Examination of Upper Limb Function and the Relationship with Gross Motor Functional and Structural Parameters in Patients with Spinal Muscular Atrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Individual Results in RULM, HFMSE, and Structural Parameters
3.2. Comparison of the Changes in RULM and HFMSE in All Participants and Functional Subgroups (Sitter, Walker)
3.3. Difference in RULM Items
3.4. Correlation between Measured Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govoni, A.; Gagliardi, D.; Comi, G.P.; Corti, S. Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Mol. Neurobiol. 2018, 55, 6307–6318. [Google Scholar] [CrossRef]
- Scoto, M.; Finkel, R.S.; Mercuri, E.; Muntoni, F. Therapeutic Approaches for Spinal Muscular Atrophy (SMA). Gene Ther. 2017, 24, 514–519. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Stępień, A.; Gajewska, E.; Rekowski, W. Motor Function of Children with SMA1 and SMA2 Depends on the Neck and Trunk Muscle Strength, Deformation of the Spine, and the Range of Motion in the Limb Joints. Int. J. Environ. Res. Public. Health 2021, 18, 9134. [Google Scholar] [CrossRef]
- Fujak, A.; Kopschina, C.; Gras, F.; Forst, R.; Forst, J. Contractures of the Upper Extremities in Spinal Muscular Atrophy Type II. Descriptive Clinical Study with Retrospective Data Collection. Ortop. Traumatol. Rehabil. 2011, 13, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Schorling, D.C.; Pechmann, A.; Kirschner, J. Advances in Treatment of Spinal Muscular Atrophy–New Phenotypes, New Challenges, New Implications for Care. J. Neuromuscul. Dis. 2020, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int. J. Mol. Sci. 2020, 21, 3297. [Google Scholar] [CrossRef]
- Coratti, G.; Pera, M.C.; Montes, J.; Pasternak, A.; Scoto, M.; Baranello, G.; Messina, S.; Dunaway Young, S.; Glanzman, A.M.; Duong, T.; et al. Different Trajectories in Upper Limb and Gross Motor Function in Spinal Muscular Atrophy. Muscle Nerve 2021, 64, 552–559. [Google Scholar] [CrossRef]
- Bieniaszewska, A.; Sobieska, M.; Gajewska, E. Prospective Analysis of Functional and Structural Changes in Patients with Spinal Muscular Atrophy—A Pilot Study. Biomedicines 2022, 10, 3187. [Google Scholar] [CrossRef]
- Coratti, G.; Carmela Pera, M.; Montes, J.; Scoto, M.; Pasternak, A.; Bovis, F.; Sframeli, M.; D’Amico, A.; Pane, M.; Albamonte, E.; et al. Revised Upper Limb Module in Type II and III Spinal Muscular Atrophy: 24-Month Changes. Neuromuscul. Disord. 2022, 32, 36–42. [Google Scholar] [CrossRef]
- Mazzone, E.S.; Mayhew, A.; Montes, J.; Ramsey, D.; Fanelli, L.; Young, S.D.; Salazar, R.; De Sanctis, R.; Pasternak, A.; Glanzman, A.; et al. Revised Upper Limb Module for Spinal Muscular Atrophy: Development of a New Module. Muscle Nerve 2017, 55, 869–874. [Google Scholar] [CrossRef]
- Main, M.; Kairon, H.; Mercuri, E.; Muntoni, F. The Hammersmith Functional Motor Scale for Children with Spinal Muscular Atrophy: A Scale to Test Ability and Monitor Progress in Children with Limited Ambulation. Eur. J. Paediatr. Neurol. 2003, 7, 155–159. [Google Scholar] [CrossRef] [PubMed]
- O’Hagen, J.M.; Glanzman, A.M.; McDermott, M.P.; Ryan, P.A.; Flickinger, J.; Quigley, J.; Riley, S.; Sanborn, E.; Irvine, C.; Martens, W.B.; et al. An Expanded Version of the Hammersmith Functional Motor Scale for SMA II and III Patients. Neuromuscul. Disord. 2007, 17, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, E.; Bianco, F.; Martinelli, D.; Glanzman, A.M.; Messina, S.; Sanctis, R.D.; Main, M.; Eagle, M.; Florence, J.; Krosschell, K.; et al. Assessing Upper Limb Function in Nonambulant SMA Patients: Development of a New Module. Neuromuscul. Disord. 2011, 21, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Sivo, S.; Mazzone, E.; Antonaci, L.; De Sanctis, R.; Fanelli, L.; Palermo, C.; Montes, J.; Pane, M.; Mercuri, E. Upper Limb Module in Non-Ambulant Patients with Spinal Muscular Atrophy: 12 Month Changes. Neuromuscul. Disord. 2015, 25, 212–215. [Google Scholar] [CrossRef]
- Mercuri, E.; Messina, S.; Battini, R.; Berardinelli, A.; Boffi, P.; Bono, R.; Bruno, C.; Carboni, N.; Cini, C.; Colitto, F.; et al. Reliability of the Hammersmith Functional Motor Scale for Spinal Muscular Atrophy in a Multicentric Study. Neuromuscul. Disord. 2006, 16, 93–98. [Google Scholar] [CrossRef]
- Stępień, A.; Jędrzejowska, M.; Guzek, K.; Rekowski, W.; Stępowska, J. Reliability of Four Tests to Assess Body Posture and the Range of Selected Movements in Individuals with Spinal Muscular Atrophy. BMC Musculoskelet. Disord. 2019, 20, 54. [Google Scholar] [CrossRef] [Green Version]
- Patias, P.; Grivas, T.B.; Kaspiris, A.; Aggouris, C.; Drakoutos, E. A Review of the Trunk Surface Metrics Used as Scoliosis and Other Deformities Evaluation Indices. Scoliosis 2010, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk, A.; Gajewska, E. Przegląd metod oceny funkcjonalnej analizujących motorykę małą i dużą u chorych z rdzeniowym zanikiem mięśni. Child Neurol. 2019, 28, 23–26. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [CrossRef] [PubMed] [Green Version]
- Coratti, G.; Pane, M.; Lucibello, S.; Pera, M.C.; Pasternak, A.; Montes, J.; Sansone, V.A.; Duong, T.; Dunaway Young, S.; Messina, S.; et al. Age Related Treatment Effect in Type II Spinal Muscular Atrophy Pediatric Patients Treated with Nusinersen. Neuromuscul. Disord. 2021, 31, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Pane, M.; Coratti, G.; Pera, M.C.; Sansone, V.A.; Messina, S.; d’Amico, A.; Bruno, C.; Salmin, F.; Albamonte, E.; De Sanctis, R.; et al. Nusinersen Efficacy Data for 24-month in Type 2 and 3 Spinal Muscular Atrophy. Ann. Clin. Transl. Neurol. 2022, 9, 404–409. [Google Scholar] [CrossRef]
- Pera, M.C.; Coratti, G.; Mazzone, E.S.; Montes, J.; Scoto, M.; De Sanctis, R.; Main, M.; Mayhew, A.; Muni Lofra, R.; Dunaway Young, S.; et al. Revised Upper Limb Module for Spinal Muscular Atrophy: 12 Month Changes: 12 Month Changes on RULM for SMA. Muscle Nerve 2019, 59, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.; Scoto, M.; Milev, E.; Muni Lofra, R.; Abbott, L.; Wake, R.; Rohwer, A.; Main, M.; Baranello, G.; Mayhew, A.; et al. Longitudinal Changes in Respiratory and Upper Limb Function in a Pediatric Type III Spinal Muscular Atrophy Cohort after Loss of Ambulation. Muscle Nerve 2021, 64, 545–551. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.; Montes, J.; Mazzone, E.S.; Sormani, M.P.; Main, M.; Ramsey, D.; Mayhew, A.; Glanzman, A.M.; Dunaway, S.; et al. Patterns of Disease Progression in Type 2 and 3 SMA: Implications for Clinical Trials. Neuromuscul. Disord. 2016, 26, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Finkel, R.S.; Mercuri, E.; Meyer, O.H.; Simonds, A.K.; Schroth, M.K.; Graham, R.J.; Kirschner, J.; Iannaccone, S.T.; Crawford, T.O.; Woods, S.; et al. Diagnosis and Management of Spinal Muscular Atrophy: Part 2: Pulmonary and Acute Care; Medications, Supplements and Immunizations; Other Organ Systems; and Ethics. Neuromuscul. Disord. 2018, 28, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Finkel, R.S.; Bertini, E.S.; Schroth, M.; Simonds, A.; Wong, B.; Aloysius, A. Consensus Statement for Standard of Care in Spinal Muscular Atrophy. J. Child Neurol. 2007, 22, 1027–1049. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; et al. Diagnosis and Management of Spinal Muscular Atrophy: Part 1: Recommendations for Diagnosis, Rehabilitation, Orthopedic and Nutritional Care. Neuromuscul. Disord. 2018, 28, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, A.; Rossettini, G.; Cecchetto, S.; Viceconti, A.; Ristori, D.; Turolla, A.; Maselli, F.; Testa, M. Effect of Attentional Focus Instructions on Motor Learning and Performance of Patients with Central Nervous System and Musculoskeletal Disorders: A Systematic Review. J. Funct. Morphol. Kinesiol. 2018, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Palese, A.; Ambrosi, E.; Stefani, F.; Zenere, B.A.; Saiani, L. The Activities/Tasks Performed by Health Care Aids in Hospital Settings: A Mixed-Methods Study. Assist. Inferm. Ric. 2019, 38, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Tscherter, A.; Rüsch, C.T.; Baumann, D.; Enzmann, C.; Hasselmann, O.; Jacquier, D.; Jung, H.H.; Kruijshaar, M.E.; Kuehni, C.E.; Neuwirth, C.; et al. Evaluation of Real-Life Outcome Data of Patients with Spinal Muscular Atrophy Treated with Nusinersen in Switzerland. Neuromuscul. Disord. 2022, 32, 399–409. [Google Scholar] [CrossRef]
- Dunaway Young, S.; Montes, J.; Kramer, S.S.; Marra, J.; Salazar, R.; Cruz, R.; Chiriboga, C.A.; Garber, C.E.; De Vivo, D.C. Six-Minute Walk Test Is Reliable and Valid in Spinal Muscular Atrophy: 6MWT in SMA. Muscle Nerve 2016, 54, 836–842. [Google Scholar] [CrossRef]
- Duong, T.; Wolford, C.; McDermott, M.P.; Macpherson, C.E.; Pasternak, A.; Glanzman, A.M.; Martens, W.B.; Kichula, E.; Darras, B.T.; De Vivo, D.C.; et al. Nusinersen Treatment in Adults with Spinal Muscular Atrophy. Neurol. Clin. Pract. 2021, 11, e317–e327. [Google Scholar] [CrossRef]
PARAMETERS | PARTICIPANTS n = 25 |
---|---|
Age (years): | |
Median (Q25–Q75) | 8 (6–12) |
Age at the start of treatment (years): | |
Median (Q25–Q75) | 5 (3–11) |
Sex: | |
Female | 14 |
Male | 11 |
SMA type: | |
SMA2: | 18: |
Sitter | 18 |
SMA3: | 7: |
Sitter | 3 |
Walker | 4 |
SMN2 copy number: | |
2 copies | 1 |
3 copies | 19 |
4 copies | 5 |
therapy used: | |
Nusinersen | 14 |
Risdiplam | 11 |
child’s functional level | |
Sits unassisted | 6 |
Rolls over | 6 |
Crawls | 4 |
Stands with assistance | 3 |
Stands unassisted | 2 |
Walks with assistance | 1 |
Walks unassisted | 3 |
rehabilitation intensity: | |
1–3 times a week | 4 |
4–6 times a week | 11 |
Everyday | 10 |
The duration between the start of treatment to the first examination (months): | |
Median (Q25–Q75) | 23 (10–36) |
The duration between the diagnosis to the start of the treatment (months): | |
Median (Q25–Q75) | 51 (28–95) |
Follow-up duration | |
Median | 12 months |
PARAMETER | ALL n = 25 | SITTER n = 21 | WALKER n = 4 | ||
---|---|---|---|---|---|
Me | Min–Max | Me | Min–Max | Min–Max | |
FIRST EXAMINATION | |||||
RULM total score | 26 | 12–37 | 25 | 12–37 | 29–36 |
HFMSE part 1 score | 24 | 3–40 | 21 | 3–37 | 24–40 |
HFMSE total score | 26 | 5–63 | 23 | 5–45 | 26–63 |
CR-R | 70 | 30–85 | 70 | 30–85 | 70–85 |
CR-L | 80 | 40–90 | 75 | 40–90 | 70–90 |
SATR-U | 5 | 0–10 | 5 | 0–10 | 0–5 |
SATR-L | 5 | 0–15 | 5 | 0–15 | 0–5 |
Side length trunk difference | 2.25 | 1–7 | 2.25 | 1–7 | 1–5 |
SECOND EXAMINATION | |||||
RULM total score | 29 | 13–37 | 27 | 13–37 | 31–37 |
HFMSE part 1 score | 26 | 5–40 | 20 | 5–45 | 26–40 |
HFMSE total score | 28 | 6–66 | 23 | 6–46 | 28–66 |
CR-R | 70 | 50–90 | 70 | 50–90 | 80–90 |
CR-L | 80 | 40–90 | 80 | 40–90 | 70–90 |
SATR-U | 5 | 0–15 | 5 | 0–15 | 0–5 |
SATR-L | 5 | 0–10 | 5 | 0–10 | 0–10 |
Side length trunk difference | 3 | 0–13 | 3 | 0–13 | 0–2 |
DIFFERENCE IN FUNCTIONAL SCALES BETWEEN EXAMINATIONS | ALL PARTICIPANTS n = 25 | SITTER n = 21 | WALKER n = 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
RULM Total Score | HFMSE Part 1 Score | HFMSE Total Score | RULM Total Score | HFMSE Part 1 Score | HFMSE Total Score | RULM Total Score | HFMSE Part 1 Score | HFMSE Total Score | |
Improvement | 18 | 11 | 13 | 14 | 10 | 11 | 4 | 1 | 2 |
Deterioration | 9 | 9 | 11 | 5 | 9 | 9 | 0 | 0 | 2 |
No change | 2 | 5 | 1 | 2 | 2 | 1 | 0 | 3 | 0 |
Median Difference | 1 | 0 | 1 | 1 | 0 | 1 | 1.5 | 0 | 0.5 |
Min–max | −4–5 | −5–5 | −6–7 | −4–5 | −5–5 | −6–7 | 1–2 | 0–2 | −1–3 |
Significance of the Difference: | Z = 2.500 p = 0.01 | Z = 0.224 p = 0.82 | Z = 0.204 p = 0.84 | Z = 1.835 p = 0.07 | Z = 0.000 p = 1.00 | Z = 0.224 p = 0.82 | - | - | - |
RULM ITEMS | ALL PARTICIPANTS n = 25 | SITTER n = 21 | WALKER n = 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
IMPROVEMENT | DETERIORATION | NO CHANGE | IMPROVEMENT | DETERIORATION | NO CHANGE | IMPROVEMENT | DETERIORATION | NO CHANGE | |
A | 3 | 3 | 19 | 3 | 3 | 15 | 0 | 0 | 4 |
B | 0 | 1 | 24 | 0 | 1 | 20 | 0 | 0 | 4 |
C | 2 | 0 | 23 | 1 | 0 | 20 | 1 | 0 | 3 |
D | 0 | 0 | 25 | 0 | 0 | 21 | 0 | 0 | 4 |
E | 0 | 2 | 23 | 0 | 2 | 19 | 0 | 0 | 4 |
F | 1 | 2 | 22 | 1 | 2 | 18 | 0 | 0 | 4 |
G | 2 | 0 | 23 | 2 | 0 | 19 | 0 | 0 | 4 |
H | 11 | 2 | 12 | 8 | 2 | 11 | 3 | 0 | 1 |
I | 1 | 0 | 24 | 0 | 0 | 21 | 1 | 0 | 3 |
J | 1 | 0 | 24 | 1 | 0 | 21 | 0 | 0 | 4 |
K | 0 | 0 | 25 | 0 | 0 | 21 | 0 | 0 | 4 |
L | 1 | 0 | 24 | 1 | 0 | 21 | 0 | 0 | 4 |
M | 1 | 0 | 24 | 1 | 0 | 20 | 0 | 0 | 4 |
N | 0 | 0 | 25 | 0 | 0 | 21 | 0 | 0 | 4 |
O | 3 | 2 | 20 | 3 | 2 | 16 | 0 | 0 | 4 |
P | 8 | 2 | 15 | 7 | 2 | 12 | 1 | 0 | 3 |
Q | 5 | 2 | 18 | 5 | 2 | 14 | 0 | 0 | 4 |
R | 2 | 2 | 21 | 2 | 2 | 17 | 0 | 0 | 4 |
S | 5 | 0 | 20 | 5 | 0 | 16 | 0 | 0 | 4 |
T | 2 | 3 | 20 | 1 | 2 | 18 | 1 | 1 | 2 |
PARAMETERS | ALL n = 25 | SITTER n = 21 | ||
---|---|---|---|---|
Rho Value= | ||||
FIRST EXAMINATION | ||||
RULM total score | and | HFMSE part 1 score | 0.928 | 0.930 |
RULM total score | and | HFMSE total score | 0.927 | 0.928 |
RULM total score | and | CR−R | 0.408 | 0.340 |
RULM total score | and | CR−L | 0.391 | 0.317 |
RULM total score | and | SATR−U | −0.174 | −0.265 |
RULM total score | and | SATR−L | −0.349 | −0.388 |
RULM total score | and | Side length trunk difference | −0.152 | −0.175 |
HFMSE part 1 score | and | CR−R | 0.404 | 0.307 |
HFMSE part 1 score | and | CR−L | 0.398 | 0.323 |
HFMSE part 1 score | and | SATR−U | −0.230 | −0.294 |
HFMSE part 1 score | and | SATR−L | −0.320 | −0.348 |
HFMSE part 1 score | and | Side length trunk difference | −0.351 | −0.293 |
HFMSE total score | and | CR−R | 0.430 | 0.357 |
HFMSE total score | and | CR−L | 0.416 | 0.312 |
HFMSE total score | and | SATR−U | −0.261 | −0.337 |
HFMSE total score | and | SATR−L | −0.337 | −0.372 |
HFMSE total score | and | Side length trunk difference | −0.349 | −0.291 |
CR−R | and | Side length trunk difference | 0.276 | 0.184 |
CR−L | and | Side length trunk difference | −0.314 | −0.249 |
SATR−U | and | Side length trunk difference | 0.632 | 0.573 |
SATR−L | and | Side length trunk difference | 0.590 | 0.530 |
SECOND EXAMINATION | ||||
RULM total score | and | HFMSE part 1 score | 0.934 | 0.918 |
RULM total score | and | HFMSE total score | 0.929 | 0.911 |
RULM total score | and | CR−R | 0.379 | 0.150 |
RULM total score | and | CR−L | 0.319 | 0.271 |
RULM total score | and | SATR−U | −0.239 | −0.211 |
RULM total score | and | SATR−L | −0.397 | −0.425 |
RULM total score | and | Side length trunk difference | −0.571 | −0.478 |
HFMSE part 1 score | and | CR−R | 0.415 | 0.221 |
HFMSE part 1 score | and | CR−L | 0.373 | 0.290 |
HFMSE part 1 score | and | SATR−U | −0.318 | −0.273 |
HFMSE part 1 score | and | SATR−L | 0.337 | −0.280 |
HFMSE part 1 score | and | Side length trunk difference | −0.676 | −0.598 |
HFMSE total score | and | CR−R | 0.417 | 0.213 |
HFMSE total score | and | CR−L | 0.392 | 0.307 |
HFMSE total score | and | SATR−U | −0.332 | −0.280 |
HFMSE total score | and | SATR−L | −0.370 | −0.318 |
HFMSE total score | and | Side length trunk difference | −0.699 | −0.642 |
CR−R | and | Side length trunk difference | −0.404 | −0.243 |
CR−L | and | Side length trunk difference | −0.359 | −0.339 |
SATR−U | and | Side length trunk difference | 0.223 | 0.265 |
SATR−L | and | Side length trunk difference | 0.329 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniaszewska, A.; Sobieska, M.; Steinborn, B.; Gajewska, E. Examination of Upper Limb Function and the Relationship with Gross Motor Functional and Structural Parameters in Patients with Spinal Muscular Atrophy. Biomedicines 2023, 11, 1005. https://doi.org/10.3390/biomedicines11041005
Bieniaszewska A, Sobieska M, Steinborn B, Gajewska E. Examination of Upper Limb Function and the Relationship with Gross Motor Functional and Structural Parameters in Patients with Spinal Muscular Atrophy. Biomedicines. 2023; 11(4):1005. https://doi.org/10.3390/biomedicines11041005
Chicago/Turabian StyleBieniaszewska, Aleksandra, Magdalena Sobieska, Barbara Steinborn, and Ewa Gajewska. 2023. "Examination of Upper Limb Function and the Relationship with Gross Motor Functional and Structural Parameters in Patients with Spinal Muscular Atrophy" Biomedicines 11, no. 4: 1005. https://doi.org/10.3390/biomedicines11041005
APA StyleBieniaszewska, A., Sobieska, M., Steinborn, B., & Gajewska, E. (2023). Examination of Upper Limb Function and the Relationship with Gross Motor Functional and Structural Parameters in Patients with Spinal Muscular Atrophy. Biomedicines, 11(4), 1005. https://doi.org/10.3390/biomedicines11041005