Microbiota Metabolism Failure as a Risk Factor for Postoperative Complications after Aortic Prosthetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Biological Samples
2.3. Statistical Analysis
3. Results
3.1. Patients
- Prosthetics of one or more parts of the thoracic aorta, n = 21 (27%);
- Hybrid surgery: stenting of the descending thoracic aorta with or without plastic surgery/prosthetics of the root and ascending aorta using Bentall–DeBono techniques or T. David, n = 25 (32%);
- Prosthetics of the aortic valve and ascending aorta using the Bentall–DeBono technique, n = 14 (18%);
- Prosthetics of the root and ascending aorta by the method of David, n = 9 (11%);
- Prosthetics of the thoracoabdominal aorta, n = 5 (6%).
- Prosthetics/plastics of the aortic, mitral or tricuspid valve, n = 19 (24%);
- Myocardial revascularization (aorto-mammary coronary, prosthetic coronary bypass surgery), n = 12 (15%);
- Radiofrequency ablation, n = 3 (4%).
3.2. Aromatic Metabolites in Patients and Healthy Volunteers
3.3. Aromatic Metabolites in Different Groups of Patients
3.4. Aromatic Metabolites for the Assessment of the Risk of Postoperative Complications in Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindholm, E.; Seljeflot, I.; Aune, E.; Kirkeboen, K.A. Proinflammatory cytokines and complement activation in salvaged blood from abdominal aortic aneurism surgery and total hip replacement surgery. Transfusion 2012, 52, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Shukuzawa, K.; Ohki, T.; Maeda, K.; Kanaoka, Y. Risk factors and treatment outcomes for stent graft infection after endovascular aortic aneurysm repair. J. Vasc. Surg. 2019, 70, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Charchyan, E.R.; Chakal, D.A.; Belov, Y.V. Results of staged thoracoabdominal aorta replacement. Kardiol. Serdechno-Sosud. Khirurgiya 2019, 12, 281–285. [Google Scholar] [CrossRef]
- Charchyan, E.R.; Breshenkov, D.G.; Belov, Y.V. Gibridnye operatsii u patsientov s rassloeniem aorty III tipa i porazheniem ee proksimal’nogo otdela. Khirurgiia 2020, 9, 28–37. [Google Scholar] [CrossRef]
- Argyriou, C.; Georgiadis, G.S.; Lazarides, M.K.; Georgakarakos, E.; Antoniou, G.A. Endograft Infection after Endovascular Abdominal Aortic Aneurysm Repair: A Systematic Review and Meta-analysis. J. Endovasc. Ther. 2017, 24, 688–697. [Google Scholar] [CrossRef]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 2016, 1, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Ojima, M.; Motooka, D.; Shimizu, K.; Gotoh, K.; Shintani, A.; Yoshiya, K.; Nakamura, S.; Ogura, H.; Iida, T.; Shimazu, T. Metagenomic Analysis Reveals Dynamic Changes of Whole Gut Microbiota in the Acute Phase of Intensive Care Unit Patients. Dig. Dis. Sci. 2016, 61, 1628–1634. [Google Scholar] [CrossRef]
- Chernevskaya, E.; Beloborodova, N.; Klimenko, N.; Klimenko, N.; Pautova, A.; Shilkin, D.; Gusarov, V.; Tyakht, A.; Tyakht, A. Serum and fecal profiles of aromatic microbial metabolites reflect gut microbiota disruption in critically ill patients: A prospective observational pilot study. Crit. Care 2020, 24, 312. [Google Scholar] [CrossRef]
- Iapichino, G.; Callegari, M.L.; Marzorati, S.; Cigada, M.; Corbella, D.; Ferrari, S.; Morelli, L. Impact of antibiotics on the gut microbiota of critically ill patients. J. Med. Microbiol. 2008, 57, 1007–1014. [Google Scholar] [CrossRef]
- Chernevskaya, E.; Zuev, E.; Odintsova, V.; Meglei, A.; Beloborodova, N. Gut microbiota as early predictor of infectious complications before cardiac surgery: A prospective pilot study. J. Pers. Med. 2021, 11, 1113. [Google Scholar] [CrossRef]
- Sitkin, S.I.; Vakhitov, T.Y.; Demyanova, E.V. Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Alm. Clin. Med. 2018, 46, 396–425. [Google Scholar] [CrossRef]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Beloborodova, N.V. Serum Aromatic Microbial Metabolites as Biological Markers in Intensive Care. In Biomarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications; Rajendram, R., Preedy, V.R., Patel, V.B., Eds.; Springer: Cham, Switzerland, 2023; Chapter 13, pp. 245–268. [Google Scholar] [CrossRef]
- Beloborodova, N.V.; Khodakova, A.S.; Bairamov, I.T.; Olenin, A.Y. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry 2009, 74, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Natalia, V.; Olenin, A.Y.; Khodakova, A.S. Phenylcarboxylic acids as potential markers for diagnosis of sepsis in cardiac surgery patients. ArchivEuromedica 2011, 1–2, 20–26. [Google Scholar]
- Lam, V.; Su, J.; Hsu, A.; Gross, G.J.; Salzman, N.H.; Baker, J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 2016, 11, e0160840. [Google Scholar] [CrossRef]
- Pautova, A.K.; Bedova, A.Y.; Sarshor, Y.N.; Beloborodova, N.V. Determination of Aromatic Microbial Metabolites in Blood Serum by Gas Chromatography–Mass Spectrometry. J. Anal. Chem. 2018, 73, 160–166. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Beloborodova, N.V.; Sarshor, Y.N.; Bedova, A.Y.; Chernevskaya, E.A.; Pautova, A.K. Involvement of aromatic metabolites in the pathogenesis of septic shock. Shock 2018, 50, 273–279. [Google Scholar] [CrossRef]
- Gelijns, A.C.; Moskowitz, A.J.; Acker, M.A.; Argenziano, M.; Geller, N.L.; Puskas, J.D.; Perrault, L.P.; Smith, P.K.; Kron, I.L.; Michler, R.E.; et al. Management practices and major infections after cardiac surgery. J. Am. Coll. Cardiol. 2014, 64, 372–381. [Google Scholar] [CrossRef]
- Dixon, L.K.; Di Tommaso, E.; Dimagli, A.; Sinha, S.; Sandhu, M.; Benedetto, U.; Angelini, G.D. Impact of sex on outcomes after cardiac surgery: A systematic review and meta-analysis. Int. J. Cardiol. 2021, 343, 27–34. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.; Williams, K.; Legare, J.-F. Hospital-Acquired Infections After Cardiac Surgery and Current Physician Practices: A Retrospective Cohort Study. J. Clin. Med. Res. 2017, 9, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Kitai, T.; Hazen, S.L. Gut microbiota in cardiovascular health and disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Emoto, T.; Sasaki, N.; Hirata, K.I. Gut microbiota and coronary artery disease. Int. Heart J. 2016, 57, 663–671. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The gut microbiota and its interactions with cardiovascular disease. Microb. Biotechnol. 2020, 13, 637–656. [Google Scholar] [CrossRef]
- Suslov, A.V.; Chairkina, E.; Shepetovskaya, M.D.; Suslova, I.S.; Khotina, V.A.; Kirichenko, T.V.; Postnov, A.Y. The neuroimmune role of intestinal microbiota in the pathogenesis of cardiovascular disease. J. Clin. Med. 2021, 10, 1995. [Google Scholar] [CrossRef]
- Aardema, H.; Lisotto, P.; Kurilshikov, A.; Diepeveen, J.R.J.; Friedrich, A.W.; Sinha, B.; de Smet, A.M.G.A.; Harmsen, H.J.M. Marked Changes in Gut Microbiota in Cardio-Surgical Intensive Care Patients: A Longitudinal Cohort Study. Front. Cell. Infect. Microbiol. 2020, 9, 467. [Google Scholar] [CrossRef]
- Piccioni, A.; Saviano, A.; Cicchinelli, S.; Franza, L.; Rosa, F.; Zanza, C.; Santoro, M.C.; Candelli, M.; Covino, M.; Nannini, G.; et al. Microbiota and myopericarditis: The new frontier in the cardiological field to prevent or treat inflammatory cardiomyopathies in COVID-19 outbreak. Biomedicines 2021, 9, 1234. [Google Scholar] [CrossRef]
- Li, Q.; Gao, B.; Siqin, B.; He, Q.; Zhang, R.; Meng, X.; Zhang, N.; Zhang, N.; Li, M. Gut Microbiota: A Novel Regulator of Cardiovascular Disease and Key Factor in the Therapeutic Effects of Flavonoids. Front. Pharmacol. 2021, 12, 1093. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.Y.; Hu, X.M.; Zhang, Y.; Zhang, S.Y. Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin. Med. J. 2019, 132, 1843–1855. [Google Scholar] [CrossRef]
- Jia, Q.; Li, H.; Zhou, H.; Zhang, X.; Zhang, A.; Xie, Y.; Li, Y.; Lv, S.; Zhang, J. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc. Ther. 2019, 2019, 5164298. [Google Scholar] [CrossRef] [PubMed]
- Rumyantseva, V.A.; Charchyan, E.R.; Zaklyazminskaya, E.V.; Khovrin, V.V.; Rogozhina, Y.A.; Khachatryan, Z.R.; Yu, V.B. Marfan syndrome is caused by a nonsense mutation in the gene for fibrillin: Clinical application of DNA diagnostics in aortic surgery. Clin. Exp. Surg. Petrovsk. J. 2015, 2, 97–103. [Google Scholar]
- Babaev, M.A.; Eremenko, A.A.; Grin, O.O.; Kostritca, N.S.; Dymova, O.V.; Beloborodova, N.V.; Pautova, A.K.; Zakharenkova, Y.S.; Levitskya, M.V. Successful therapy of endotoxin shock and multiple organ dysfunction using sequential targeted extracorporeal treatment in a patient after combined cardiac surgery. Clin. Exp. Surg. 2020, 8, 105–114. [Google Scholar] [CrossRef]
Aromatic Acid, µmol/L | Healthy Volunteers (n = 48) | Patients (n = 79) | p-Value |
---|---|---|---|
Benzoic | 0.5 (0.5–0.6) | 1.2 (0.9–1.5) | <0.001 |
Phenylpropionic | <0.5 (<0.5–0.5) | <0.5 (<0.5–<0.5) | - |
Phenyllactic | <0.5 (<0.5–<0.5) | <0.5 (<0.5–0.5) | - |
4-Hydroxybenzoic | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - |
4-Hydroxyphenylacetic | <0.5 (<0.5–<0.5) | <0.5 (<0.5–0.6) | - |
4-Hydroxyphenylpropionic | <0.5 (<0.5–<0.5) | <0.5 (<0.5–0.7) | - |
Homovanillic | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - |
4-Hydroxyphenyllactic | 1.3 (1.0–1.6) | 1.6 (1.2–1.9) | 0.003 |
Σ3AMM | 1.9 (1.4–2.3) | 2.3 (1.9–3.1) | <0.001 |
Parameter | Patients (n = 79) | Patients without Complications (n = 36) | Patients with All Types of Complications (n = 43) | Patients with Infectious Complications (n = 26) | p-Value A | p-Value B |
---|---|---|---|---|---|---|
Medical and demographic characteristics | ||||||
Sex, male, % | 57, 72.2% | 25, 69.4% | 32, 74.4% | 22, 84.6% | 0.6 * | 0.2 * |
Age, years | 57 (46–64) | 58 (45–63) | 55 (48–66) | 54 (48–66) | 0.5 | 0.5 |
Body Mass Index (BMI), kg/m2 | 27.2 (24.2–30.7) | 27.5 (23.9–31.2) | 27.1 (24.1–30.0) | 27.3 (24.8–30.4) | 0.5 | 0.8 |
Charlson Comorbidity Index | 4 (2–5) | 3 (2–5) | 4 (2–5) | 4 (2–5) | 0.3 | 0.3 |
Intraoperative parameters | ||||||
Acute/subacute aortic dissection | 15, 81.0% | 5, 13.9% | 10, 23% | 5, 19.2% | 0.3 * | 0.6 * |
Cardiopulmonary Bypass, min | 123 (101–162) | 111 (73–140) | 150 (116–188) | 163 (138–217) | <0.001 | <0.001 |
Myocardial Ischemia, min | 91 (66–117) | 82 (55–102) | 99 (76–137) | 119 (92–142) | 0.014 | <0.001 |
Intraoperative Blood Loss, mL | 800 (700–1100) | 800 (600–1000) | 950 (700–1500) | 1000 (800–2000) | 0.019 | 0.01 |
Drainage, mL | 250 (150–370) | 190 (110–300) | 300 (200–500) | 325 (200–550) | 0.006 | <0.001 |
Total Blood Loss, mL | 1100 (900–1500) | 1000 (775–1300) | 1250 (960–1750) | 1475 (1020–2350) | 0.003 | <0.001 |
Length of stay | ||||||
Length of Stay in the ICU | 2 (1–4) | 1 (1–1) | 3 (2–5) | 4 (2–10) | <0.001 | <0.001 |
Total Hospital Stay | 10 (8–14) | 8 (7–10) | 13 (10–18) | 15 (11–21) | <0.001 | <0.001 |
Aromatic acids, µmol/L | ||||||
Benzoic (0) | 1.2 (0.9–1.5) | 1.1 (0.9–1.4) | 1.2 (1.0–1.6) | 1.3 (1–1.5) | 0.2 | 0.3 |
Benzoic (1) | 1.3 (1.1–1.8) | 1.3 (1.0–1.7) | 1.2 (1.1–2.0) | 1.2 (1.1–1.6) | 0.7 | 0.9 |
∆ Benzoic (1–0) | 0.1 (−0.3–0.6) | 0.2 (−0.1–0.4) | 0.1 (−0.4–0.7) | 0 (−0.4–0.6) | 0.7 | 0.5 |
Phenylpropionic (0) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - | - |
Phenylpropionic (1) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - | - |
∆ Phenylpropionic (1–0) | 0 (−0.1–0) | −0.1 (−0.2–[−0.1]) | 0 (−0.1–0) | 0 (−0.1–0) | 0.2 | 0.3 |
Phenyllactic (0) | <0.5 (<0.5–0.5) | <0.5 (<0.5–0.5) | <0.5 (<0.5–0.5) | <0.5 (<0.5–<0.5) | - | - |
Phenyllactic (1) | 0.5 (<0.5–0.7) | 0.5 (<0.5–0.6) | 0.5 (<0.5–0.8) | 0.6 (<0.5–0.8) | - | - |
∆ Phenyllactic (1–0) | 0.1 (0–0.3) | 0.1 (0–0.2) | 0.2 (0–0.3) | 0.2 (0.1–0.3) | 0.1 | 0.06 |
4-Hydroxybenzoic (0) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - | - |
4-Hydroxybenzoic (1) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - | - |
∆ 4-Hydroxybenzoic (1–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | - | - |
4-Hydroxyphenylacetic (0) | <0.5 (<0.5–0.6) | <0.5 (<0.5–0.6) | 0.5 (<0.5–0.7) | 0.5 (<0.5–0.8) | - | - |
4-Hydroxyphenylacetic (1) | <0.5 (<0.5–0.7) | <0.5 (<0.5–<0.5) | 0.5 (<0.5–1.1) | 0.5 (<0.5–1.2) | - | - |
∆ 4-Hydroxyphenylacetic (1–0) | 0 (−0.2–0.2) | −0.1 (−0.2–0) | 0.1 (−0.1–0.4) | 0.2 (−0.1–0.5) | 0.001 | 0.003 |
4-Hydroxyphenylpropionic (0) | <0.5 (<0.5–0.7) | <0.5 (<0.5–0.7) | <0.5 (<0.5–0.5) | <0.5 (<0.5–<0.5) | - | - |
4-Hydroxyphenylpropionic (1) | <0.5 (<0.5–0.7) | <0.5 (<0.5–0.7) | <0.5 (<0.5–0.6) | <0.5 (<0.5–<0.5) | - | - |
∆ 4-Hydroxyphenylpropionic (1–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | - | - |
Homovanillic (0) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | - | - |
Homovanillic (1) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–<0.5) | <0.5 (<0.5–0.8) | <0.5 (<0.5–<0.5) | - | - |
∆ Homovanillic (1–0) | 0 (0–0.3) | 0 (0–0.1) | 0.1 (0–0.6) | 0 (0–0.3) | - | - |
4-Hydroxyphenyllactic (0) | 1.6 (1.2–1.9) | 1.6 (1.2–1.9) | 1.6 (1.2–1.9) | 1.6 (1.2–1.9) | 0.7 | 0.8 |
4-Hydroxyphenyllactic (1) | 2.4 (1.8–3.2) | 2.0 (1.6–2.9) | 2.8 (2.0–3.5) | 2.8 (2.0–3.7) | 0.005 | 0.01 |
∆ 4-Hydroxyphenyllactic (1–0) | 0.8 (0.3–1.3) | 0.6 (0.3–0.9) | 1.1 (0.6–1.7) | 1.1 (0.6–1.8) | 0.001 | <0.001 |
Σ3AMM (0) | 2.3 (1.9–3.1) | 2.3 (1.8–3.1) | 2.4 (1.9–3.1) | 2.6 (1.9–3.3) | 0.5 | 0.6 |
Σ3AMM (1) | 3.4 (2.5–4.8) | 2.7 (2.3–4.0) | 4.1 (3.0–5.1) | 4.3 (3.0–5.7) | 0.001 | 0.002 |
∆ Σ3AMM (1–0) | 0.9 (0.2–1.8) | 0.6 (0.1–1.0) | 1.3 (0.7–2.4) | 1.4 (0.5–2.9) | 0.001 | 0.004 |
Parameter | 4-Hydroxyphenyllactic Acid (1) | Σ3AMM (1) | |
---|---|---|---|
Area Under the Curve | 0.686 | 0.717 | |
Standard Error | 0.060 | 0.058 | |
p-Value | 0.005 | 0.001 | |
Asymptotic 95% CI | Lower Bound | 0.569 | 0.604 |
Upper Bound | 0.804 | 0.830 | |
Cut-Off Value | 2.0 µmol/L | 2.9 µmol/L | |
Sensitivity (95% CI), % | 79 (64–90) | 81 (67–92) | |
Specificity (95% CI), % | 47 (30–65) | 56 (38–72) | |
Positive Predictive Value, % | 64 | 69 | |
Negative Predictive Value, % | 65 | 71 | |
Accuracy, % | 65 | 70 | |
Odds Ratio | 3.4 (1.3–9.0) | 5.5 (1.9–15.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beloborodova, N.; Pautova, A.; Grekova, M.; Yadgarov, M.; Grin, O.; Eremenko, A.; Babaev, M. Microbiota Metabolism Failure as a Risk Factor for Postoperative Complications after Aortic Prosthetics. Biomedicines 2023, 11, 1335. https://doi.org/10.3390/biomedicines11051335
Beloborodova N, Pautova A, Grekova M, Yadgarov M, Grin O, Eremenko A, Babaev M. Microbiota Metabolism Failure as a Risk Factor for Postoperative Complications after Aortic Prosthetics. Biomedicines. 2023; 11(5):1335. https://doi.org/10.3390/biomedicines11051335
Chicago/Turabian StyleBeloborodova, Natalia, Alisa Pautova, Marina Grekova, Mikhail Yadgarov, Oksana Grin, Alexander Eremenko, and Maxim Babaev. 2023. "Microbiota Metabolism Failure as a Risk Factor for Postoperative Complications after Aortic Prosthetics" Biomedicines 11, no. 5: 1335. https://doi.org/10.3390/biomedicines11051335
APA StyleBeloborodova, N., Pautova, A., Grekova, M., Yadgarov, M., Grin, O., Eremenko, A., & Babaev, M. (2023). Microbiota Metabolism Failure as a Risk Factor for Postoperative Complications after Aortic Prosthetics. Biomedicines, 11(5), 1335. https://doi.org/10.3390/biomedicines11051335