Non-Thermal Atmospheric Pressure Plasma Application in Endodontics
Abstract
:1. Introduction
2. Design of the Study
3. Possible Role of NTPPs in the Endodontic Area
3.1. Infectious Endodontic Microbiota
3.2. Conventional Endodontic Irrigants
3.3. Main Physicochemical Properties Related to NTPPs
4. NTPPs Applied to Endodontics
4.1. Direct Method of NTPP Application
4.2. Indirect Method of NTPP Application
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armand, A.; Khani, M.; Asnaashari, M.; Ahmadi, A.; Shokri, B. Comparison study of root canal disinfection by cold plasma jet and photodynamic therapy. Photodiagnosis Photodyn. Ther. 2019, 26, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, P.; Romero, M.; Vera, J.; Daood, U.; Khan, A.U.; Yan, A.; Cheung, G.S.P. Biofilms in endodontics—Current status and future directions. Int. J. Mol. Sci. 2017, 18, 1748. [Google Scholar] [CrossRef]
- Pan, J.; Sun, K.; Liang, Y.; Sun, P.; Yang, X.; Wang, J.; Becker, K.H. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod. 2013, 39, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.; Hottel, T.L.; Hong, L. Antimicrobial effects of non-thermal atmospheric plasma as a novel root canal disinfectant. Clin. Plasma Med. 2014, 2, 17–21. [Google Scholar] [CrossRef]
- Kim, S.J.; Chung, T.H. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci. Rep. 2016, 6, 20332. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, A.G.; Graham, E.M.; Baxter, R.L.; Jones, A.C.; Richardson, P.R.; Meek, G.; Baxter, H.C. Plasma cleaning of dental instruments. J. Hosp. Infect. 2004, 56, 37–41. [Google Scholar] [CrossRef]
- Sung, S.J.; Huh, J.B.; Yun, M.J.; Chang, B.M.W.; Jeong, C.M.; Jeon, Y.C. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments. J. Adv. Prosthodont. 2013, 5, 2–8. [Google Scholar] [CrossRef]
- Monetta, T.; Scala, A.; Malmo, C.; Bellucci, F. Antibacterial Activity of Cold Plasma−Treated Titanium Alloy. Plasma Med. 2011, 1, 205–214. [Google Scholar] [CrossRef]
- Rezaeinezhad, A.; Eslami, P.; Mirmiranpour, H.; Ghomi, H. The effect of cold atmospheric plasma on diabetes-induced enzyme glycation, oxidative stress, and inflammation; in vitro and in vivo. Sci. Rep. 2019, 9, 19958. [Google Scholar] [CrossRef]
- Mirpour, S.; Fathollah, S.; Mansouri, P.; Larijani, B.; Ghoranneviss, M.; Mohajeri Tehrani, M.; Amini, M.R. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Sci. Rep. 2020, 10, 10440. [Google Scholar] [CrossRef]
- Metelmann, H.R.; Seebauer, C.; Miller, V.; Fridman, A.; Bauer, G.; Graves, D.B.; Von Woedtke, T. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin. Plasma Med. 2018, 9, 6–13. [Google Scholar] [CrossRef]
- Keidar, M.; Walk, R.; Shashurin, A.; Srinivasan, P.; Sandler, A.; Dasgupta, S.; Trink, B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer 2011, 105, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Liu, H.; Zhou, L.; Xie, J.; He, C. Plasma-activated water production and its application in agriculture. J. Sci. Food Agric. 2021, 101, 4891–4899. [Google Scholar] [CrossRef] [PubMed]
- Nakamura-Silva, R.; Macedo, L.M.D.; Cerdeira, L.; Oliveira-Silva, M.; Silva-Sousa, Y.T.C.; Pitondo-Silva, A. First report of hypermucoviscous Klebsiella variicola subsp. variicola causing primary endodontic infection. Clin. Microbiol. Infect. 2021, 27, 303–304. [Google Scholar] [CrossRef]
- Fridman, G.; Brooks, A.D.; Balasubramanian, M.; Fridman, A.; Gutsol, A.; Vasilets, V.N.; Friedman, G. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process. Polym. 2007, 4, 370–375. [Google Scholar] [CrossRef]
- Milhan, N.V.M.; Chiappim, W.; Sampaio, A.D.G.; Vegian, M.R.D.C.; Pessoa, R.S.; Koga-Ito, C.Y. Applications of plasma-activated water in dentistry: A review. Int. J. Mol. Sci. 2022, 23, 4131. [Google Scholar] [CrossRef]
- Simoncelli, E.; Barbieri, D.; Laurita, R.; Liguori, A.; Stancampiano, A.; Viola, L.; Colombo, V. Preliminary investigation of the antibacterial efficacy of a handheld Plasma Gun source for endodontic procedures. Clin. Plasma Med. 2015, 3, 77–86. [Google Scholar] [CrossRef]
- Ledernez, L.; Engesser, F.; Altenburger, M.J.; Urban, G.A.; Bergmann, M.E. Effect of Transient Spark Disinfection on Various Endodontics-Relevant Bacteria. Plasma Med. 2019, 9, 121–128. [Google Scholar] [CrossRef]
- Prada, I.; Micó-Muñoz, P.; Giner-Lluesma, T.; Micó-Martínez, P.; Collado-Castellano, N.; Manzano-Saiz, A. Influence of microbiology on endodontic failure. Literature review. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e364. [Google Scholar] [CrossRef]
- Siqueira Jr, J.F.; Rôças, I.N. Diversity of endodontic microbiota revisited. J. Dent. Res. 2009, 88, 969–981. [Google Scholar] [CrossRef]
- Dioguardi, M.; Di Gioia, G.; Illuzzi, G.; Arena, C.; Caponio, V.C.A.; Caloro, G.A.; Lo Muzio, L. Inspection of the microbiota in endodontic lesions. Dent. J. 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, L.L.; Vaishnavi, C. Endodontic microbiology. J. Conserv. Dent. 2010, 13, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Kerlikowski, A.; Matthes, R.; Pink, C.; Steffen, H.; Schlüter, R.; Holtfreter, B.; Jablonowski, L. Effects of cold atmospheric pressure plasma and disinfecting agents on Candida albicans in root canals of extracted human teeth. J. Biophotonics 2020, 13, e202000221. [Google Scholar] [CrossRef]
- Saleewong, K.; Wanachantararak, P.; Louwakul, P. Efficacy of cold atmospheric pressure plasma jet against Enterococcus faecalis in apical canal of human single-rooted teeth: A preliminary study. In Proceedings of the International Conference on Materials Research and Innovation, Bangkok, Thailand, 17–21 December 2018. [Google Scholar] [CrossRef]
- Mergoni, G.; Percudani, D.; Lodi, G.; Bertani, P.; Manfredi, M. Prevalence of Candida species in endodontic infections: Systematic review and meta-analysis. J. Endod. 2018, 44, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Kim, A.R.; Perinpanayagam, H.; Han, S.H.; Kum, K.Y. Candida albicans virulence factors and pathogenicity for endodontic infections. Microorganisms 2020, 8, 1300. [Google Scholar] [CrossRef]
- Schaudinn, C.; Jaramillo, D.; Freire, M.O.; Sedghizadeh, P.P.; Nguyen, A.; Webster, P.; Jiang, C. Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. Int. Endod. J. 2013, 46, 930–937. [Google Scholar] [CrossRef]
- Li, Y.; Sun, K.; Ye, G.; Liang, Y.; Pan, H.; Wang, G.; Fang, J. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro. J. Endod. 2015, 41, 1325–1330. [Google Scholar] [CrossRef]
- Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; Van Dijk, J.; Zimmermann, J.L. Plasma medicine: An introductory review. New J. Phys. 2009, 11, 115012. [Google Scholar] [CrossRef]
- Jha, N.; Ryu, J.J.; Choi, E.H.; Kaushik, N.K. Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxid. Med. Cell. Longev. 2017, 2017, 7542540. [Google Scholar] [CrossRef]
- Jiang, C.; Vernier, P.T.; Chen, M.T.; Wu, Y.H.; Gundersen, M.A.; Wang, L.L. Pulsed atmospheric-pressure cold plasma for endodontic disinfection. In Proceedings of the IEEE 35th International Conference on Plasma Science, Karlsruhe, Germany, 15–19 June 2008. [Google Scholar] [CrossRef]
- Bansode, A.S.; Beg, A.; Pote, S.; Khan, B.; Bhadekar, R.; Patel, A.; Mathe, V.L. (Non-Thermal Atmospheric Plasma for Endodontic Treatment. In Proceedings of the International Conference on Biomedical Electronics and Devices, Barcelona, Spain, 11–14 February 2013. [Google Scholar] [CrossRef]
- Du, T.; Shi, Q.; Shen, Y.; Cao, Y.; Ma, J.; Lu, X.; Haapasalo, M. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J. Endod. 2013, 39, 1438–1443. [Google Scholar] [CrossRef]
- Jablonowski, L.; Koban, I.; Berg, M.H.; Kindel, E.; Duske, K.; Schroeder, K.; Kocher, T. Elimination of E. faecalis by a new non-thermal atmospheric pressure plasma handheld device for endodontic treatment. A preliminary investigation. Plasma Process. Polym. 2013, 10, 499–505. [Google Scholar] [CrossRef]
- Üreyen Kaya, B.; Kececi, A.D.; Güldaş, H.E.; Çetin, E.S.; Öztürk, T.; Öksuz, L.; Bozduman, F. Efficacy of endodontic applications of ozone and low-temperature atmospheric pressure plasma on root canals infected with Enterococcus faecalis. Lett. Appl. Microbiol. 2014, 58, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Doria, A.C.O.C.; Sorge, C.D.P.C.; Santos, T.B.; Brandão, J.; Gonçalves, P.A.R.; Maciel, H.S.; Pessoa, R.S. Application of post-discharge region of atmospheric pressure argon and air plasma jet in the contamination control of Candida albicans biofilms. Res. Biomed. Eng. 2015, 31, 358–362. [Google Scholar] [CrossRef]
- Herbst, S.R.; Hertel, M.; Ballout, H.; Pierdzioch, P.; Weltmann, K.D.; Wirtz, H.C.; Preissner, S. Bactericidal efficacy of cold plasma at different depths of infected root canals in vitro. Open Dent. J. 2015, 9, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, H.; Sun, P.; Wu, H.; Pan, J.; Zhu, W.; Fang, J. The effect of an atmospheric pressure, DC nonthermal plasma microjet on tooth root canal, dentinal tubules infection and reinfection prevention. Plasma Med. 2011, 1, 143–155. [Google Scholar] [CrossRef]
- Alberti, A.; Corbella, S.; Taschieri, S.; Francetti, L.; Fakhruddin, K.S.; Samaranayake, L.P. Fungal species in endodontic infections: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0255003. [Google Scholar] [CrossRef]
- Theinkom, F.; Singer, L.; Cieplik, F.; Cantzler, S.; Weilemann, H.; Cantzler, M.; Zimmermann, J.L. Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS ONE 2019, 14, e0223925. [Google Scholar] [CrossRef]
- Laurita, R.; Barbieri, D.; Gherardi, M.; Colombo, V.; Lukes, P. Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin. Plasma Med. 2015, 3, 53–61. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.; Feng, H.; Ma, R.; Tian, Y.; Zhang, J.; Fang, J. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl. Phys. Lett. 2013, 102, 203701. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Zhou, R.; Zhang, T.; Ostrikov, K.; Mugunthan, S.; Rice, S.A.; Cullen, P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes 2021, 7, 11. [Google Scholar] [CrossRef]
- Marion, J.J.; Manhaes, F.C.; Bajo, H.; Duque, T.M. Efficiency of different concentrations of sodium hypochlorite during endodontic treatment. Literature review. Dental Press Endod. 2012, 2, 32–37. [Google Scholar]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef]
- Tsoukou, E.; Bourke, P.; Boehm, D. Temperature stability and effectiveness of plasma-activated liquids over an 18 months period. Water 2020, 12, 3021. [Google Scholar] [CrossRef]
Author/ Year | Type of Study | Plasma Exposure Method | Microorganism | Working Gas | Exposure Time | Distance from Apparatus to the Substrate | Other Antimicrobial Agent | Main Findings |
---|---|---|---|---|---|---|---|---|
Jiyang et al. [31] | In vitro and ex vivo | Direct | Bacillus atrophaeus | He and He (1%)O2 He (1%)O2 | 1 min 3 min | 5 mm | No | He/(1%)O2 NTPP is more antimicrobial than He-NTPP alone against B. atrophaeus |
Pan et al. [3] | In vitro | Direct | E. faecalis | Ar/O2[2%] | 2–10 min | 5 mm | No | NTPP was effective against E. faecalis. The exposure time of 8 or 10 min had significantly higher antimicrobial efficacy |
Bansode et al. [32] | In vitro | Direct | E. faecalis | He He/O2 | 2 min | 2–3 cm | Chlorhexidine (CLX) | A significant reduction in the biofilm viability was observed after chlorohexidine or NTPP treatment |
Du et al. [33] | In vitro | Direct | E. faecalis and multispecies biofilms | He and He/O2 | 2–5 min | 5 mm | CLX | Modified nonequilibrium plasma was more effective in killing E. faecalis and multispecies biofilms at both 2 and 5 min than conventional plasma. No significant difference was detected between nonequilibrium plasma and CHX groups |
Habib, Hottel and Hong [4] | Ex vivo | Direct | E. faecalis | Argon | 2 min | Not indicated | No | NTPP presented significant antimicrobial effects. It was as effective as 6% sodium hypochlorite |
Jablonowski et al. [34] | Ex vivo | Direct | E. faecalis | Argon | 3 min | 2 mm | NaOCl and CLX | All treatments led to significant reduction of E. faecalis compared to NaOCl. NTPP was the most effective treatment |
Schaudinn et al. [27] | Ex vivo | Direct | Biofilm | He/O2 | 30 min | Not indicated | NaOCl | NTPP showed lower biofilm removal than 6% NaOCl |
Üreyen Kaya et al. [35] | Ex vivo | Direct | E. faecalis | He/O2 | 2 min | 1 mm | NaOCL, Ozone | The highest antibacterial activity was observed in the NaOCl, NTPP and ozone groups. In the middle third of the root canal wall NTPP presented superior efficacy than NaOCl |
Doria et al. [36] | In vitro | Direct | Candida albicans | Argon and | 10 min | 30 mm | No | Cell viability tests indicated that only about 8% of the yeast cells treated with Argon+ compressed air plasma |
Argon+ compressed air | could survive, proliferate and/or generate other cells. This treatment was the most effective in Candida albicans biofilm inactivation | |||||||
Herbst et al. [37] | Ex vivo | Direct | E. faecalis | Argon | 30 s (CLX) 60 s (NTPP) | 1 mm | CLX | The highest antimicrobial action was observed in the association of NTPP and CLX, followed by NTPP and CLX alone |
Simoncelli et al. [17] | In vitro and model | Direct and indirect | E. faecalis | He | 3 min (direct) 1 min (indirect) | 5 mm | NaOCl and CLX | The highest level of bacterial inactivation was observed in the dry environment by direct exposure, but a relevant bacterial load reduction was also obtained when the root canal system was irrigated with PAW |
Armand et al. [1] | Ex vivo | Direct | E. faecalis | He and He/(0.5%)O2 | 2–8 min | 2 mm | PDT | All the modalities showed a significant reduction in bacteria after treatment, and He/O2 NTPP was the most effective against E. faecalis, followed by photodynamic therapy and He plasma, respectively |
Ledernez et al. [18] | In vitro | Direct | E. faecalis, Streptococcus mutans Staphylococcus aureus Pseudomonas aeruginosa Escherichia coli | He/(1%)O2 | 3 min | 1–3 mm | No | After treatment, the median size of the bacterium-free area in Petri dishes of E. faecalis was 0.25 mm2, which corresponded to five times the area of the plasma nozzle and matched the target surface area in root canal treatment. This value was even larger for other investigated bacteria. E. coli presented the largest median bacterium-free surface area (2.5 mm2) |
Li et al. [31] | In vitro | Direct | E. faecalis | Ar/O2 | 3, 6, 9 and 12 min | 10 mm | Ca(OH)2, 2% CLX gel and Ca(OH)2/CLX | There were no detectable live bacteria after 12 min of NTPP treatment |
Sallewong et al. [24] | Ex vivo | Direct | E. faecalis | He/O2 | 1 min | Not indicated | NaOCl | NTPP showed significant bacterial reduction as well as NaOCl and NaOCl + NTPP. The NaOCl + NTPP group significantly reduced E. faecalis in the deeper dentin level compared to the other groups |
Li et al. [31] | In vitro | Indirect | E. faecalis | Compressed air | 10–90 s | 20 mm | No | PAW treatment inhibited E. faecalis biofilm and decreased quorum-sensing-related virulence genes expression |
Kerli-kowski et al. [23] | Ex vivo | Direct | Candida albicans | Ar/O2 | 6–12 min | 1–2 mm | CLX NaOCL OCT | NTPP presented the highest disinfection efficiency among all the treatments, after 6 and 12 min of exposure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muniz, A.B.; Vegian, M.R.d.C.; Pereira Leite, L.D.; da Silva, D.M.; Moreira Milhan, N.V.; Kostov, K.G.; Koga-Ito, C.Y. Non-Thermal Atmospheric Pressure Plasma Application in Endodontics. Biomedicines 2023, 11, 1401. https://doi.org/10.3390/biomedicines11051401
Muniz AB, Vegian MRdC, Pereira Leite LD, da Silva DM, Moreira Milhan NV, Kostov KG, Koga-Ito CY. Non-Thermal Atmospheric Pressure Plasma Application in Endodontics. Biomedicines. 2023; 11(5):1401. https://doi.org/10.3390/biomedicines11051401
Chicago/Turabian StyleMuniz, Ana Bessa, Mariana Raquel da Cruz Vegian, Lady Daiane Pereira Leite, Diego Morais da Silva, Noala Vicensoto Moreira Milhan, Konstantin Georgiev Kostov, and Cristiane Yumi Koga-Ito. 2023. "Non-Thermal Atmospheric Pressure Plasma Application in Endodontics" Biomedicines 11, no. 5: 1401. https://doi.org/10.3390/biomedicines11051401
APA StyleMuniz, A. B., Vegian, M. R. d. C., Pereira Leite, L. D., da Silva, D. M., Moreira Milhan, N. V., Kostov, K. G., & Koga-Ito, C. Y. (2023). Non-Thermal Atmospheric Pressure Plasma Application in Endodontics. Biomedicines, 11(5), 1401. https://doi.org/10.3390/biomedicines11051401