 1164–1173. [Google Scholar] [CrossRef]
- Andert, A.; Lodewick, T.; Ulmer, T.F.; Schmeding, M.; Schöning, W.; Neumann, U.; Dejong, K.; Heidenhain, C. Liver Resection in the Elderly: A Retrospective Cohort Study of 460 Patients—Feasible and Safe. Int. J. Surg. 2016, 28, 126–130. [Google Scholar] [CrossRef]
- Kim, J.-S.; Chapman, W.C.; Lin, Y. Mitochondrial Autophagy in Ischemic Aged Livers. Cells 2022, 11, 4083. [Google Scholar] [CrossRef]
- Mizuguchi, T.; Kawamoto, M.; Meguro, M.; Okita, K.; Ota, S.; Ishii, M.; Ueki, T.; Nishidate, T.; Kimura, Y.; Furuhata, T.; et al. The Impact of Aging on Morbidity and Mortality after Liver Resection: A Systematic Review and Meta-Analysis. Surg. Today 2015, 45, 259–270. [Google Scholar] [CrossRef]
- Tzeng, C.-W.D.; Cooper, A.B.; Vauthey, J.-N.; Curley, S.A.; Aloia, T.A. Predictors of Morbidity and Mortality after Hepatectomy in Elderly Patients: Analysis of 7621 NSQIP Patients. HPB 2014, 16, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Dickson, K.M.; Martins, P.N. Implications of Liver Donor Age on Ischemia Reperfusion Injury and Clinical Outcomes. Transplant. Rev. 2020, 34, 100549. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Hirose, R.; Coatney, J.L.; Ferrell, L.; Behrends, M.; Roberts, J.P.; Serkova, N.J.; Niemann, C.U. Ischemia-Reperfusion Injury Is More Severe in Older versus Young Rat Livers. J. Surg. Res. 2007, 137, 96–102. [Google Scholar] [CrossRef]
- Okaya, T.; Blanchard, J.; Schuster, R.; Kuboki, S.; Husted, T.; Caldwell, C.C.; Zingarelli, B.; Wong, H.; Solomkin, J.S.; Lentsch, A.B. Age-Dependent Responses to Hepatic Ischemia/Reperfusion Injury. Shock 2005, 24, 421–427. [Google Scholar] [CrossRef]
- Brandt, T.; Mourier, A.; Tain, L.S.; Partridge, L.; Larsson, N.-G.; Kühlbrandt, W. Changes of Mitochondrial Ultrastructure and Function during Ageing in Mice and Drosophila. eLife 2017, 6, e24662. [Google Scholar] [CrossRef] [PubMed]
- Lesnefsky, E.J.; Hoppel, C.L. Oxidative Phosphorylation and Aging. Ageing Res. Rev. 2006, 5, 402–433. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ruan, D.; Jia, C.; Zheng, J.; Wang, G.; Zhao, H.; Yang, Q.; Liu, W.; Yi, S.; Li, H.; et al. Aging Aggravates Hepatic Ischemia-Reperfusion Injury in Mice by Impairing Mitophagy with the Involvement of the EIF2α-Parkin Pathway. Aging 2018, 10, 1902–1920. [Google Scholar] [CrossRef]
- Li, Q.; Gao, S.; Kang, Z.; Zhang, M.; Zhao, X.; Zhai, Y.; Huang, J.; Yang, G.-Y.; Sun, W.; Wang, J. Rapamycin Enhances Mitophagy and Attenuates Apoptosis after Spinal Ischemia-Reperfusion Injury. Front. Neurosci. 2018, 12, 865. [Google Scholar] [CrossRef]
- Selvarani, R.; Mohammed, S.; Richardson, A. Effect of Rapamycin on Aging and Age-Related Diseases—Past and Future. GeroScience 2021, 43, 1135–1158. [Google Scholar] [CrossRef]
- Bitto, A.; Kaeberlein, M. Rejuvenation: It’s in Our Blood. Cell Metab. 2014, 20, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Villeda, S.A.; Plambeck, K.E.; Middeldorp, J.; Castellano, J.M.; Mosher, K.I.; Luo, J.; Smith, L.K.; Bieri, G.; Lin, K.; Berdnik, D.; et al. Young Blood Reverses Age-Related Impairments in Cognitive Function and Synaptic Plasticity in Mice. Nat. Med. 2014, 20, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Rao, Z.; Rao, J.; Han, G.; Wang, P.; Jiang, T.; Pan, X.; Zhou, S.; Zhou, H.; Wang, X. Aging Aggravated Liver Ischemia and Reperfusion Injury by Promoting STING-mediated NLRP3 Activation in Macrophages. Aging Cell 2020, 19, e13186. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, H.; Bishawi, M.; Feng, F.; Samy, K.; Truskey, G.; Barbas, A.S.; Kirk, A.D.; Brennan, T.V. Circulating Mitochondria in Organ Donors Promote Allograft Rejection. Am. J. Transplant. 2019, 19, 1917–1929. [Google Scholar] [CrossRef] [PubMed]
- Pollara, J.; Edwards, R.W.; Lin, L.; Bendersky, V.A.; Brennan, T.V. Circulating Mitochondria in Deceased Organ Donors Are Associated with Immune Activation and Early Allograft Dysfunction. JCI Insight 2018, 3, e121622. [Google Scholar] [CrossRef]
- Saeb-Parsy, K.; Martin, J.L.; Summers, D.M.; Watson, C.J.E.; Krieg, T.; Murphy, M.P. Mitochondria as Therapeutic Targets in Transplantation. Trends Mol. Med. 2021, 27, 185–198. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.-A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic Oxygenated Perfusion Protects from Mitochondrial Injury before Liver Transplantation. EBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef]
- Meszaros, A.T.; Hofmann, J.; Buch, M.L.; Cardini, B.; Dunzendorfer-Matt, T.; Nardin, F.; Blumer, M.J.; Fodor, M.; Hermann, M.; Zelger, B.; et al. Mitochondrial Respiration during Normothermic Liver Machine Perfusion Predicts Clinical Outcome. eBioMedicine 2022, 85, 104311. [Google Scholar] [CrossRef]
- Martins, R.M.; Teodoro, J.S.; Furtado, E.; Rolo, A.P.; Palmeira, C.M.; Tralhão, J.G. Evaluation of Bioenergetic and Mitochondrial Function in Liver Transplantation. Clin. Mol. Hepatol. 2019, 25, 190–198. [Google Scholar] [CrossRef] [Green Version]
Intervention | Species/Model | Mechanism | Effect on Mitochondria | Reference |
---|---|---|---|---|
Mitochondrial biogenesis | ||||
Berberine | Wistar rats | – | ↑ ATP content ↓ ROS ↑ Mitochondrial biogenesis markers | Martins et al. [54] |
Cilostazol | Mice HepG2 cells | Activation of HO-1 and Nrf2 | ↑ Mitochondrial biogenesis markers ↑ Mitochondrial function | Joe et al. [57] |
Hemin | Mice | Activation of HO-1 | ↑ Mitochondrial biogenesis markers ↑ Fission/fusion markers ↑ Mitophagy | Hong et al. [58] |
Genipin | Mice | Activation of AMPK and SIRT1 | ↑ Mitochondrial biogenesis markers ↑ Fission/fusion markers ↑ Mitophagy | Shin et al. [50] |
SRT1720 | Mice | Activation of SIRT1 | ↑ Mitochondrial biogenesis markers ↑ Mitochondrial function ↑ Mitochondrial mass | Khader et al. [53] |
Isolongifolene | Mice | Activation of AMPK and PGC1α | ↓ Oxidative stress | Li et al. [59] |
Sirt1 overexpression | Mice (Ad-SIRT1) Primary hepatocytes | Interaction between SIRT1 and MFN2 | ↓ MPT ↓ Mitochondrial dysfunction | Biel et al. [60] |
Mitochondrial fission/fusion | ||||
Alr overexpression | Mice (Ad-HSS) BEL-7402 cells (Ad-HSS) | – | ↑ Mitochondrial function ↓ Mitochondrial ROS ↓ Mitochondrial-related apoptosis | Jiang et al. [61] |
Alr overexpression | HSS+/– mice HepG2 cells | Translocation and activation of DRP1 | ↑ Fission markers | Zhang et al. [62] |
Irisin | Mice HL-7702 cells | Inhibition of excessive fission (through inhibition of DRP1 and FIS1) | ↑ Mitochondrial biogenesis markers ↑ Mitochondrial content ↓ Oxidative stress | Bi et al. [40] |
Alr silencing | ALR+/– mice | DRP1 SUMOylation and recruitment to mitochondria | ↓ Mitochondrial fission | Huang et al. [63] |
Fto overexpression | Mice (Ad-FTO) | Inhibition of DRP1 | ↓ Mitochondrial fragmentation ↓ Oxidative stress | Du et al. [64] |
Tlr4 silencing | TLR4-KO mice | Activation of IL6 and TNFα pathways | ↑ Mitochondrial biogenesis markers ↑ Mitochondrial fusion markers ↓ ROS | Zhang et al. [65] |
Silibinin | Wistar rats | – | ↑ Mitochondrial fusion markers | Qajari et al. [66] |
Mitophagy | ||||
2-Methoxyestradiol | AFL mice | Activation of SIRT1 | ↑ Mitophagy | Cho et al. [67] |
AICAR | db/db mice | ↑ Mitophagy | Zhijun et al. [68] | |
UC-MSC transfusion | Mice L02 hepatocytes | Activation of AMPKα | ↓ Mitochondrial ROS ↑ Mitophagy | Zheng et al. [69] |
Pterostilbene | Mice L02 hepatocytes | Activation of PINK1 | ↓ Mitochondrial dysfunction ↓ Mitochondrial ROS ↑ Mitophagy | Shi et al. [70] |
25-Hydroxycholesterol | Sprague Dawley rats | Activation of PINK1/Parkin pathway | ↑ Mitophagy | Cao et al. [71] |
Resolvin D1 | Mice | Activation of TRX2 | ↑ Mitophagy markers ↓ Mitochondrial swelling ↓ Oxidative stress ↑ Mitochondrial biogenesis markers ↑ Mitochondrial fission markers | Kang et al. [72] |
CHOP silencing | CHOP-KO mice | Activation of DRP1-Beclin1 pathway | ↓ ROS ↑ Mitophagy | Zhou et al. [73] |
Alr overexpression | Brown-Norway rats (Ad-ALR) | Activation of MFN2 | ↑ Mitochondrial function ↑ Mitophagy | Kong et al. [74] |
Intervention | Species/Model | Mechanism of Action | References |
---|---|---|---|
NAFLD | |||
Ucp2 silencing | UCP2-KO ob/ob mice | Increased ATP levels Increased mice survival following I/R | Evans et al. [120] |
Ucp2 silencing | UCP2-KO primary hepatocytes | Increased cellular viability Increased ATP levels Increased mitochondrial membrane potential | Evans et al. [121] |
Renalase | HFD mice HepG2 | Increased NAD+ levels and activation of SIRT1 Decreased ROS production Increased mitochondrial function | Zhang et al. [122] |
Aging | |||
Simvastatin | Wistar rats | Inhibition of HMG-CoA Decreased hepatocellular damage Decreased oxidative stress | Hide et al. [123] |
Ischemic and glucose preconditioning | Mice | Increased ATP levels | Selzner et al. [124] |
Sirt1 and Mfn2 overexpression | Mice Primary hepatocytes | Prevention of mitochondrial dysfunction Prevention of MPT pore opening Increased mitophagy Prevention of cell death | Chun et al. [125] |
Calpastatin overexpression | Mice Primary hepatocytes | Mitochondrial elongation Prevention of MPT pore opening Prevention of mitochondrial depolarization Prevention of necrosis | Flores-Toro et al. [126] |
Ischemic and rapamycin preconditioning | Mice | Increased autophagy | Jiang et al. [127] |
Plasma from young mice | Sprague Dawley rats Primary hepatocytes | Activation of AMPK/ULK1 pathway Increased autophagy | Liu et al. [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, I.F.; Palmeira, C.M.; Rolo, A.P. Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury. Biomedicines 2023, 11, 948. https://doi.org/10.3390/biomedicines11030948
Machado IF, Palmeira CM, Rolo AP. Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury. Biomedicines. 2023; 11(3):948. https://doi.org/10.3390/biomedicines11030948
Chicago/Turabian StyleMachado, Ivo F., Carlos M. Palmeira, and Anabela P. Rolo. 2023. "Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury" Biomedicines 11, no. 3: 948. https://doi.org/10.3390/biomedicines11030948
APA StyleMachado, I. F., Palmeira, C. M., & Rolo, A. P. (2023). Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury. Biomedicines, 11(3), 948. https://doi.org/10.3390/biomedicines11030948