The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect
Abstract
:1. Introduction
2. ABL Parameters Impact Antimicrobial Efficacy
2.1. Wavelength
2.2. Dose
2.3. Irradiance and Exposure Time
2.4. Frequency and Duty Cycle
2.5. Other Factors
3. Damage and Protection Mechanisms of Antimicrobial Blue Light Therapy
3.1. The Photochemical Effect of Endogenous Photosensitizers: Luminous Energy Conversion
3.1.1. Endogenous Photosensitizers in Bacteria
3.1.2. Energy Conversion in aBL Therapy
3.1.3. Intracellular Targets of ROS
3.2. Photophysical Effect of aBL
3.3. Photoreceptors and Protection Mechanisms
3.4. Resistance of Bacteria towards aBL
4. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aBL | antimicrobial Blue Light |
ROS | Reactive Oxygen Species |
ARGs | Antibiotic Resistance Genes |
CW | Continuous Wave |
PBS | Phosphate Buffered Saline |
TSB | Tryptone Soya Broth |
References
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef]
- Xu, K.J.; Song, J.; Zhao, X.M. The drug cocktail network. BMC Syst. Biol. 2012, 6, 1–12. [Google Scholar] [CrossRef]
- Dai, T.; Gupta, A.; Murray, C.K.; Vrahas, M.S.; Tegos, G.P.; Hamblin, M.R. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist. Updat. 2012, 15, 223–236. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wang, Y.; Wang, Y.G.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; Dai, T.H. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist. Updat. 2017, 33–35, 1–22. [Google Scholar] [CrossRef]
- Feuerstein, O.; Ginsburg, I.; Dayan, E.; Veler, D.; Weiss, E.I. Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem. Photobiol. 2005, 81, 1186–1189. [Google Scholar] [CrossRef]
- Plavskii, V.Y.; Mikulich, A.V.; Tretyakova, A.I.; Leusenka, I.A.; Plavskaya, L.G.; Kazyuchits, O.A.; Dobysh, I.; Krasnenkova, T.P. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J. Photochem. Photobiol. B-Biol. 2018, 183, 172–183. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Viveiros, J.; Yang, C.M.; Ahmadi, A.; Ganz, R.A.; Tolkoff, M.J. Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob. Agents Chemother. 2005, 49, 2822–2827. [Google Scholar] [CrossRef]
- Wu, J.; Chu, Z.; Ruan, Z.; Wang, X.; Dai, T.; Hu, X. Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light. Front. Physiol. 2018, 9, 1658. [Google Scholar] [CrossRef]
- Hyun, J.E.; Moon, S.K.; Lee, S.Y. Antibacterial activity and mechanism of 460-470 nm light-emitting diodes against pathogenic bacteria and spoilage bacteria at different temperatures. Food Control 2021, 123, 107721. [Google Scholar] [CrossRef]
- Leanse, L.G.; Harrington, O.D.; Fang, Y.; Ahmed, I.; Goh, X.S.; Dai, T. Evaluating the potential for resistance development to antimicrobial blue light (at 405 nm) against Gram-negative bacteria: In vitro and in vivo studies. In Proceedings of the Conference on Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases II, San Francisco, CA, USA, 4–5 February 2019; Volume 10863. [Google Scholar] [CrossRef]
- Rapacka-Zdonczyk, A.; Wozniak, A.; Nakonieczna, J.; Grinholc, M. Development of Antimicrobial Phototreatment Tolerance: Why the Methodology Matters. Int. J. Mol. Sci. 2021, 22, 2224. [Google Scholar] [CrossRef]
- Ghate, V.; Zelinger, E.; Shoyhet, H.; Hayouka, Z. Inactivation of Listeria monocytogenes on paperboard, a food packaging material, using 410 nm light emitting diodes. Food Control 2019, 96, 281–290. [Google Scholar] [CrossRef]
- Wu, S.Y.; Hadi, J.; Brightwell, G. Growth medium- and strain-dependent bactericidal efficacy of blue light against Shiga toxin-producing Escherichia coli on food-grade stainless steel and plastic. Food Microbiol. 2022, 103, 103953. [Google Scholar] [CrossRef]
- Leanse, L.G.; Dos Anjos, C.; Mushtaq, S.; Dai, T. Antimicrobial blue light: A ’Magic Bullet’ for the 21st century and beyond? Adv. Drug Deliv. Rev. 2022, 180, 114057. [Google Scholar] [CrossRef]
- Srimagal, A.; Ramesh, T.; Sahu, J.K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. Lwt-Food Sci. Technol. 2016, 71, 378–385. [Google Scholar] [CrossRef]
- Jankowska, K.I.; Nagarkatti, R.; Acharyya, N.; Dahiya, N.; Stewart, C.F.; Macpherson, R.W.; Wilson, M.P.; Anderson, J.G.; MacGregor, S.J.; Maclean, M.; et al. Complete Inactivation of Blood Borne Pathogen Trypanosoma cruzi in Stored Human Platelet Concentrates and Plasma Treated With 405 nm Violet-Blue Light. Front Med. 2020, 7, 617373. [Google Scholar] [CrossRef]
- Lu, M.; Dai, T.; Hu, S.; Zhang, Q.; Bhayana, B.; Wang, L.; Wu, M.X. Antimicrobial blue light for decontamination of platelets during storage. J. Biophotonics 2020, 13, e201960021. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, J.; Amin, R.; Lu, M.; Bhayana, B.; Zhao, J.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; et al. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and In Vivo Studies. J. Infect. Dis. 2016, 213, 1380–1387. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Gupta, A.; Huang, Y.; Murray, C.K.; Vrahas, M.S.; Sherwood, M.E.; Baer, D.G.; Hamblin, M.R.; Dai, T. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: Implications for prophylaxis and treatment of combat-related wound infections. J. Infect. Dis. 2014, 209, 1963–1971. [Google Scholar] [CrossRef]
- Chui, C.; Aoki, A.; Takeuchi, Y.; Sasaki, Y.; Hiratsuka, K.; Abiko, Y.; Izumi, Y. Antimicrobial effect of photodynamic therapy using high-power blue light-emitting diode and red-dye agent on Porphyromonas gingivalis. J. Periodontal Res. 2013, 48, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Genina, E.A.; Titorenko, V.A.; Belikov, A.V.; Bashkatov, A.N.; Tuchin, V.V. Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue light-emitting diodes tooth brushing. J. Biomed. Opt. 2015, 20, 128004. [Google Scholar] [CrossRef]
- Soukos, N.S.; Stultz, J.; Abernethy, A.D.; Goodson, J.M. Phototargeting human periodontal pathogens in vivo. Lasers Med. Sci. 2015, 30, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.; Waechter, S.; Alsanius, B.W. Blue Light Inhibits E. coli, but Decisive Parameters Remain Hidden in the Dark: Systematic Review and Meta-Analysis. Front. Microbiol. 2022, 13, 867865. [Google Scholar] [CrossRef]
- Tomb, R.M.; White, T.A.; Coia, J.E.; Anderson, J.G.; MacGregor, S.J.; Maclean, M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem. Photobiol. 2018, 94, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Plattfaut, I.; Demir, E.; Fuchs, P.C.; Schiefer, J.L.; Sturmer, E.K.; Bruning, A.K.E.; Oplander, C. Characterization of Blue Light Treatment for Infected Wounds: Antibacterial Efficacy of 420, 455, and 480 nm Light-Emitting Diode Arrays Against Common Skin Pathogens Versus Blue Light-Induced Skin Cell Toxicity. Photobiomodulation Photomed. Laser Surg. 2021, 39, 339–348. [Google Scholar] [CrossRef]
- Hessling, M.; Spellerberg, B.; Hoenes, K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths - a review on existing data. Fems Microbiol. Lett. 2017, 364, fnw270. [Google Scholar] [CrossRef]
- dos Anjos, C.; Sabino, C.P.; Bueris, V.; Fernandes, M.R.; Pogliani, F.C.; Lincopan, N.; Sellera, F.P. Antimicrobial blue light inactivation of international clones of multidrug-resistant Escherichia coli ST10, ST131 and ST648. Photodiagnosis Photodyn. Ther. 2019, 27, 51–53. [Google Scholar] [CrossRef]
- Abana, C.M.; Brannon, J.R.; Ebbott, R.A.; Dunigan, T.L.; Guckes, K.R.; Fuseini, H.; Powers, J.; Rogers, B.R.; Hadjifrangiskou, M. Characterization of blue light irradiation effects on pathogenic and nonpathogenic Escherichia coli. Microbiologyopen 2017, 6, e00466. [Google Scholar] [CrossRef]
- Assuncao, F.F.D.; Nascimento, E.; Chaves, L.; da Silva, A.M.H.; Martinez, R.; Guirro, R.R.D. Inhibition of bacterial growth through LED (light-emitting diode) 465 and 630 nm: In vitro. Lasers Med Sci. 2022, 37, 2439–2447. [Google Scholar] [CrossRef]
- Vollmerhausen, T.L.; Conneely, A.; Bennett, C.; Wagner, V.E.; Victor, J.C.; O’Byrne, C.P. Visible and UVA light as a potential means of preventing Escherichia coli biofilm formation in urine and on materials used in urethral catheters. J. Photochem. Photobiol. B-Biol. 2017, 170, 295–303. [Google Scholar] [CrossRef]
- Rapacka-Zdonczyk, A.; Wozniak, A.; Kruszewska, B.; Waleron, K.; Grinholc, M. Can Gram-Negative Bacteria Develop Resistance to Antimicrobial Blue Light Treatment? Int. J. Mol. Sci. 2021, 22, 11579. [Google Scholar] [CrossRef]
- Kim, D.; Kang, D.H. Efficacy of light-emitting diodes emitting 395, 405, 415, and 425 nm blue light for bacterial inactivation and the microbicidal mechanism. Food Res. Int. 2021, 141, 110105. [Google Scholar] [CrossRef]
- Wu, S.Y.; Ross, C.; Hadi, J.; Brightwell, G. In vitro inactivation effect of blue light emitting diode (LED) on Shiga-toxin-producing Escherichia coli (STEC). Food Control 2021, 125, 107990. [Google Scholar] [CrossRef]
- Stewart, C.F.; Tomb, R.M.; Ralston, H.J.; Armstrong, J.; Anderson, J.G.; MacGregor, S.J.; Atreya, C.D.; Maclean, M. Violet-blue 405-nm Light-based Photoinactivation for Pathogen Reduction of Human Plasma Provides Broad Antibacterial Efficacy Without Visible Degradation of Plasma Proteins. Photochem. Photobiol. 2022, 98, 504–512. [Google Scholar] [CrossRef]
- Yang, P.G.; Wang, N.; Wang, C.; Yao, Y.F.; Fu, X.J.; Yu, W.R.; Cai, R.; Yao, M. 460 nm visible light irradiation eradicates MRSA via inducing prophage activation. J. Photochem. Photobiol. B-Biol. 2017, 166, 311–322. [Google Scholar] [CrossRef]
- Bumah, V.V.; Masson-Meyers, D.S.; Enwemeka, C.S. Blue 470nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg. Med. 2015, 47, 595–601. [Google Scholar] [CrossRef]
- Gillespie, J.B.; Maclean, M.; Given, M.J.; Wilson, M.P.; Judd, M.D.; Timoshkin, I.V.; MacGregor, S.J. Efficacy of Pulsed 405-nm Light-Emitting Diodes for Antimicrobial Photodynamic Inactivation: Effects of Intensity, Frequency, and Duty Cycle. Photomed. Laser Surg. 2017, 35, 150–156. [Google Scholar] [CrossRef]
- Sommers, C.; Gunther, N.W.; Sheen, S. Inactivation of Salmonella spp., pathogenic Escherichia coli, Staphylococcus spp., or Listeria monocytogenes in chicken purge or skin using a 405-nm LED array. Food Microbiol. 2017, 64, 135–138. [Google Scholar] [CrossRef]
- Ferrer-Espada, R.; Wang, Y.; Goh, X.S.; Dai, T.H. Antimicrobial Blue Light Inactivation of Microbial Isolates in Biofilms. Lasers Surg. Med. 2020, 52, 472–478. [Google Scholar] [CrossRef]
- Halstead, F.D.; Ahmed, Z.; Bishop, J.R.B.; Oppenheim, B.A. The potential of visible blue light (405nm) as a novel decontamination strategy for carbapenemase-producing enterobacteriaceae (CPE). Antimicrob. Resist. Infect. Control 2019, 8, 14. [Google Scholar] [CrossRef]
- Prasad, A.; Ganzle, M.; Roopesh, M.S. Antimicrobial activity and drying potential of high intensity blue light pulses (455 nm) emitted from LEDs. Food Res. Int. 2021, 148, 110601. [Google Scholar] [CrossRef]
- Bumah, V.V.; Masson-Meyers, D.S.; Enwemeka, C.S. Pulsed 450 nm blue light suppresses MRSA and Propionibacteriurn acnes in planktonic cultures and bacterial biofilms. J. Photochem. Photobiol. B-Biol. 2020, 202, 111702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ghate, V.; Kim, M.J.; Zhou, W.B.; Khoo, G.H.; Yuk, H.G. Kinetics of bacterial inactivation by 405 nm and 520 nm light emitting diodes and the role of endogenous coproporphyrin on bacterial susceptibility. J. Photochem. Photobiol. B-Biol. 2015, 149, 37–44. [Google Scholar] [CrossRef]
- Kumar, A.; Ghate, V.; Kim, M.J.; Zhou, W.B.; Khoo, G.H.; Yuk, H.G. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiol. 2017, 63, 12–21. [Google Scholar] [CrossRef]
- Hom, L.W. Kinetics of chlorine disinfection in an ecosystem. J. Sanit. Eng. Div. -Asce 1972, 98, 183–194. [Google Scholar] [CrossRef]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef]
- Lang, E.; Thery, T.; Peltier, C.; Colliau, F.; Adamuz, J.; Grangeteau, C.; Dupont, S.; Beney, L. Ultra-high irradiance (UHI) blue light: Highlighting the potential of a novel LED-based device for short antifungal treatments of food contact surfaces. Appl. Microbiol. Biotechnol. 2022, 106, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Kotoku, Y.; Kato, J.; Akashi, G.; Hirai, Y.; Ishihara, K. Bactericidal effect of a 405-nm diode laser on Porphyromonas gingivalis. Laser Phys. Lett. 2009, 6, 388–392. [Google Scholar] [CrossRef]
- Bowman, C.; Bumah, V.V.; Niesman, I.R.; Cortez, P.; Enwemeka, C.S. Structural membrane changes induced by pulsed blue light on methicillin-resistant Staphylococcus aureus (MRSA). J. Photochem. Photobiol. B-Biol. 2021, 216, 112150. [Google Scholar] [CrossRef]
- Bumah, V.V.; Masson-Meyers, D.S.; Tong, W.; Castel, C.; Enwemeka, C.S. Optimizing the bactericidal effect of pulsed blue light on Propionibacterium acnes - A correlative fluorescence spectroscopy study. J. Photochem. Photobiol. B-Biol. 2020, 202, 111701. [Google Scholar] [CrossRef]
- Enwemeka, C.S.; Bumah, V.V.; Masson-Meyers, D.; Castel, D.; Castel, C. Optimizing the bactericidal effect of pulsed blue light: A correlative fluorescence spectroscopy study. In Proceedings of the Conference on Photonics in Dermatology and Plastic Surgery, San Francisco, CA, USA, 2–3 February 2019; Voulme 10851. [Google Scholar] [CrossRef]
- Masson-Meyers, D.S.; Bumah, V.V.; Castel, C.; Castel, D.; Enwemeka, C.S. Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light. J. Photochem. Photobiol. B-Biol. 2020, 202, 111719. [Google Scholar] [CrossRef]
- Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G. Inactivation of Bacterial Pathogens following Exposure to Light from a 405-Nanometer Light-Emitting Diode Array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef]
- Price, P.B.; Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 2004, 101, 4631–4636. [Google Scholar] [CrossRef]
- Rapacka-Zdonczyk, A.; Wozniak, A.; Michalska, K.; Pieranski, M.; Ogonowska, P.; Grinholc, M.; Nakonieczna, J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front. Med. 2021, 8, 642609. [Google Scholar] [CrossRef]
- Bumah, V.V.; Morrow, B.N.; Cortez, P.M.; Bowman, C.R.; Rojas, P.; Masson-Meyers, D.S.; Suprapto, J.; Tong, W.G.; Enwemeka, C.S. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. J. Photochem. Photobiol. B-Biol. 2020, 212, 111996. [Google Scholar] [CrossRef]
- Baptista, M.S.; Cadet, J.; Greer, A.; Thomas, A.H. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem. Photobiol. 2021, 97, 1456–1483. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Ribeiro, M.S.; Thomas, A.H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef]
- Cieplik, F.; Pummer, A.; Regensburger, J.; Hiller, K.A.; Spath, A.; Tabenski, L.; Buchalla, W.; Maisch, T. The impact of absorbed photons on antimicrobial photodynamic efficacy. Front. Microbiol. 2015, 6, 706. [Google Scholar] [CrossRef]
- Blum, A.; Grossweiner, L.I. Singlet oxygen generation by hematoporphyrin-ix, uroporphyrin-i and hematoporphyrin derivative at 546 nm in phosphate buffer and in the presence of egg phosphatidylcholine liposomes. Photochem. Photobiol. 1985, 41, 27–32. [Google Scholar] [CrossRef]
- Lambert, C.R.; Reddi, E.; Spikes, J.D.; Rodgers, M.A.J.; Jori, G. The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media. Photochem. Photobiol. 1986, 44, 595–601. [Google Scholar] [CrossRef]
- McKenzie, K.; Maclean, M.; Grant, M.H.; Ramakrishnan, P.; MacGregor, S.J.; Anderson, J.G. The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV-absorbing material and SYTOX green labelling. Microbiology 2016, 162, 1680–1688. [Google Scholar] [CrossRef]
- Yoshida, A.; Sasaki, H.; Toyama, T.; Araki, M.; Fujioka, J.; Tsukiyama, K.; Hamada, N.; Yoshino, F. Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Sci. Rep. 2017, 7, 5225. [Google Scholar] [CrossRef]
- Nitzan, Y.; Ashkenazi, H. Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr. Microbiol. 2001, 42, 408–414. [Google Scholar] [CrossRef]
- Giannelli, M.; Landini, G.; Materassi, F.; Chellini, F.; Antonelli, A.; Tani, A.; Nosi, D.; Zecchi-Orlandini, S.; Rossolini, G.M.; Bani, D. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: In vitro study. Lasers Med. Sci. 2017, 32, 857–864. [Google Scholar] [CrossRef]
- Hu, X.Q.; Zhang, X.J.; Luo, S.H.; Wu, J.X.; Sun, X.Y.; Liu, M.M.; Wang, X.Y.; Wang, X.H. Enhanced Sensitivity of Salmonella to Antimicrobial Blue Light Caused by Inactivating rfaC Gene Involved in Lipopolysaccharide Biosynthesis. Foodborne Pathog. Dis. 2021, 18, 599–606. [Google Scholar] [CrossRef]
- Ramos-Villarroel, A.Y.; Aron-Maftei, N.; Martin-Belloso, O.; Soliva-Fortuny, R. The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control 2012, 24, 206–213. [Google Scholar] [CrossRef]
- Xiao, Y.; Chu, X.N.; He, M.; Liu, X.C.; Hu, J.Y. Impact of UVA pre-radiation on UVC disinfection performance: Inactivation, repair and mechanism study. Water Res. 2018, 141, 279–288. [Google Scholar] [CrossRef]
- Hadi, J.; Wu, S.; Soni, A.; Gardner, A.; Brightwell, G. Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int. J. Mol. Sci. 2021, 22, 10452. [Google Scholar] [CrossRef]
- Perlova, T.; Gruebele, M.; Chemla, Y.R. Blue Light Is a Universal Signal for Escherichia coli Chemoreceptors. J. Bacteriol. 2019, 201, e00762-18. [Google Scholar] [CrossRef]
- Wright, S.; Walia, B.; Parkinson, J.S.; Khan, S. Differential activation of Escherichia coli chemoreceptors by blue-light stimuli. J. Bacteriol. 2006, 188, 3962–3971. [Google Scholar] [CrossRef]
- Taylor, B.L. Aer on the inside looking out: Paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol. Microbiol. 2007, 65, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, P.; Wei, Q.; Andrews, S.C.; Vinckx, T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011, 3, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Anjem, A.; Varghese, S.; Imlay, J.A. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 2009, 72, 844–858. [Google Scholar] [CrossRef]
- Marasini, S.; Leanse, L.G.; Dai, T.H. Can microorganisms develop resistance against light based anti-infective agents? Adv. Drug Deliv. Rev. 2021, 175, 113822. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.H.; Yang, X.; Wu, S.Y.; Li, Y.B.; Wu, J.X.; Liu, M.M.; Liu, Z.J.; Yu, K.Y.; Wang, X.Y.; Dai, T.H.; et al. Understanding a defensive response of methicillin-resistant Staphylococcus aureus after exposure to multiple cycles of sub-lethal blue light. Fems Microbiol. Lett. 2022, 369, fnac050. [Google Scholar] [CrossRef]
- Jana, S.; Heaven, M.R.; Dahiya, N.; Stewart, C.; Anderson, J.; MacGregor, S.; Maclean, M.; Alayash, A.I.; Atreya, C. Antimicrobial 405 nm violet-blue light treatment of ex vivo human platelets leads to mitochondrial metabolic reprogramming and potential alteration of Phospho-proteome. J. Photochem. Photobiol. B 2023, 241, 112672. [Google Scholar] [CrossRef]
Species (Strains) | Initial Concentration | Wavelength (nm) | Power Intensity (mW/cm2) | D90, D99 (J/cm2) | References |
---|---|---|---|---|---|
Escherichia coli (ATCC 25922) | 1.5 × 108 CFU/mL | 465 | 36.22 | 40 | in saline solution [31] |
Escherichia coli (ATCC 25922) | 109 CFU/mL | 410 | 38.2 | 68.75, 206.25 | [29] |
103 CFU/mL | 420 | 3 | 54, 75.6 | ||
Escherichia coli (UTI 11380) | 105 CFU/mL | 75.6, 119 | [32] | ||
107 CFU/mL | 75.6, 172 | ||||
Escherichia coli (DSMZ 11250) | 106 CFU/mL | 420 | 50 | 90, 180 | [27] |
455 | >90, 180 | ||||
480 | 180 | ||||
Escherichia coli (ATCC 8739) | NS | 405 | 50 | 99 | [8] |
445 | 609 | ||||
Escherichia coli (ATCC 43895) | 108∼109 CFU/mL | 460–470 | 0.83 | 287 | [11] |
Escherichia coli (E2348/69) | 109 CFU/mL | 410 | 38.2 | 45.9, 165 | [29] |
Escherichia coli (ST10) | 109 CFU/mL | 410 | 38.2 | 34.375, 68.75 | [29] |
Escherichia coli (ST648) | 109 CFU/mL | 410 | 38.2 | 165, 275 | [29] |
Escherichia coli (ST131) | 109 CFU/mL | 410 | 38.2 | 123.75, 247.5 | [29] |
Escherichia coli (K-12) | 107∼108 CFU/mL | 415 | NS | 32.4 | [33] |
Escherichia coli | 107 CFU/mL | 405 | NS | 250, 300 | [12] |
Escherichia coli (ATCC 35150 et al.) | 109 CFU/mL | 395 | 13.8 | 18, 26 | [34] |
405 | 14, 26 | ||||
415 | 14, 26 | ||||
425 | 18, 28 | ||||
395 | 18, 30 | ||||
Escherichia coli (ATCC 35150 et al.) | 109 CFU/mL | 405 | 13.8 | 18, 30 | in juice [34] |
415 | 18, 30 | ||||
425 | 20, 38 | ||||
Escherichia coli (NZRM 4519/81) | 107 CFU/mL | 405 | 4.25 | 20 | in LB [35] |
Escherichia coli (NZRM 4566 et al.) | 107 CFU/mL | 405 | 4.25 | 40 | in LB [35] |
Escherichia coli (NCTC 9001) | 103 CFU/mL | 405 | 100 | 280, 320 | in plasma [36] |
106 CFU/mL | 300, 360 | [36] | |||
MRSA (MRSA8325-4, MRSA252) | 106 CFU/mL | 460 | 60 | 120, 240 | [37] |
MRSA (USA300) | 5 × 106 CFU/mL | 470 | 25 | 55, 110 | [38] |
7 × 106 CFU/mL | 165, 220 | ||||
Staphylococcus aureus (NCTC 4135) | 103 CFU/mL | 405 | 16 | 70, 115 | [39] |
420 | |||||
Staphylococcus aureus (DSMZ 799) | 106 CFU/mL | 455 | 50 | >180 | [27] |
480 | |||||
Staphylococcus aureus (ATCC 25923) | NS | 405 | 50 | 162 | [8] |
445 | 606 | ||||
Pseudomonas aeruginosa (DSMZ 939) | 106 CFU/mL | 420 | 50 | NS, 60 | [27] |
455 | 60, 90 | ||||
480 | 90, 180 | ||||
Listeria monocytogenes (H7726) | NS | 405 | 150 | >180 | chicken purge [40] |
300 | 180 |
Species (Strains) | Initial Concentration | Wavelength (nm) | Power Intensity (mW/cm2) | D90, D99 (J/cm2) | References |
---|---|---|---|---|---|
Escherichia coli (cocktail) | 105 CFU/mL | 405 | 50 | 30 | plastic steel |
108 | stainless steel [15] | ||||
Escherichia coli (AF0006) | 24-h old biofilms | 405 | 60 | >216 | [41] |
48-h old biofilms | 108 | ||||
Escherichia coli (CPE9606) | 72-h old biofilms | 405 | 60 | 54 | [42] |
540 | >162 | ||||
Escherichia coli (CPE7534) | 72-h old biofilms | 405 | 60 | 108 | [42] |
540 | >162 | ||||
Listeria monocytogenes (Δhly 10403 S) | 105 CFU/cm2 | 410 | NS | 18 min, 35 min | paperboard [14] |
107 CFU/cm2 | 15 min, 30 min |
Species (Strains) | Initial Concentration | Wavelength (nm) | Frequency (Hz), Dc | Pmax, Pavg (mW/cm2) | D90, D99 (J/cm2) | References |
---|---|---|---|---|---|---|
Staphylococcus aureus (NCTC 4135) | 103 CFU/mL | 405 | 100, 0.5 | 48, 24 | 86 | [39] |
500, 0.5 | 48, 24 | 65, >86 | ||||
1 k, 0.5 | 48, 24 | 43, 86 | ||||
5 k, 0.5 | 48, 24 | 75 | ||||
10 k, 0.5 | 48, 24 | >86 | ||||
Salmonella enterica Typhimurium (ATCC13311) | 109 CFU/mL | 455 | 100, 0.8 | 480, 391 | 436, >1047 | dried food |
148, 279 | pet food [43] | |||||
MRSA (USA300) | 106∼107 CFU/mL | 450 | NS, 0.33 | 2 | 5.4 J | Biofilm [44] |
Propionibacterium acnes (ATCC 6919) | 106∼107 CFU/mL | 450 | NS, 0.33 | 2 | 4.5 J | Biofilm [44] |
Parameters | Symbol | Unit | Supplement |
---|---|---|---|
Wavelength | λ | nm | |
Dose | EL | J/cm2 | Luminous energy, energy intensity |
Irradiance | PL | mW/cm2; W/cm2 | Power intensity |
Exposure time | t | s; min; h | |
Duty cycle | Dc | ||
Frequency | f | Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Lin, S.; Qin, H.; Jiang, H.; Liu, M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023, 11, 1197. https://doi.org/10.3390/biomedicines11041197
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines. 2023; 11(4):1197. https://doi.org/10.3390/biomedicines11041197
Chicago/Turabian StyleHuang, Shijie, Shangfei Lin, Haokuan Qin, Hui Jiang, and Muqing Liu. 2023. "The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect" Biomedicines 11, no. 4: 1197. https://doi.org/10.3390/biomedicines11041197
APA StyleHuang, S., Lin, S., Qin, H., Jiang, H., & Liu, M. (2023). The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines, 11(4), 1197. https://doi.org/10.3390/biomedicines11041197