Imaging Markers for Normal Pressure Hydrocephalus: An Overview
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Imaging Markers Used in the Diagnosis of iNPH
3.2. Imaging Markers Used in iNPH Differential Diagnosis
3.3. Imaging Markers of iNPH with Possible Prognostic Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ransohoff, J.; Shulman, K.; Fishman, R.A. Hydrocephalus: A review of etiology and treatment. J. Pediatr. 1960, 56, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Rekate, H.L. A contemporary definition and classification of hydrocephalus. Semin. Pediatr. Neurol. 2009, 16, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, V.; Vanninen, R.; Rauramaa, T. Cerebrospinal fluid circulation and hydrocephalus. Handb. Clin. Neurol. 2017, 145, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Zaccaria, V.; Bacigalupo, I.; Gervasi, G.; Canevelli, M.; Corbo, M.; Vanacore, N.; Lacorte, E. A systematic review on the epidemiology of normal pressure hydrocephalus. Acta Neurol. Scand. 2020, 141, 101–114. [Google Scholar] [CrossRef]
- Razay, G.; Wimmer, M.; Robertson, I. Incidence, diagnostic criteria and outcome following ventriculoperitoneal shunting of idiopathic normal pressure hydrocephalus in a memory clinic population: A prospective observational cross-sectional and cohort study. BMJ Open 2019, 9, e028103. [Google Scholar] [CrossRef]
- Adams, R.D.; Fisher, C.M.; Hakim, S.; Ojemann, R.G.; Sweet, W.H. Symptomatic Occult Hydrocephalus with “Normal” Cerebrospinal-Fluid Pressure.A Treatable Syndrome. N. Engl. J. Med. 1965, 273, 117–126. [Google Scholar] [CrossRef]
- Hakim, S.; Adams, R.D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 1965, 2, 307–327. [Google Scholar] [CrossRef]
- Ammar, A.; Abbas, F.; Al Issawi, W.; Fakhro, F.; Batarfi, L.; Hendam, A.; Hasen, M.; El Shawarby, M.; Al Jehani, H. Idiopathic Normal–Pressure Hydrocephalus Syndrome: Is It Understood? The Comprehensive Idiopathic Normal-Pressure Hydrocephalus Theory (CiNPHT). In Hydrocephalus: What Do We Know? And What Do We Still Not Know? Ammar, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 67–82. [Google Scholar]
- Skalický, P.; Mládek, A.; Vlasák, A.; De Lacy, P.; Beneš, V.; Bradáč, O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg. Rev. 2020, 43, 1451–1464. [Google Scholar] [CrossRef]
- Kitagaki, H.; Mori, E.; Ishii, K.; Yamaji, S.; Hirono, N.; Imamura, T. CSF spaces in idiopathic normal pressure hydrocephalus: Morphology and volumetry. AJNR Am. J. Neuroradiol. 1998, 19, 1277–1284. [Google Scholar]
- Siraj, S. An overview of normal pressure hydrocephalus and its importance: How much do we really know? J. Am. Med. Dir. Assoc. 2011, 12, 19–21. [Google Scholar] [CrossRef]
- Capone, P.M.; Bertelson, J.A.; Ajtai, B. Neuroimaging of Normal Pressure Hydrocephalus and Hydrocephalus. Neurol. Clin. 2020, 38, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Mahant, N.; Jacobson, E.; Owler, B. A Review of Clinical Outcomes for Gait and Other Variables in the Surgical Treatment of Idiopathic Normal Pressure Hydrocephalus. Mov. Disord. Clin. Pract. 2016, 3, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Relkin, N.; Marmarou, A.; Klinge, P.; Bergsneider, M.; Black, P.M. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57, S4–S16. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Yamada, S.; Miyajima, M.; Ishii, K.; Kuriyama, N.; Kazui, H.; Kanemoto, H.; Suehiro, T.; Yoshiyama, K.; Kameda, M.; et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol. Med. Chir. 2021, 61, 63–97. [Google Scholar] [CrossRef] [PubMed]
- Virhammar, J.; Laurell, K.; Cesarini, K.G.; Larsson, E.M. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am. J. Neuroradiol. 2014, 35, 2311–2318. [Google Scholar] [CrossRef]
- Evans, W.A. An Encephalographic Ratio For Estimating Ventricular Enlargement And Cerebral Atrophy. J. Nerv. Ment. Dis. 1942, 47, 931–937. [Google Scholar] [CrossRef]
- Synek, V.; Reuben, J.R.; Du Boulay, G.H. Comparing Evans’ index and computerized axial tomography in assessing relationship of ventricular size to brain size. Neurology 1976, 26, 231–233. [Google Scholar] [CrossRef]
- Missori, P.; Rughetti, A.; Peschillo, S.; Gualdi, G.; Di Biasi, C.; Nofroni, I.; Marinelli, L.; Fattapposta, F.; Curra, A. In normal aging ventricular system never attains pathological values of Evans’ index. Oncotarget 2016, 7, 11860–11863. [Google Scholar] [CrossRef]
- Brix, M.K.; Westman, E.; Simmons, A.; Ringstad, G.A.; Eide, P.K.; Wagner-Larsen, K.; Page, C.M.; Vitelli, V.; Beyer, M.K. The Evans’ Index revisited: New cut–off levels for use in radiological assessment of ventricular enlargement in the elderly. Eur. J. Radiol. 2017, 95, 28–32. [Google Scholar] [CrossRef]
- Ishii, K.; Kanda, T.; Harada, A.; Miyamoto, N.; Kawaguchi, T.; Shimada, K.; Ohkawa, S.; Uemura, T.; Yoshikawa, T.; Mori, E. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur. Radiol. 2008, 18, 2678–2683. [Google Scholar] [CrossRef]
- Cagnin, A.; Simioni, M.; Tagliapietra, M.; Citton, V.; Pompanin, S.; Della Puppa, A.; Ermani, M.; Manara, R. A Simplified Callosal Angle Measure Best Differentiates Idiopathic–Normal Pressure Hydrocephalus from Neurodegenerative Dementia. J. Alzheimer’s Dis. JAD 2015, 46, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, P.; Albini-Riccioli, L.; Giannini, G.; Milletti, D.; Sorenson, T.J.; Stanzani–Maserati, M.; Oppi, F.; Elder, B.D.; Cevoli, S.; Cortelli, P.; et al. Anterior Callosal Angle: A New Marker of Idiopathic Normal Pressure Hydrocephalus? World Neurosurg. 2020, 139, e548–e552. [Google Scholar] [CrossRef]
- Holodny, A.I.; George, A.E.; Golomb, J.; de Leon, M.J.; Kalnin, A.J. The perihippocampal fissures: Normal anatomy and disease states. Radiogr. A Rev. Public Radiol. Soc. N. Am. Inc. 1998, 18, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Kojoukhova, M.; Koivisto, A.M.; Korhonen, R.; Remes, A.M.; Vanninen, R.; Soininen, H.; Jaaskelainen, J.E.; Sutela, A.; Leinonen, V. Feasibility of radiological markers in idiopathic normal pressure hydrocephalus. Acta Neurochir. 2015, 157, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Fang, X.; Wang, X.; Gao, P.; Gao, X.; Zhou, X.; Mao, R.; Hu, J.; Hua, Y.; Xia, J. A new index for assessing cerebral ventricular volume in idiopathic normal-pressure hydrocephalus: A comparison with Evans’ index. Neuroradiology 2020, 62, 661–667. [Google Scholar] [CrossRef]
- Agerskov, S.; Wallin, M.; Hellstrom, P.; Ziegelitz, D.; Wikkelso, C.; Tullberg, M. Absence of Disproportionately Enlarged Subarachnoid Space Hydrocephalus, a Sharp Callosal Angle, or Other Morphologic MRI Markers Should Not Be Used to Exclude Patients with Idiopathic Normal Pressure Hydrocephalus from Shunt Surgery. AJNR Am. J. Neuroradiol. 2019, 40, 74–79. [Google Scholar] [CrossRef]
- Sasaki, M.; Honda, S.; Yuasa, T.; Iwamura, A.; Shibata, E.; Ohba, H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 2008, 50, 117–122. [Google Scholar] [CrossRef]
- Yamada, S.; Ishikawa, M.; Yamamoto, K. Optimal Diagnostic Indices for Idiopathic Normal Pressure Hydrocephalus Based on the 3D Quantitative Volumetric Analysis for the Cerebral Ventricle and Subarachnoid Space. AJNR Am. J. Neuroradiol. 2015, 36, 2262–2269. [Google Scholar] [CrossRef]
- Yamada, S.; Ishikawa, M.; Yamamoto, K. Comparison of CSF Distribution between Idiopathic Normal Pressure Hydrocephalus and Alzheimer Disease. AJNR Am. J. Neuroradiol. 2016, 37, 1249–1255. [Google Scholar] [CrossRef]
- Ryska, P.; Slezak, O.; Eklund, A.; Salzer, J.; Malm, J.; Zizka, J. Variability of Normal Pressure Hydrocephalus Imaging Biomarkers with Respect to Section Plane Angulation: How Wrong a Radiologist Can Be? AJNR Am. J. Neuroradiol. 2021, 42, 1201–1207. [Google Scholar] [CrossRef]
- Ryska, P.; Slezak, O.; Eklund, A.; Malm, J.; Salzer, J.; Zizka, J. Radiological markers of idiopathic normal pressure hydrocephalus: Relative comparison of their diagnostic performance. J. Neurol. Sci. 2020, 408, 116581. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Gao, Y.; Cao, Y.; Xu, S.; Zheng, Y.; Wang, Y.; Jiang, J.; Wang, Y.; Zhou, Y.; Zhong, C. Feasibility of Simple Linear Measurements to Determine Ventricular Enlargement in Patients With Idiopathic Normal Pressure Hydrocephalus. J. Craniofacial Surg. 2016, 27, e462–e465. [Google Scholar] [CrossRef]
- Krauss, J.K.; Regel, J.P.; Vach, W.; Orszagh, M.; Jungling, F.D.; Bohus, M.; Droste, D.W. White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: A comparative study. Neurosurgery 1997, 40, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Ishikawa, M.; Mori, E.; Kuwana, N. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: A prospective cohort study. Cereb. Fluid Res. 2010, 7, 18. [Google Scholar] [CrossRef]
- Algin, O.; Hakyemez, B.; Taskapilioglu, O.; Ocakoglu, G.; Bekar, A.; Parlak, M. Morphologic features and flow void phenomenon in normal pressure hydrocephalus and other dementias: Are they really significant? Acad. Radiol. 2009, 16, 1373–1380. [Google Scholar] [CrossRef]
- Tarnaris, A.; Tamangani, J.; Fayeye, O.; Kombogiorgas, D.; Murphy, H.; Gan, Y.C.; Flint, G. Virchow–Robin spaces in idiopathic normal pressure hydrocephalus: A surrogate imaging marker for coexisting microvascular disease? Acta Neurochir. Suppl. 2012, 113, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion tensor imaging of the brain. Neurother. J. Am. Soc. Exp. Neuro. Ther. 2007, 4, 316–329. [Google Scholar] [CrossRef]
- Hattingen, E.; Jurcoane, A.; Melber, J.; Blasel, S.; Zanella, F.E.; Neumann–Haefelin, T.; Singer, O.C. Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery 2010, 66, 917–924. [Google Scholar] [CrossRef]
- Hattori, T.; Ito, K.; Aoki, S.; Yuasa, T.; Sato, R.; Ishikawa, M.; Sawaura, H.; Hori, M.; Mizusawa, H. White matter alteration in idiopathic normal pressure hydrocephalus: Tract-based spatial statistics study. AJNR Am. J. Neuroradiol. 2012, 33, 97–103. [Google Scholar] [CrossRef]
- Koyama, T.; Marumoto, K.; Domen, K.; Miyake, H. White matter characteristics of idiopathic normal pressure hydrocephalus: A diffusion tensor tract-based spatial statistic study. Neurol. Med. Chir. 2013, 53, 601–608. [Google Scholar] [CrossRef]
- Tsai, P.H.; Chen, Y.C.; Chiang, S.W.; Huang, T.Y.; Chou, M.C.; Liu, H.S.; Chung, H.W.; Peng, G.S.; Ma, H.I.; Kao, H.W.; et al. Changes in sensorimotor–related thalamic diffusion properties and cerebrospinal fluid hydrodynamics predict gait responses to tap test in idiopathic normal–pressure hydrocephalus. Eur. Radiol. 2018, 28, 4504–4513. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Hori, M.; Irie, R.; Miyajima, M.; Nakajima, M.; Kamagata, K.; Tsuruta, K.; Saito, A.; Nakazawa, M.; Suzuki, Y.; et al. Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus. NeuroImage Clin. 2017, 14, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Rau, A.; Reisert, M.; Kellner, E.; Hosp, J.A.; Urbach, H.; Demerath, T. Increased interstitial fluid in periventricular and deep white matter hyperintensities in patients with suspected idiopathic normal pressure hydrocephalus. Sci. Rep. 2021, 11, 19552. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Yoon, U.; Lee, J.M.; Lee, H.W. Idiopathic normal–pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test. J. Neurol. Sci. 2013, 334, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, A.; Sarica, A.; La Torre, D.; Morelli, M.; Vescio, B.; Nigro, S.; Barbagallo, G.; Nistico, R.; Salsone, M.; Arcuri, P.P.; et al. Magnetic Resonance Imaging Biomarkers Distinguish Normal Pressure Hydrocephalus from Progressive Supranuclear Palsy. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Chiang, W.W.; Takoudis, C.G.; Lee, S.H.; Weis-McNulty, A.; Glick, R.; Alperin, N. Rlationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus. Investig. Radiol. 2009, 44, 192–199. [Google Scholar] [CrossRef]
- Vivas–Buitrago, T.; Lokossou, A.; Jusue–Torres, I.; Pinilla–Monsalve, G.; Blitz, A.M.; Herzka, D.A.; Robison, J.; Xu, J.; Guerrero-Cazares, H.; Mori, S.; et al. Aqueductal Cerebrospinal Fluid Stroke Volume Flow in a Rodent Model of Chronic Communicating Hydrocephalus: Establishing a Homogeneous Study Population for Cerebrospinal Fluid Dynamics Exploration. World Neurosurg. 2019, 128, e1118–e1125. [Google Scholar] [CrossRef]
- Shinoda, N.; Hirai, O.; Hori, S.; Mikami, K.; Bando, T.; Shimo, D.; Kuroyama, T.; Kuramoto, Y.; Matsumoto, M.; Ueno, Y. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: Clinical research. J. Neurosurg. 2017, 127, 1436–1442. [Google Scholar] [CrossRef]
- Kockum, K.; Larsson, E.-M.; Lilja-Lund, O.; Rosell, M.; Söderström, L.; Virhammar, J.; Laurell, K. The NPH radscale; a new radiological scale for evaluation of suspected normal pressure hydrocephalus. Fluids Barriers CNS 2015, 12, P27. [Google Scholar] [CrossRef]
- Kockum, K.; Lilja–Lund, O.; Larsson, E.M.; Rosell, M.; Soderstrom, L.; Virhammar, J.; Laurell, K. The idiopathic normal–pressure hydrocephalus Radscale: A radiological scale for structured evaluation. Eur. J. Neurol. 2018, 25, 569–576. [Google Scholar] [CrossRef]
- Ringstad, G.; Vatnehol, S.A.S.; Eide, P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain A J. Neurol. 2017, 140, 2691–2705. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; Sousa, N. Magnetic resonance elastography of the ageing brain in normal and demented populations: A systematic review. Hum. Brain Mapp. 2022, 43, 4207–4218. [Google Scholar] [CrossRef] [PubMed]
- Vorstrup, S.; Christensen, J.; Gjerris, F.; Sørensen, P.S.; Thomsen, A.M.; Paulson, O.B. Cerebral blood flow in patients with normal-pressure hydrocephalus before and after shunting. J. Neurosurg. 1987, 66, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Hashimoto, M.; Hayashida, K.; Hashikawa, K.; Chang, C.C.; Nakagawara, J.; Nakayama, T.; Mori, S.; Sakakibara, R. A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement. Dement. Geriatr. Cogn. Disord. 2011, 32, 1. [Google Scholar] [CrossRef]
- Virhammar, J.; Laurell, K.; Ahlgren, A.; Larsson, E.M. Arterial Spin–Labeling Perfusion MR Imaging Demonstrates Regional CBF Decrease in Idiopathic Normal Pressure Hydrocephalus. AJNR Am. J. Neuroradiol. 2017, 38, 2081–2088. [Google Scholar] [CrossRef]
- Kagi, G.; Bhatia, K.P.; Tolosa, E. The role of DAT-SPECT in movement disorders. J. Neurol. Neurosurg. Psychiatry 2010, 81, 5–12. [Google Scholar] [CrossRef]
- Fasano, A.; Espay, A.J.; Tang-Wai, D.F.; Wikkelso, C.; Krauss, J.K. Reply to: “Gaps, Controversies, and Proposed Roadmap for Research in Normal Pressure Hydrocephalus”. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 1043–1044. [Google Scholar] [CrossRef]
- Quon, J.L.; Han, M.; Kim, L.H.; Koran, M.E.; Chen, L.C.; Lee, E.H.; Wright, J.; Ramaswamy, V.; Lober, R.M.; Taylor, M.D.; et al. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: A clinical tool for the evaluation of pediatric hydrocephalus. J. Neurosurg. Pediatr. 2020, 27, 131–138. [Google Scholar] [CrossRef]
- Gunter, N.B.; Schwarz, C.G.; Graff-Radford, J.; Gunter, J.L.; Jones, D.T.; Graff-Radford, N.R.; Petersen, R.C.; Knopman, D.S.; Jack, C.R., Jr. Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. NeuroImage Clin. 2019, 21, 101605. [Google Scholar] [CrossRef]
- Peterson, K.A.; Mole, T.B.; Keong, N.C.H.; DeVito, E.E.; Savulich, G.; Pickard, J.D.; Sahakian, B.J. Structural correlates of cognitive impairment in normal pressure hydrocephalus. Acta Neurol. Scand. 2019, 139, 305–312. [Google Scholar] [CrossRef]
- Fallmar, D.; Andersson, O.; Kilander, L.; Lowenmark, M.; Nyholm, D.; Virhammar, J. Imaging features associated with idiopathic normal pressure hydrocephalus have high specificity even when comparing with vascular dementia and atypical parkinsonism. Fluids Barriers CNS 2021, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Ohmichi, T.; Tokuda, T. Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Diseases: A Short Review of Differential Diagnosis. No Shinkei Geka. Neurol. Surg. 2022, 50, 319–330. [Google Scholar] [CrossRef]
- Holodny, A.I.; Waxman, R.; George, A.E.; Rusinek, H.; Kalnin, A.J.; de Leon, M. MR differential diagnosis of normal–pressure hydrocephalus and Alzheimer disease: Significance of perihippocampal fissures. AJNR Am. J. Neuroradiol. 1998, 19, 813–819. [Google Scholar] [PubMed]
- Savolainen, S.; Laakso, M.P.; Paljarvi, L.; Alafuzoff, I.; Hurskainen, H.; Partanen, K.; Soininen, H.; Vapalahti, M. MR imaging of the hippocampus in normal pressure hydrocephalus: Correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. AJNR Am. J. Neuroradiol. 2000, 21, 409–414. [Google Scholar]
- Sakurai, K.; Kaneda, D.; Uchida, Y.; Inui, S.; Bundo, M.; Akagi, A.; Nihashi, T.; Kimura, Y.; Kato, T.; Ito, K.; et al. Can Medial Temporal Impairment Be an Imaging Red Flag for Neurodegeneration in Disproportionately Enlarged Subarachnoid Space Hydrocephalus? J. Alzheimer’s Dis. JAD 2021, 83, 1199–1209. [Google Scholar] [CrossRef]
- Kuroda, T.; Honma, M.; Mori, Y.; Futamura, A.; Sugimoto, A.; Kasai, H.; Yano, S.; Hieda, S.; Kasuga, K.; Ikeuchi, T.; et al. White Matter Lesions May Aid in Differentiating Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2022, 85, 851–862. [Google Scholar] [CrossRef]
- Tullberg, M.; Hultin, L.; Ekholm, S.; Mansson, J.E.; Fredman, P.; Wikkelso, C. White matter changes in normal pressure hydrocephalus and Binswanger disease: Specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol. Scand. 2002, 105, 417–426. [Google Scholar] [CrossRef]
- Kim, M.J.; Seo, S.W.; Lee, K.M.; Kim, S.T.; Lee, J.I.; Nam, D.H.; Na, D.L. Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2011, 32, 1496–1503. [Google Scholar] [CrossRef]
- Ivkovic, M.; Liu, B.; Ahmed, F.; Moore, D.; Huang, C.; Raj, A.; Kovanlikaya, I.; Heier, L.; Relkin, N. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis. AJNR Am. J. Neuroradiol. 2013, 34, 1168–1174. [Google Scholar] [CrossRef]
- Caligiuri, M.E.; Quattrone, A.; Mechelli, A.; La Torre, D.; Quattrone, A. Semi-automated assessment of the principal diffusion direction in the corpus callosum: Differentiation of idiopathic normal pressure hydrocephalus from neurodegenerative diseases. J. Neurol. 2022, 269, 1978–1988. [Google Scholar] [CrossRef]
- Marumoto, K.; Koyama, T.; Hosomi, M.; Kodama, N.; Miyake, H.; Domen, K. Diffusion tensor imaging in elderly patients with idiopathic normal pressure hydrocephalus or Parkinson’s disease: Diagnosis of gait abnormalities. Fluids Barriers CNS 2012, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Choi, W.; Yoon, U.; Lee, J.M.; Lee, H.W. Abnormal White Matter Integrity in Elderly Patients with Idiopathic Normal-Pressure Hydrocephalus: A Tract-Based Spatial Statistics Study. Eur. Neurol. 2016, 75, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Hasan, K.M.; Kamali, A.; McGough, C.E.; Keser, Z.; Hasan, O.; Melicher, T.; Kramer, L.A.; Schulz, P.E.; Alzheimer’s Disease Neuroimaging Initiative, R. Diffusion Tensor Imaging of the Superior Thalamic Radiation and Cerebrospinal Fluid Distribution in Idiopathic Normal Pressure Hydrocephalus. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2019, 29, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Paraskevas, G.P.; Velonakis, G.; Toulas, P.; Stefanis, L.; Kapaki, E. Midbrain morphology in idiopathic normal pressure hydrocephalus: A progressive supranuclear palsy mimic. Acta Neurol. Scand. 2020, 141, 328–334. [Google Scholar] [CrossRef]
- Ugga, L.; Cuocolo, R.; Cocozza, S.; Pontillo, G.; Elefante, A.; Quarantelli, M.; Vicidomini, C.; De Pandis, M.F.; De Michele, G.; D’Amico, A.; et al. Magnetic resonance parkinsonism indices and interpeduncular angle in idiopathic normal pressure hydrocephalus and progressive supranuclear palsy. Neuroradiology 2020, 62, 1657–1665. [Google Scholar] [CrossRef]
- Virhammar, J.; Blohme, H.; Nyholm, D.; Georgiopoulos, C.; Fallmar, D. Midbrain area and the hummingbird sign from brain MRI in progressive supranuclear palsy and idiopathic normal pressure hydrocephalus. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2022, 32, 90–96. [Google Scholar] [CrossRef]
- Quattrone, A.; Sarica, A.; La Torre, D.; Morelli, M.; Mechelli, A.; Arcuri, P.P.; Quattrone, A. Progressive supranuclear palsy with marked ventricular dilatation mimicking normal pressure hydrocephalus. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2022, 43, 1783–1790. [Google Scholar] [CrossRef]
- Virhammar, J.; Laurell, K.; Cesarini, K.G.; Larsson, E.M. The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J. Neurosurg. 2014, 120, 178–184. [Google Scholar] [CrossRef]
- Pyrgelis, E.S.; Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Velonakis, G.; Stefanis, L.; Kapaki, E. Callosal Angle Sub-Score of the Radscale in Patients with Idiopathic Normal Pressure Hydrocephalus Is Associated with Positive Tap Test Response. J. Clin. Med. 2022, 11, 2898. [Google Scholar] [CrossRef]
- Kilinc, M.C.; Kahilogullari, G.; Dogan, I.; Alpergin, B.C.; Terzi, M.; Bahadir, E.A.; Ibis, M.A.; Caglar, Y.S. Changes in Callosal Angle and Evans’ Index After Placing a Lumboperitoneal Shunt in Patients with Idiopathic–Normal- Pressure Hydrocephalus. Turk. Neurosurg. 2022, 32, 309–314. [Google Scholar] [CrossRef]
- Virhammar, J.; Laurell, K.; Cesarini, K.G.; Larsson, E.M. Increase in callosal angle and decrease in ventricular volume after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J. Neurosurg. 2018, 130, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Skalicky, P.; Vlasak, A.; Mladek, A.; Vrana, J.; Bajacek, M.; Whitley, H.; Benes, V.; Bradac, O. Role of DESH, callosal angle and cingulate sulcus sign in prediction of gait responsiveness after shunting in iNPH patients. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2021, 83, 99–107. [Google Scholar] [CrossRef]
- Mantovani, P.; Giannini, G.; Milletti, D.; Cevoli, S.; Valsecchi, N.; Gramegna, L.L.; Albini-Riccioli, L.; Sturiale, C.; Cortelli, P.; Lanzino, G.; et al. Anterior callosal angle correlates with gait impairment and fall risk in iNPH patients. Acta Neurochir. 2021, 163, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Narita, W.; Nishio, Y.; Baba, T.; Iizuka, O.; Ishihara, T.; Matsuda, M.; Iwasaki, M.; Tominaga, T.; Mori, E. High–Convexity Tightness Predicts the Shunt Response in Idiopathic Normal Pressure Hydrocephalus. AJNR Am. J. Neuroradiol. 2016, 37, 1831–1837. [Google Scholar] [CrossRef]
- Johannsson, B.; Munthe, S.; Poulsen, F.R.; Pedersen, C.B. Idiopathic normal pressure hydrocephalus; treatment and outcome in the Region of Southern Denmark. Clin. Neurol. Neurosurg. 2022, 213, 107107. [Google Scholar] [CrossRef]
- Bugalho, P.; Alves, L. Normal-pressure hydrocephalus: White matter lesions correlate negatively with gait improvement after lumbar puncture. Clin. Neurol. Neurosurg. 2007, 109, 774–778. [Google Scholar] [CrossRef]
- Krauss, J.K.; Droste, D.W.; Vach, W.; Regel, J.P.; Orszagh, M.; Borremans, J.J.; Tietz, A.; Seeger, W. Cerebrospinal fluid shunting in idiopathic normal-pressure hydrocephalus of the elderly: Effect of periventricular and deep white matter lesions. Neurosurgery 1996, 39, 292–299, discussion 299–300. [Google Scholar] [CrossRef]
- Tullberg, M.; Jensen, C.; Ekholm, S.; Wikkelso, C. Normal pressure hydrocephalus: Vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am. J. Neuroradiol. 2001, 22, 1665–1673. [Google Scholar]
- Todisco, M.; Picascia, M.; Pisano, P.; Zangaglia, R.; Minafra, B.; Vitali, P.; Rognone, E.; Pichiecchio, A.; Ceravolo, R.; Vanacore, N.; et al. Lumboperitoneal shunt in idiopathic normal pressure hydrocephalus: A prospective controlled study. J. Neurol. 2020, 267, 2556–2566. [Google Scholar] [CrossRef]
- Lee, W.J.; Wang, S.J.; Hsu, L.C.; Lirng, J.F.; Wu, C.H.; Fuh, J.L. Brain MRI as a predictor of CSF tap test response in patients with idiopathic normal pressure hydrocephalus. J. Neurol. 2010, 257, 1675–1681. [Google Scholar] [CrossRef]
- Craven, C.L.; Toma, A.K.; Mostafa, T.; Patel, N.; Watkins, L.D. The predictive value of DESH for shunt responsiveness in idiopathic normal pressure hydrocephalus. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2016, 34, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Kim, M.J.; Jeong, E.; Kim, J.E.; Hwang, J.; Lee, J.I.; Lee, J.H.; Na, D.L. Preoperative biomarkers in patients with idiopathic normal pressure hydrocephalus showing a favorable shunt surgery outcome. J. Neurol. Sci. 2018, 387, 21–26. [Google Scholar] [CrossRef]
- Ng, S.E.; Low, A.M.; Tang, K.K.; Chan, Y.H.; Kwok, R.K. Value of quantitative MRI biomarkers (Evans’ index, aqueductal flow rate, and apparent diffusion coefficient) in idiopathic normal pressure hydrocephalus. J. Magn. Reson. Imaging JMRI 2009, 30, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Agerskov, S.; Arvidsson, J.; Ziegelitz, D.; Lagerstrand, K.; Starck, G.; Bjorkman-Burtscher, I.M.; Wikkelso, C.; Tullberg, M. MRI diffusion and perfusion alterations in the mesencephalon and pons as markers of disease and symptom reversibility in idiopathic normal pressure hydrocephalus. PLoS ONE 2020, 15, e0240327. [Google Scholar] [CrossRef]
- Jurcoane, A.; Keil, F.; Szelenyi, A.; Pfeilschifter, W.; Singer, O.C.; Hattingen, E. Directional diffusion of corticospinal tract supports therapy decisions in idiopathic normal-pressure hydrocephalus. Neuroradiology 2014, 56, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Yoon, U.; Choi, W.; Lee, H.W. Diffusion tensor imaging of idiopathic normal-pressure hydrocephalus and the cerebrospinal fluid tap test. J. Neurol. Sci. 2016, 364, 90–96. [Google Scholar] [CrossRef]
- Baledent, O.; Gondry-Jouet, C.; Stoquart-Elsankari, S.; Bouzerar, R.; Le Gars, D.; Meyer, M.E. Value of phase contrast magnetic resonance imaging for investigation of cerebral hydrodynamics. J. Neuroradiol. J. De Neuroradiol. 2006, 33, 292–303. [Google Scholar] [CrossRef]
- Al-Zain, F.T.; Rademacher, G.; Meier, U.; Mutze, S.; Lemcke, J. The role of cerebrospinal fluid flow study using phase contrast MR imaging in diagnosing idiopathic normal pressure hydrocephalus. Acta Neurochir. Suppl. 2008, 102, 119–123. [Google Scholar] [CrossRef]
- Luikku, A.J.; Hall, A.; Nerg, O.; Koivisto, A.M.; Hiltunen, M.; Helisalmi, S.; Herukka, S.K.; Sutela, A.; Kojoukhova, M.; Mattila, J.; et al. Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochir. 2016, 158, 2311–2319. [Google Scholar] [CrossRef]
- Chen, J.; He, W.; Zhang, X.; Lv, M.; Zhou, X.; Yang, X.; Wei, H.; Ma, H.; Li, H.; Xia, J. Value of MRI-based semi-quantitative structural neuroimaging in predicting the prognosis of patients with idiopathic normal pressure hydrocephalus after shunt surgery. Eur. Radiol. 2022, 32, 7800–7810. [Google Scholar] [CrossRef]
- Carlsen, J.F.; Backlund, A.D.L.; Mardal, C.A.; Taudorf, S.; Holst, A.V.; Munch, T.N.; Hansen, A.E.; Hasselbalch, S.G. Can Shunt Response in Patients with Idiopathic Normal Pressure Hydrocephalus Be Predicted from Preoperative Brain Imaging? A Retrospective Study of the Diagnostic Use of the Normal Pressure Hydrocephalus Radscale in 119 Patients. AJNR Am. J. Neuroradiol. 2022, 43, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Wolfsegger, T.; Hauser, A.; Wimmer, S.; Neuwirth, K.; Assar, H.; Topakian, R. A comprehensive clinico-radiological, neuropsychological and biomechanical analysis approach to patients with idiopathic normal pressure hydrocephalus. Clin. Neurol. Neurosurg. 2021, 201, 106402. [Google Scholar] [CrossRef] [PubMed]
- Laticevschi, T.; Lingenberg, A.; Armand, S.; Griffa, A.; Assal, F.; Allali, G. Can the radiological scale “iNPH Radscale” predict tap test response in idiopathic normal pressure hydrocephalus? J. Neurol. Sci. 2021, 420, 117239. [Google Scholar] [CrossRef] [PubMed]
- Azuma, S.; Kazui, H.; Kanemoto, H.; Suzuki, Y.; Sato, S.; Suehiro, T.; Matsumoto, T.; Yoshiyama, K.; Kishima, H.; Shimosegawa, E.; et al. Cerebral blood flow and Alzheimer’s disease-related biomarkers in cerebrospinal fluid in idiopathic normal pressure hydrocephalus. Psychogeriatr. Off. J. Jpn. Psychogeriatr. Soc. 2019, 19, 527–538. [Google Scholar] [CrossRef]
- Tullberg, M.; Blennow, K.; Mansson, J.E.; Fredman, P.; Tisell, M.; Wikkelso, C. Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur. J. Neurol. 2007, 14, 248–254. [Google Scholar] [CrossRef]
- Lundin, F.; Tisell, A.; Leijon, G.; Leinhard, O.D.; Davidsson, L.; Gronqvist, A.; Wikkelso, C.; Lundberg, P. Preoperative and postoperative 1H-MR spectroscopy changes in frontal deep white matter and the thalamus in idiopathic normal pressure hydrocephalus. J. Neurol. Neurosurg. Psychiatry 2013, 84, 188–193. [Google Scholar] [CrossRef]
- Chiaravalloti, A.; Filippi, L.; Bagni, O.; Schillaci, O.; Czosnyka, Z.; Czosnyka, M.; de Pandis, M.F.; Federici, G.; Galli, M.; Pompucci, A.; et al. Cortical metabolic changes and clinical outcome in normal pressure hydrocephalus after ventriculoperitoneal shunt: Our preliminary results. Rev. Esp. Med. Nucl. Imagen Mol. 2020, 39, 367–374. [Google Scholar] [CrossRef]
- Ouchi, Y.; Nakayama, T.; Kanno, T.; Yoshikawa, E.; Shinke, T.; Torizuka, T. In vivo presynaptic and postsynaptic striatal dopamine functions in idiopathic normal pressure hydrocephalus. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2007, 27, 803–810. [Google Scholar] [CrossRef]
- Sarica, A.; Quattrone, A.; Quarantelli, M.; Arcuri, P.P.; Mechelli, A.; La Torre, D.; Vaccaro, M.G.; Cascini, G.L.; Quattrone, A. Reduced Striatal DAT Uptake Normalizes After Shunt in Normal-Pressure Hydrocephalus. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 261–262. [Google Scholar] [CrossRef]
- Bradley, W.G., Jr. CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus. AJNR Am. J. Neuroradiol. 2015, 36, 831–838. [Google Scholar] [CrossRef]
- Kockum, K.; Virhammar, J.; Riklund, K.; Soderstrom, L.; Larsson, E.M.; Laurell, K. Standardized image evaluation in patients with idiopathic normal pressure hydrocephalus: Consistency and reproducibility. Neuroradiology 2019, 61, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
iNPH Imaging Marker (s) | iNPH Mimic (s) | Reference (s) |
---|---|---|
CA | AD | [21] |
Simplified CA | AD, DLB | [22] |
ACA | AD | [23] |
CA, simplified composite imaging scale consisting of EI, CA, focally enlarged sulci, and enlarged sylvian fissures | VD | [62] |
Extent and pattern of hippocampal atrophy and peri-hippocampal dilation | AD | [24,64,65] |
White matter lesion distribution | AD | [67] |
Microstructural changes in white matter, evaluated using MRI DTI | AD, VD | [69] |
AD, PD | [70] | |
AD, PSP | [71] | |
PD | [72] | |
AD | [73,74] | |
IPA | PSP | [76] |
MRHI | PSP | [46] |
Combination of EI and CA | PSP | [78] |
Preoperative iNPH Imaging Marker (s)/Index/Score | Potential Prognostic Value | Reference (s) |
---|---|---|
EI higher than 0.3 | Better shunt surgery outcome | [16,21] |
More acute CA | Better shunt surgery outcome | [16,21,79] |
More acute CA | Positive tap test responder status | [80] |
ACA | Better shunt surgery outcome | [84] |
High tight convexity | Clinical improvement one year after shunt | [85] |
Wide temporal horns | Better shunt surgery outcome | [16] |
High tight convexity, dilated Sylvian fissures, and focally dilated sulci | Subjective shunt response at 1-month follow-up | [86] |
White matter lesions load | Negative correlation with tap test responsiveness | [87] |
Plentiful PVH and DWMH | Improvement in gait and cognitive performance after shunt placement | [68] |
“Empty sella” sign and “mismatch” sign | Positive tap test responder status | [91] |
DESH sign | Better shunt surgery outcome | [16,93] |
Fewer lacunes | Better shunt surgery outcome | [93] |
Decrease in ADC | Better shunt surgery outcome | [94] |
Signs of subdural hemorrhage | Worse shunt surgery outcome | [94] |
Microstructural changes of white matter using MRI DTI | Tap test responder status | [42,73] |
Measurement of aqueductal flow | Shunt surgery outcome | [29,98,99] |
DESH score | Better shunt surgery outcome | [49] |
DESH score | Subjective shunt response at 1-month follow-up | [86] |
Radscale | Shunt surgery outcome | [102] |
Radscale total-score (higher) | Better shunt surgery outcome | [103] |
Patterns of cortical thickness in MRI based volumetry | Tap test responder status | [45] |
Dopaminergic deficit in DaTScan | iNPH pathology progression | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrgelis, E.-S.; Velonakis, G.; Papageorgiou, S.G.; Stefanis, L.; Kapaki, E.; Constantinides, V.C. Imaging Markers for Normal Pressure Hydrocephalus: An Overview. Biomedicines 2023, 11, 1265. https://doi.org/10.3390/biomedicines11051265
Pyrgelis E-S, Velonakis G, Papageorgiou SG, Stefanis L, Kapaki E, Constantinides VC. Imaging Markers for Normal Pressure Hydrocephalus: An Overview. Biomedicines. 2023; 11(5):1265. https://doi.org/10.3390/biomedicines11051265
Chicago/Turabian StylePyrgelis, Efstratios-Stylianos, Georgios Velonakis, Sokratis G. Papageorgiou, Leonidas Stefanis, Elisabeth Kapaki, and Vasilios C. Constantinides. 2023. "Imaging Markers for Normal Pressure Hydrocephalus: An Overview" Biomedicines 11, no. 5: 1265. https://doi.org/10.3390/biomedicines11051265
APA StylePyrgelis, E. -S., Velonakis, G., Papageorgiou, S. G., Stefanis, L., Kapaki, E., & Constantinides, V. C. (2023). Imaging Markers for Normal Pressure Hydrocephalus: An Overview. Biomedicines, 11(5), 1265. https://doi.org/10.3390/biomedicines11051265