Calculated Whole Blood Viscosity and Albumin/Fibrinogen Ratio in Patients with a New Diagnosis of Multiple Myeloma: Relationships with Some Prognostic Predictors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Laboratory Tests
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surveillance, Epidemiology, and End Results (SEER) Program. SEER Cancer Statistic Factsheets: Myeloma. Available online: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed on 1 November 2016).
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titov, A.; Kaminskiy, Y.; Ganeeva, I.; Zmievskaya, E.; Valiullina, A.; Rakhmatullina, A.; Petukhov, A.; Miftakhova, R.; Rizvanov, A.; Bulatov, E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers 2022, 14, 1078. [Google Scholar] [CrossRef] [PubMed]
- Bębnowska, D.; Hrynkiewicz, R.; Grywalska, E.; Pasiarski, M.; Sosnowska-Pasiarska, B.; Smarz-Widelska, I.; Góźdź, S.; Roliński, J.; Niedźwiedzka-Rystwej, P. Immunological Prognostic Factors in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 3587. [Google Scholar] [CrossRef] [PubMed]
- Hanbali, A.; Hassanein, M.; Rasheed, W.; Aljurf, M.; Alsharif, F. The Evolution of Prognostic Factors in Multiple Myeloma. Adv. Hematol. 2017, 2017, 4812637. [Google Scholar] [CrossRef] [Green Version]
- Chng, W.J.; Dispenzieri, A.; Chim, C.-S.; Fonseca, R.; Goldschmidt, H.; Lentzsch, S.; Munshi, N.; Palumbo, A.; San-Miguel, J.F.; Sonneveld, P.; et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia 2013, 28, 269–277. [Google Scholar] [CrossRef]
- Greipp, P.R.; Miguel, J.S.; Durie, B.G.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Dimopoulos, M.; Barlogie, B.; Smith, T.L.; Alexanian, R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann. Intern. Med. 1991, 115, 931. [Google Scholar] [CrossRef]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.-V.; Dall’Olio, D.; van de Donk, N.W.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.C.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2013, 28, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Holmström, M.O.; Gimsing, P.; Abildgaard, N.; Andersen, N.F.; Helleberg, C.; Clausen, N.A.T.; Klausen, T.W.; Frederiksen, M.; Kristensen, D.L.; Larsen, H.; et al. Causes of early death in multiple myeloma patients who are ineligible for high-dose therapy with hematopoietic stem cell support: A study based on the nationwide Danish Myeloma Database. Am. J. Hematol. 2015, 90, E73–E74. [Google Scholar] [CrossRef]
- Pfahler, V.K.A.; D’Anastasi, M.; Dürr, H.; Schinner, R.; Ricke, J.; Baur-Melnyk, A. Tumor load in patients with multiple myeloma: β₂-microglobulin levels versus low-dose whole-body CT. Eur. J. Haematol. 2019, 104, 383–389. [Google Scholar] [CrossRef]
- Rossi, D.; Fangazio, M.; De Paoli, L.; Puma, A.; Riccomagno, P.; Pinto, V.; Zigrossi, P.; Ramponi, A.; Monga, G.; Gaidano, G. Beta-2-microglobulin is an independent predictor of progression in asymptomatic multiple myeloma. Cancer 2010, 116, 2188–2200. [Google Scholar] [CrossRef]
- Al-Sahmani, M.; Trnavska, I.; Sevcikova, S.; Antosova, L.; Kissova, J.; Adam, Z.; Pour, L.; Nemec, P.; Greslikova, H.; Krejci, M.; et al. Prognostic significance of morphological assessment of plasma cells in multiple myeloma. Neoplasma 2011, 58, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, R.; Bergsagel, P.L.; Drach, J.; Shaughnessy, J.; Gutierrez, N.; Stewart, A.K.; Morgan, G.; Van Ness, B.; Chesi, M.; Minvielle, S.; et al. International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia 2009, 23, 2210–2221. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xu, P.; Peng, M.; Shao, X.; Wang, M.; Ouyang, J.; Chen, B. Pre-treatment red blood cell distribution width provides prognostic information in multiple myeloma. Clin. Chim. Acta 2018, 481, 34–41. [Google Scholar] [CrossRef]
- Caimi, G.; Carlisi, M.; Montana, M.; Gallà, E.; Presti, R.L.; Hopps, E.; Siragusa, S. Erythrocyte deformability and hemorheological profile in multiple myeloma. Clin. Hemorheol. Microcirc. 2018, 68, 25–34. [Google Scholar] [CrossRef]
- Caimi, G.; Carlisi, M.; Montana, M.; Gallà, E.; Hopps, E.; Presti, R.L.; Siragusa, S. Red blood cell deformability in multiple myeloma1. Clin. Hemorheol. Microcirc. 2018, 69, 233–238. [Google Scholar] [CrossRef]
- Caimi, G.; Presti, R.L.; Carlisi, M. Reflections on the unexpected laboratory finding of hemorheological alterations observed in some haematological disorders. Microvasc. Res. 2021, 136, 104171. [Google Scholar] [CrossRef]
- Caimi, G.; Presti, R.L.; Mancuso, S.; Siragusa, S.; Carlisi, M. Erythrocyte deformability profile evaluated by laser diffractometry in patients with multiple myeloma: Re-examination of our cases. Microvasc. Res. 2023, 146, 104473. [Google Scholar] [CrossRef]
- Merrill, E.W.; Cheng, C.S.; Pelletier, G.A. Yield stress of normal human blood as a function of endogenous fibrinogen. J. Appl. Physiol. 1969, 26, 1–3. [Google Scholar] [CrossRef] [PubMed]
- de Simone, G.; Devereux, R.B.; Chien, S.; Alderman, M.H.; Atlas, S.A.; Laragh, J.H. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 1990, 81, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, N.; Singh, N. Blood viscosity, lipid profile, and lipid peroxidation in type-1 diabetic patients with good and poor glycemic control. N. Am. J. Med. Sci. 2013, 5, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhas, Y.; Banerjee, J.; Mishra, N. Blood Viscosity, Glycemic Markers and Blood Pressure: A Study in Middle-Aged Normotensive and Hypertensive Type 2 Diabetics. Indian J. Clin. Biochem. 2018, 35, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Carlisi, M.; Mancuso, S.; Presti, R.L.; Siragusa, S.; Caimi, G. Comparison between whole blood viscosity measured and calculated in subjects with monoclonal gammopathy of undetermined significance and in patients with multiple myeloma: Re-evaluation of our survey. Clin. Hemorheol. Microcirc. 2021, 79, 475–483. [Google Scholar] [CrossRef]
- Dintenfass, L. Haemorheology of diabetes mellitus. Adv. Microcirc. 1979, 8, 14–36. [Google Scholar]
- Dintenfass, L. Blood Viscosity. Hyperviscosity & Hyperviscosemia; MTP Press Limited: Lancaster, UK, 1985. [Google Scholar]
- McQuilten, Z.; Wellard, C.; Moore, E.; Augustson, B.; Bergin, K.; Blacklock, H.; Harrison, S.; Ho, P.J.; King, T.; Quach, H.; et al. Predictors of early mortality in multiple myeloma: Results from the Australian and New Zealand Myeloma and Related Diseases Registry (MRDR). Br. J. Haematol. 2022, 198, 830–837. [Google Scholar] [CrossRef]
- Pribush, A.; Hatzkelson, L.; Meyerstein, D.; Meyerstein, N. A novel technique for quantification of erythrocyte aggregation ab-normalities in pathophysiological situations. Clin. Hemorheol. Microcirc. 2007, 36, 121–132. [Google Scholar]
- Kwaan, H.C. Hyperviscosity in plasma cell dyscrasias. Clin. Hemorheol. Microcirc. 2013, 55, 75–83. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Meiselman, H.J. Hemodynamic effects of red blood cell aggregation. Experiment 2007, 45, 25–31. [Google Scholar]
- Chen, Y.H.; Magalhaes, M.C. Hypoalbuminemia in patients with multiple myeloma. Arch. Intern. Med. 1990, 150, 605–610. [Google Scholar] [CrossRef]
- Bataille, R.; Jourdan, M.; Zhang, X.G.; Klein, B. Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J. Clin. Investig. 1989, 84, 2008–2011. [Google Scholar] [CrossRef] [Green Version]
- Lauta, V.M. A review of the cytokine network in multiple myeloma: Diagnostic, prognostic, and therapeutic implications. Cancer 2003, 97, 2440–2452. [Google Scholar] [CrossRef]
- Kim, J.E.; Yoo, C.; Lee, D.H.; Kim, S.-W.; Lee, J.-S.; Suh, C. Serum albumin level is a significant prognostic factor reflecting disease severity in symptomatic multiple myeloma. Ann. Hematol. 2009, 89, 391–397. [Google Scholar] [CrossRef]
- Xu, J.; Zuo, Y.; Sun, J.; Zhou, M.; Dong, X.; Chen, B. Application of clinical nomograms to predicting overall survival and event-free survival in multiple myeloma patients: Visualization tools for prognostic stratification. Front. Public Health 2022, 10, 958325. [Google Scholar] [CrossRef]
- Bonello, F.; Cani, L.; D’Agostino, M. Risk Stratification before and during Treatment in Newly Diagnosed Multiple Myeloma: From Clinical Trials to the Real-World Setting. Front. Oncol. 2022, 12, 830922. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhao, F.; Zhang, B.; Zhang, Y.; Cai, L.; Qiao, B.; Hu, Y.; Sun, C. Prognostic nomogram incorporating cytokines for overall survival in patients with newly diagnosed multiple myeloma. Int. Immunopharmacol. 2021, 99, 108016. [Google Scholar] [CrossRef]
- Ai, L.; Mu, S.; Hu, Y. Prognostic role of RDW in hematological malignancies: A systematic review and meta-analysis. Cancer Cell Int. 2018, 18, 61. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, J.; Duan, J.; Xiong, H.; Liu, Y.; Zhang, X.; Huang, C. Is RDW a clinically relevant prognostic factor for newly diagnosed multiple myeloma? A systematic review and meta-analysis. BMC Cancer 2022, 22, 796. [Google Scholar] [CrossRef]
- Mei, S.; Wang, H.; Fu, R.; Qu, W.; Xing, L.; Wang, G.; Song, J.; Liu, H.; Li, L.; Wang, X.; et al. Hepcidin and GDF15 in anemia of multiple myeloma. Int. J. Hematol. 2014, 100, 266–273. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Małyszko, J.; Batko, K.; Koc-Żórawska, E.; Żórawski, M.; Dumnicka, P.; Jurczyszyn, A.; Woziwodzka, K.; Maleszka, A.; Krzanowski, M.; et al. The Key Role of Hepcidin-25 in Anemia in Multiple Myeloma Patients with Renal Impairment. Medicina 2022, 58, 417. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.V.; Mohanty, J.G.; Kanapuru, B.; Hesdorffer, C.; Ershler, W.B.; Rifkind, J.M. Association of the Red Cell Distribution Width with Red Blood Cell Deformability. In Oxygen Transport to Tissue XXXIV; Springer: New York, NY, USA, 2012; Volume 765, pp. 211–216. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Suh, J.; Kim, Y. Red Blood Cell Deformability and Distribution Width in Patients with Hematologic Neoplasms. Clin. Lab. 2022, 68, 10. [Google Scholar] [CrossRef] [PubMed]
- Fabian, P.; Moulis, M. Moznosti histologického vysetrení kostní drene pri diagnostice mnohocetného myelomu [Options for histological examination of bone marrow during diagnosis of multiple myeloma]. Vnitr. Lek. 2006, 52 (Suppl. S2), 66–70. [Google Scholar]
- Qian, J.; Jin, J.; Luo, H.; Jin, C.; Wang, L.; Qian, W.; Meng, H. Analysis of clinical characteristics and prognostic factors of multiple myeloma: A retrospective single-center study of 787 cases. Hematology 2017, 22, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Al Saleh, A.S.; Parmar, H.V.; Visram, A.; Muchtar, E.; Buadi, F.K.; Go, R.S.; Dispenzieri, A.; Kapoor, P.; Warsame, R.; Lacy, M.Q.; et al. Increased Bone Marrow Plasma-Cell Percentage Predicts Outcomes in Newly Diagnosed Multiple Myeloma Patients. Clin. Lymphoma Myeloma Leuk. 2020, 20, 596–601. [Google Scholar] [CrossRef]
- IbricevicBalic, L.; IcindicNakas, E.; Hasic, S.; Kiseljakovic, E.; SofoHafizovic, A.; Balic, S. Dilemma: Correlation Between Serum Level of Hepcidin and IL-6 in Anemic Myeloma Patients. Med. Arch. 2016, 70, 429–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victor, M.; Evgeniy, H.; Gergana, T.; Julia, P.; Vasil, V.; Borislav, M.; Ivo, B.; Zlatina, G.; Kamen, T. Serum Hepcidin Levels in Multiple Myeloma. Clin. Lab. 2017, 63, 1273–1277. [Google Scholar] [CrossRef]
Parameters | Mean/Percentage |
---|---|
Sex | |
Male | 46% (88/190) |
Female | 54% (102/190) |
Age at diagnosis | 69 ± 10 |
ISS stage | |
Stage I | 22% (41/190) |
Stage II | 26% (49/190) |
Stage III | 52% (100/190) |
Isotype | |
IgA k | 15% (28/190) |
IgA λ | 15% (28/190) |
IgG k | 37% (71/190) |
IgG λ | 20% (36/190) |
Light chain k | 6% (13/190) |
Light chain λ | 7% (14/190) |
LDH U/L (normal range: 50 U/L–250 U/L) | 193 ± 91 |
Calcemia mg/dL (normal range:8.6 mg/dL–10.21 mg/dL) | 9.57 ± 1.03 |
Serum creatinine mg/dL (normal range: 0.51 mg/dL–0.95 mg/dL) | 1.55 ± 1.58 |
Monoclonal component g/L | 26.01 ± 20.42 |
Thrombotic risk based on IMWG/NCCN guidelines | |
Standard risk | 28% (53/190) |
High risk | 72% (138/190) |
All MM (n = 190) | Median (IQR) | Range |
---|---|---|
Ht % | 31.35 (9.05) | 21.00–46.70 |
Total plasma proteins (g/L) | 78.30 (27.50) | 46.40–129.6 |
cWBV 208 s−1 (mPa·s) | 16.73 (4.25) | 10.73–25.35 |
Fibrinogen (g/L) | 3.200 (1.358) | 1.090–8.170 |
Albumin (g/L) | 36.70 (10.12) | 15.00–48.20 |
Albumin/fibrinogen ratio | 10.88 (5.69) | 3.24–28.32 |
LCMM (n = 27) | IgA (n = 56) | IgG (n = 107) | KWS | p | |
---|---|---|---|---|---|
Ht % | 31.40 (11.70) | 30.35 (8.42) | 31.90 (8.80) | 0.165 | 0.4285 |
Total plasma protein (g/L) | 64.20 (6.00) | 79.55 (3.47) *** | 81.90 (25.50) *** | 41.37 | <0.0001 |
cWBV 208 s−1 (mPa·s) | 14.81 (2.40) | 17.71 (4.63) *** | 17.35 (3.76) *** | 36.18 | <0.0001 |
Fibrinogen (g/L) | 3.680 (1.580) | 2.870 (1.510) *** | 3.200 (1.270) * | 15.26 | 0.0005 |
Albumin (g/L) | 39.90 (5.30) | 33.85 (8.37) *** | 37.00 (10.20) *** | 22.51 | <0.0001 |
Albumin/fibrinogen ratio | 11.24 (4.428) | 12.40 (5.667) | 10.35 (5.401) | 2.490 | 0.2879 |
ISS Stage I (n = 41) | ISS Stage II (n = 49) | ISS Stage III (n = 100) | KWS | p | |
---|---|---|---|---|---|
Ht % | 36.70 (9.45) | 33.00 (6.90) | 29.45 (6.87) ***,# | 24.63 | <0.0001 |
Total plasma protein (g/L) | 73.20 (14.80) | 78.30 (24.35) | 84.60 (31.40) * | 6.516 | 0.0385 |
cWBV 208 s−1 (mPa·s) | 16.55 (3.14) | 16.48 (3.60) | 17.68 (4.98) | 2.591 | 0.2738 |
Fibrinogen (g/L) | 2.980 (1.185) | 3.280 (1.150) | 3.180 (1.627) | 4.237 | 0.1202 |
Albumin (g/L) | 40.20 (4.70) | 37.00 (9.50) *** | 33.55 (9.37) ***,# | 42.99 | <0.0001 |
Albumin/fibrinogen ratio | 12.90 (5.92) | 10.35 (4.99) ** | 9.987 (5.595) *** | 20.00 | <0.0001 |
All MM (n = 190) | Albumin < Median (n = 94) | Albumin ≥ Median (n = 96) | p |
---|---|---|---|
Ht % | 29.45 (7.80) | 32.90 (8.80) | <0.0001 |
Total plasma proteins (g/L) | 83.00 (32.00) | 74.70 (18.50) | 0.0191 |
cWBV 208 s−1 (mPa·s) | 17.49 (5.10) | 16.48 (3.11) | 0.1375 |
Fibrinogen (g/L) | 3.200 (1.580) | 3.190 (1.293) | 0.5347 |
Albumin (g/L) | 29.75 (6.85) | 39.85 (3.70) | <0.0001 |
Albumin/Fibrinogen ratio | 9.34 (5.217) | 12.57 (5.290) | <0.0001 |
All MM (n = 190) | Beta2-MG < Median (n = 94) | Beta2-MG ≥ Median (n = 96) | p |
---|---|---|---|
Ht % | 33.95 (9.05) | 29.55 (6.78) | <0.0001 |
Total plasma proteins (g/L) | 74.80 (19.17) | 82.50 (30.52) | 0.0154 |
cWBV 208 s−1 (mPa·s) | 16.39 (3.28) | 17.29 (4.79) | 0.1698 |
Fibrinogen (g/L) | 3.060 (1.028) | 3.315 (1.837) | 0.0776 |
Albumin (g/L) | 38.80 (8.44) | 34.25 (9.05) | <0.0001 |
Albumin/fibrinogen ratio | 12.25 (5.016) | 9.52 (5.245) | 0.0005 |
All MM (n = 190) | RDW% < Median (n = 92) | RDW% ≥ Median (n = 98) | p |
---|---|---|---|
Ht % | 34.90 (9.17) | 29.00 (5.80) | <0.0001 |
Total plasma proteins (g/L) | 76.15 (19.48) | 78.70 (33.60) | 0.0117 |
cWBV 208 s−1 (mPa·s) | 16.84 (3.00) | 16.60 (5.57) | 0.2567 |
Fibrinogen (g/L) | 3.220 (1.262) | 3.190 (1.400) | 0.7968 |
Albumin (g/L) | 38.60 (6.00) | 33.00 (9.50) | <0.0001 |
Albumin/fibrinogen ratio | 11.35 (5.463) | 10.06 (5.543) | 0.0147 |
All MM (n = 190) | BMPC% < Median (n = 92) | BMPC% ≥ Median (n = 98) | p |
---|---|---|---|
Ht % | 32.70 (9.50) | 30.25 (8.35) | 0.0024 |
Total plasma proteins (g/L) | 72.25 (19.50) | 81.10 (31.85) | 0.1470 |
cWBV 208 s−1 (mPa·s) | 16.48 (3.43) | 17.22 (5.18) | 0.2612 |
Fibrinogen (g/L) | 3.200 (1.275) | 3.190 (1.435) | 0.4896 |
Albumin (g/L) | 37.35 (9.95) | 35.40 (9.70) | 0.0949 |
Albumin/fibrinogen ratio | 10.91 (5.734) | 10.88 (5.709) | 0.3087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlisi, M.; Lo Presti, R.; Mancuso, S.; Siragusa, S.; Caimi, G. Calculated Whole Blood Viscosity and Albumin/Fibrinogen Ratio in Patients with a New Diagnosis of Multiple Myeloma: Relationships with Some Prognostic Predictors. Biomedicines 2023, 11, 964. https://doi.org/10.3390/biomedicines11030964
Carlisi M, Lo Presti R, Mancuso S, Siragusa S, Caimi G. Calculated Whole Blood Viscosity and Albumin/Fibrinogen Ratio in Patients with a New Diagnosis of Multiple Myeloma: Relationships with Some Prognostic Predictors. Biomedicines. 2023; 11(3):964. https://doi.org/10.3390/biomedicines11030964
Chicago/Turabian StyleCarlisi, Melania, Rosalia Lo Presti, Salvatrice Mancuso, Sergio Siragusa, and Gregorio Caimi. 2023. "Calculated Whole Blood Viscosity and Albumin/Fibrinogen Ratio in Patients with a New Diagnosis of Multiple Myeloma: Relationships with Some Prognostic Predictors" Biomedicines 11, no. 3: 964. https://doi.org/10.3390/biomedicines11030964
APA StyleCarlisi, M., Lo Presti, R., Mancuso, S., Siragusa, S., & Caimi, G. (2023). Calculated Whole Blood Viscosity and Albumin/Fibrinogen Ratio in Patients with a New Diagnosis of Multiple Myeloma: Relationships with Some Prognostic Predictors. Biomedicines, 11(3), 964. https://doi.org/10.3390/biomedicines11030964