Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Total Thiol Quantification
2.3. Innate Receptors Functionality
2.4. Cytokine Receptors Functionality
2.5. Statistical Analyses
3. Results
3.1. Study Groups
3.2. Neutrophil/Lymphocyte Ratio in the COVID-19 Patients
3.3. Thiol-Disulfide Levels in the COVID-19 Patients
3.4. Functionality of Innate and Cytokine Immune Receptors in COVID-19 Patients at Admission
3.5. Follow-Up of the Immune Receptors’ Functionality in COVID-19 Patients
3.6. Correlation between the N/L Ratio and TLRs, NLRs, and Cytokine Receptors in COVID-19 Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Secretaría de Salud. Dirección General de Epidemiología. COVID-19 México. Available online: https://datos.covid-19.conacyt.mx/ (accessed on 20 December 2022).
- Mortaz, E.; Tabarsi, P.; Varahram, M.; Folkerts, G.; Adcock, I.M. The Immune Response and Immunopathology of COVID-19. Front. Immunol. 2020, 11, 2037. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis. Crit. Care 2020, 24, 647. [Google Scholar] [CrossRef]
- Veenith, T.; Martin, H.; Le Breuilly, M.; Whitehouse, T.; Gao-Smith, F.; Duggal, N.; Lord, J.M.; Mian, R.; Sarphie, D.; Moss, P. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci. Rep. 2022, 12, 10484. [Google Scholar] [CrossRef]
- Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants 2020, 9, 936. [Google Scholar] [CrossRef]
- Baba, S.P.; Bhatnagar, A. Role of thiols in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 133–139. [Google Scholar] [CrossRef]
- Dagcioglu, B.F.; Keskin, A.; Guner, R.; Kaya Kalem, A.; Eser, F.; Erel, O.; Neselioglu, S.; Bayrakdar, F.; Ozkara, A. Thiol levels in mild or moderate COVID-19 patients: A comparison of variant and classic COVID-19 cases. Int. J. Clin. Pract. 2021, 75, e14753. [Google Scholar] [CrossRef] [PubMed]
- Kalem, A.K.; Kayaaslan, B.; Neselioglu, S.; Eser, F.; Hasanoglu, İ.; Aypak, A.; Akinci, E.; Akca, H.N.; Erel, O.; Guner, R. A useful and sensitive marker in the prediction of COVID-19 and disease severity: Thiol. Free Radic. Biol. Med. 2021, 166, 11–17. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Das, N.C.; Patra, R.; Mukherjee, S. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. J. Med. Virol. 2021, 93, 2476–2486. [Google Scholar] [CrossRef] [PubMed]
- Jimeno, S.; Ventura, P.S.; Castellano, J.M.; García-Adasme, S.I.; Miranda, M.; Touza, P.; Lllana, I.; López-Escobar, A. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. Eur. J. Clin. Investig. 2021, 51, e13404. [Google Scholar] [CrossRef] [PubMed]
- Prince, L.R.; Whyte, M.K.; Sabroe, I.; Parker, L.C. The role of TLRs in neutrophil activation. Curr. Opin. Pharmacol. 2011, 11, 397–403. [Google Scholar] [CrossRef]
- Ekman, A.K.; Cardell, L.O. The expression and function of Nod-like receptors in neutrophils. Immunology 2010, 130, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Komastu, T.; Ireland, D.D.; Reiss, C.S. IL-12 and viral infections. Cytokine Growth Factor Rev. 1998, 9, 277–285. [Google Scholar] [CrossRef]
- Lee, A.J.; Ashkar, A.A. The Dual Nature of Type I and Type II Interferons. Front. Immunol. 2018, 9, 2061. [Google Scholar] [CrossRef] [Green Version]
- Müller, U.; Steinhoff, U.; Reis, L.F.; Hemmi, S.; Pavlovic, J.; Zinkernagel, R.M.; Aguet, M. Functional role of type I and type II interferons in antiviral defense. Science 1994, 264, 1918–1921. [Google Scholar] [CrossRef]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e17. [Google Scholar] [CrossRef]
- Kumar, V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front. Immunol. 2020, 11, 1722. [Google Scholar] [CrossRef]
- Famà, A.; Midiri, A.; Mancuso, G.; Biondo, C.; Lentini, G.; Galbo, R.; Giardina, M.M.; De Gaetano, G.V.; Romeo, L.; Teti, G.; et al. Nucleic acid-sensing toll-like receptors play a dominant role in innate immune recognition of pneumococci. mBio 2020, 11, e00415-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carty, M.; Bowie, A.G. Recent insights into the role of Toll-like receptors in viral infection. Clin. Exp. Immunol. 2010, 161, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Jacques, F.H.; Apedaile, E. Immunopathogenesis of COVID-19: Summary and Possible Interventions. Front. Immunol. 2020, 11, 564925. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Liu, Y.; Du, X.; Chen, J.; Jin, Y.; Peng, L.; Wang, H.H.X.; Luo, M.; Chen, L.; Zhao, Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J. Infect. 2020, 81, e6–e12. [Google Scholar] [CrossRef]
- Qun, S.; Wang, Y.; Chen, J.; Huang, X.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C.; Ma, Y.; Zhu, Y.; et al. Neutrophil-to-Lymphocyte Ratios Are Closely Associated With the Severity and Course of Non-mild COVID-19. Front. Immunol. 2020, 11, 2160. [Google Scholar] [CrossRef]
- Fritz, J.H.; Girardin, S.E.; Fitting, C.; Werts, C.; Mengin-Lecreulx, D.; Caroff, M.; Cavaillon, J.M.; Philpott, D.J.; Adib-Conquy, M. Synergistic stimulation of human monocytes and den-dritic cells by Toll-like receptor 4 and NOD1- and NOD2- activating agonists. Eur. J. Immunol. 2005, 35, 2459–2470. [Google Scholar] [CrossRef]
- Novelli, F.; Casanova, J.L. The role of IL-12, IL-23 and IFN-gamma in immunity to viruses. Cytokine Growth Factor Rev. 2004, 15, 367–377. [Google Scholar] [CrossRef]
- Lee, J.Y.; Sullivan, K.E. Gamma interferon and lipopolysaccharide interact at the level of transcription to induce tumor necrosis factor alpha expression. Infect. Immun. 2001, 69, 2847–2852. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.P.; Liu, J.P.; Tao, W.Q.; Li, H.M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Ayala, J.C.; Grismaldo, A.; Sequeda-Castañeda, L.G.; Aristizábal-Pachón, A.F.; Morales, L. Oxidative Stress in ICU Patients: ROS as Mortality Long-Term Predictor. Antioxidants 2021, 10, 1912. [Google Scholar] [CrossRef]
- Kabe, Y.; Ando, K.; Hirao, S.; Yoshida, M.; Handa, H. Redox regulation of NF-kappaB activation: Distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox Signal. 2005, 7, 395–403. [Google Scholar] [CrossRef]
- Dyavar, S.R.; Singh, R.; Emani, R.; Pawar, G.P.; Chaudhari, V.D.; Podany, A.T.; Avedissian, S.N.; Fletcher, C.V.; Salunke, D.B. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed. Pharmacother. 2021, 141, 111794. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.K.; O’Carroll, C.E.; Wells, C.A.; Carmody, R.J. Toll-Like Receptors Drive Specific Patterns of Tolerance and Training on Restimulation of Macrophages. Front. Immunol. 2018, 9, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Godkowicz, M.; Druszczyńska, M. NOD1, NOD2, and NLRC5 Receptors in Antiviral and Antimycobacterial Immunity. Vaccines 2022, 10, 1487. [Google Scholar] [CrossRef]
- Wong, L.Y.R.; Perlman, S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses—Are we our own worst enemy? Nat. Rev. Immunol. 2022, 22, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Su, C.M.; Wang, L.; Yoo, D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci. Rep. 2021, 11, 13464. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.; Chen, F.F.; Ollendorff, V.; Ogura, Y.; Marchetto, S.; Lécine, P.; Borg, J.P.; Nuñez, G. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J. Biol. Chem. 2005, 280, 40301–40309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivarsson, Y.; Arnold, R.; McLaughlin, M.; Nim, S.; Joshi, R.; Ray, D.; Liu, B.; Teyra, J.; Pawson, T.; Moffat, J.; et al. Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc. Natl. Acad. Sci. USA 2014, 111, 2542–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Patients, n = 30 | Normal Range |
---|---|---|
Male, n (%) | 23 (76.6%) | |
Age, median (IQR) | 52 (10.5) | |
Body Mass Index, median (IQR) | 29.9 (6.2) | 18.5–24.9 |
Deaths, n (%) | 10 (33.3%) | |
Chronic comorbidities | ||
Diabetes, n (%) | 5 (16.7%) | |
Hypertension, n (%) | 9 (30%) | |
Chronic cough, n (%) | 1 (3.3%) | |
Cardiac disease *, n (%) | 2 (6.7%) | |
Lung disease **, n (%) | 1 (3.7%) | |
Obesity, n (%) | 15 (50%) | |
Alcoholism, n (%) | 1 (3.3%) | |
Smoking | 3 (10%) | |
Others ***, n (%) | 7 (23.3%) | |
Laboratory findings | ||
Cell blood counts | ||
Hematocrit (%), median (IQR) | 46.6 (4.9) | 43.5–52.5 |
Hemoglobin (g/dL), median (IQR) | 16 (1.7) | 14.5–17.5 |
Leucocytes (103/mm3), median (IQR) | 12.5 (5.4) | 4.5–11.0 |
Neutrophils (103/mm3), median (IQR) | 10.8 (5.15) | 1.8–7.7 |
Lymphocytes (103/mm3), median (IQR) | 0.5 (0.5) | 1.0–4.8 |
Monocytes (103/mm3), median (IQR) | 0.4 (0.2) | 0–0.8 |
Eosinophils (103/mm3), median (IQR) | 0 (0) | 0.02–0.45 |
Basophils (103/mm3), median (IQR) | 0 (0) | 0.02–0.1 |
Platelets, median (IQR) | 223,000 (106,250) | 140,000–400,000 |
Serum levels | ||
Glucose (mg/dL), median (IQR) | 140 (55) | 74–118 |
Creatinine (mg/dL), median (IQR) | 0.83 (0.28) | 0.7–1.2 |
CPK (IU/L), median (IQR) | 113.5 (199.7) | 38–234 |
D dimer (µg/mL), median (IQR) | 0.95 (5.42) | <0.5 |
PT (s), median (IQR) | 15.75 (1.67) | 12.8–17.4 |
PTT (s), median (IQR) | 38.1 (10.72) | 30–44 |
Fibrinogen (mg/dL), median (IQR) | 696 (143.5) | 238–498 |
High Sensitivity Troponin A (pg/mL), median (IQR) | 21.1 (97) | Women: 13.8–17.5 |
Men: 28.9–39.9 | ||
Ferritin (ng/mL), median (IQR) | 978.5 (1424.20) | 20–250 |
Blood Natriuretic Peptide (pg/mL), median (IQR) | 47.15 (81.05) | <125 |
LDH (IU/L), median (IQR) | 550 (231) | 98–192 |
Alkaline phosphatase (IU/L), median (IQR) | 90 (46.5) | 38–126 |
C-reactive protein (mg/L), median (IQR) | 13.48 (11.95) | <1 |
Procalcitonin (ng/L), median (IQR) | 0.235 (0.38) | <0.5 |
Severity | ||
Mechanical ventilation at hospitalization, n (%) | 26 (86.7%) | |
Shock Index, median (IQR) | 0.79 (0.28) | 0.5–0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreto-Binaghi, L.E.; Herrera, M.T.; Guzmán-Beltrán, S.; Juárez, E.; Sarabia, C.; Salgado-Cantú, M.G.; Juarez-Carmona, D.; Guadarrama-Pérez, C.; González, Y. Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients. Biomedicines 2023, 11, 1078. https://doi.org/10.3390/biomedicines11041078
Carreto-Binaghi LE, Herrera MT, Guzmán-Beltrán S, Juárez E, Sarabia C, Salgado-Cantú MG, Juarez-Carmona D, Guadarrama-Pérez C, González Y. Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients. Biomedicines. 2023; 11(4):1078. https://doi.org/10.3390/biomedicines11041078
Chicago/Turabian StyleCarreto-Binaghi, Laura E., María Teresa Herrera, Silvia Guzmán-Beltrán, Esmeralda Juárez, Carmen Sarabia, Manuel G. Salgado-Cantú, Daniel Juarez-Carmona, Cristóbal Guadarrama-Pérez, and Yolanda González. 2023. "Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients" Biomedicines 11, no. 4: 1078. https://doi.org/10.3390/biomedicines11041078
APA StyleCarreto-Binaghi, L. E., Herrera, M. T., Guzmán-Beltrán, S., Juárez, E., Sarabia, C., Salgado-Cantú, M. G., Juarez-Carmona, D., Guadarrama-Pérez, C., & González, Y. (2023). Reduced IL-8 Secretion by NOD-like and Toll-like Receptors in Blood Cells from COVID-19 Patients. Biomedicines, 11(4), 1078. https://doi.org/10.3390/biomedicines11041078