Controlled Attenuation Parameter Is Associated with a Distinct Systemic Inflammatory Milieu after Clearance of HCV Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Materials
2.2. Protein Quantification by Proximity Extension Analysis
2.3. Statistical Analysis
3. Results
3.1. Hepatic Steatosis Remains in Some of Patients with Chronic HCV Infection despite Successful SVR
3.2. Four SIMs Differed in Patients with Different Steatosis Status after Successful HCV Clearance
3.3. SCF, TWEAK, FGF-21, and IL-18R1 Were Specifically Related to Steatosis at 96 w after Virus Clearance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, J.; Wang, F.; Wong, N.K.; He, J.; Zhang, R.; Sun, R.; Xu, Y.; Liu, Y.; Li, W.; Koike, K.; et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective. J. Hepatol. 2019, 71, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Al-Ahmed, S.H.; Bazzi, A.M.; Alfouzan, W.A.; Alsuliman, S.A.; Aldrazi, F.A.; Haque, S. Overview of hepatitis C infection, molecular biology, and new treatment. J. Infect. Public Health 2020, 13, 773–783. [Google Scholar] [CrossRef]
- Roingeard, P. Hepatitis C virus diversity and hepatic steatosis. J. Viral Hepat. 2013, 20, 77–84. [Google Scholar] [CrossRef]
- Lonardo, A.; Adinolfi, L.E.; Loria, P.; Carulli, N.; Ruggiero, G.; Day, C.P. Steatosis and hepatitis C virus: Mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology 2004, 126, 586–597. [Google Scholar] [CrossRef]
- Cross, T.J.; Rashid, M.M.; Berry, P.A.; Harrison, P.M. The importance of steatosis in chronic hepatitis C infection and its management: A review. Hepatol. Res. 2010, 40, 237–247. [Google Scholar] [CrossRef]
- Castera, L.; Hezode, C.; Roudot-Thoraval, F.; Lonjon, I.; Zafrani, E.S.; Pawlotsky, J.M.; Dhumeaux, D. Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: Indirect evidence of a role of hepatitis C virus genotype 3 in steatosis. Gut 2004, 53, 420–424. [Google Scholar] [CrossRef]
- Tacke, F.; Boeker, K.; Klinker, H.; Heyne, R.; Buggisch, P.; Pathil, A.; Wiegand, J.; Cornberg, M.; Lange, C.; Berg, T.; et al. Baseline risk factors determine lack of biochemical response after SVR in chronic hepatitis C patients treated with DAAs. Liver Int. 2020, 40, 539–548. [Google Scholar] [CrossRef]
- De Ledinghen, V.; Vergniol, J.; Capdepont, M.; Chermak, F.; Hiriart, J.B.; Cassinotto, C.; Merrouche, W.; Foucher, J.; Brigitte, L.B. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: A prospective study of 5323 examinations. J. Hepatol. 2014, 60, 1026–1031. [Google Scholar] [CrossRef]
- Runge, J.H.; Smits, L.P.; Verheij, J.; Depla, A.; Kuiken, S.D.; Baak, B.C.; Nederveen, A.J.; Beuers, U.; Stoker, J. MR spectroscopy-derived proton density fat fraction is superior to controlled attenuation parameter for detecting and grading hepatic steatosis. Radiology 2018, 286, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Chon, Y.E.; Jung, K.S.; Kim, S.U.; Park, J.Y.; Park, Y.N.; Kim, D.Y.; Ahn, S.H.; Chon, C.Y.; Lee, H.W.; Park, Y.; et al. Controlled attenuation parameter (CAP) for detection of hepatic steatosis in patients with chronic liver diseases: A prospective study of a native Korean population. Liver Int. 2014, 34, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Ogasawara, N.; Kobayashi, M.; Akuta, N.; Kominami, Y.; Fujiyama, S.; Kawamura, Y.; Sezaki, H.; Hosaka, T.; Suzuki, F.; Saitoh, S.; et al. Serial changes in liver stiffness and controlled attenuation parameter following direct-acting antiviral therapy against hepatitis C virus genotype 1b. J. Med. Virol. 2018, 90, 313–319. [Google Scholar] [CrossRef]
- Hengst, J.; Klein, A.L.; Lunemann, S.; Deterding, K.; Hardtke, S.; Falk, C.S.; Manns, M.P.; Cornberg, M.; Schlaphoff, V.; Wedemeyer, H. Role of soluble inflammatory mediators and different immune cell populations in early control of symptomatic acute hepatitis C virus infection. J. Viral Hepat. 2019, 26, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.; Mamdouh, R.; Laird, M.; Soneson, C.; Le Fouler, L.; El-Daly, M.; Casrouge, A.; Decalf, J.; Abbas, A.; Eldin, N.S.; et al. The ABCs of viral hepatitis that define biomarker signatures of acute viral hepatitis. Hepatology 2014, 59, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Carlin, A.F.; Aristizabal, P.; Song, Q.; Wang, H.; Paulson, M.S.; Stamm, L.M.; Schooley, R.T.; Wyles, D.L. Temporal dynamics of inflammatory cytokines/chemokines during sofosbuvir and ribavirin therapy for genotype 2 and 3 hepatitis C infection. Hepatology 2015, 62, 1047–1058. [Google Scholar] [CrossRef]
- Hengst, J.; Falk, C.S.; Schlaphoff, V.; Deterding, K.; Manns, M.P.; Cornberg, M.; Wedemeyer, H. Direct-Acting Antiviral-Induced hepatitis c virus clearance does not completely restore the altered cytokine and chemokine milieu in patients with chronic hepatitis c. J. Infect. Dis. 2016, 214, 1965–1974. [Google Scholar] [CrossRef]
- Khera, T.; Du, Y.; Todt, D.; Deterding, K.; Strunz, B.; Hardtke, S.; Aregay, A.; Port, K.; Hardtke-Wolenski, M.; Steinmann, E.; et al. Long-Lasting imprint in the soluble inflammatory milieu despite early treatment of acute symptomatic hepatitis c. J. Infect. Dis. 2022, 226, 441–452. [Google Scholar] [CrossRef]
- Schlevogt, B.; Boeker, K.; Mauss, S.; Klinker, H.; Heyne, R.; Link, R.; Simon, K.-G.; Sarrazin, C.; Serfert, Y.; Manns, M.P.; et al. Weight Gain after Interferon-Free Treatment of Chronic Hepatitis C-Results from the German Hepatitis C-Registry (DHC-R). Biomedicines 2021, 9, 1495. [Google Scholar] [CrossRef]
- Svart, M.; Rittig, N.; Moller, N.; Moller, H.J.; Gronbaek, H. Soluble CD163 correlates with lipid metabolic adaptations in type 1 diabetes patients during ketoacidosis. J. Diabetes Investig. 2019, 10, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Braunersreuther, V.; Viviani, G.L.; Mach, F.; Montecucco, F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J. Gastroenterol. 2012, 18, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Toyoda, H.; Sone, Y.; Takeshima, K.; Ogawa, S.; Goto, T.; Wakahata, A.; Nakashima, M.; Nakamuta, M.; et al. Viral eradication reduces both liver stiffness and steatosis in patients with chronic hepatitis C virus infection who received direct-acting anti-viral therapy. Aliment. Pharm. Ther. 2018, 47, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Oeda, S.; Tanaka, K.; Oshima, A.; Matsumoto, Y.; Sueoka, E.; Takahashi, H. Diagnostic accuracy of FibroScan and factors affecting measurements. Diagnostics 2020, 10, 940. [Google Scholar] [CrossRef]
- Soliman, H.; Ziada, D.; Hamisa, M.; Badawi, R.; Hawash, N.; Salama, M.; Abd-Elsalam, S. The Effect of HCV Eradication after Direct-Acting Antiviral Agents on Hepatic Steatosis: A Prospective Observational Study. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 100–107. [Google Scholar] [CrossRef]
- Asselah, T.; Rubbia-Brandt, L.; Marcellin, P.; Negro, F. Steatosis in chronic hepatitis C: Why does it really matter? Gut 2006, 55, 123–130. [Google Scholar] [CrossRef]
- Hickman, I.J.; Powell, E.E.; Prins, J.B.; Clouston, A.D.; Ash, S.; Purdie, D.M.; Jonsson, J.R. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: Implications for therapy. J. Hepatol. 2003, 39, 1042–1048. [Google Scholar] [CrossRef]
- Ichikawa, T.; Miyaaki, H.; Miuma, S.; Motoyoshi, Y.; Narita, S.; Toda, S.; Takahashi, Y.; Honda, T.; Yajima, H.; Uehara, R.; et al. Carotid intima-media thickness and small dense low-density lipoprotein cholesterol increase after one year of treatment with direct-acting antivirals in patients with hepatitis c virus infection. Intern. Med. 2019, 58, 1209–1215. [Google Scholar] [CrossRef]
- Lozano-Bartolome, J.; Llaurado, G.; Rodriguez, M.M.; Fernandez-Real, J.M.; Garcia-Fontgivell, J.F.; Puig, J.; Maymó-Masip, E.; Vendrell, J.; Chacón, M.R. Reduced circulating levels of sTWEAK are associated with NAFLD and may affect hepatocyte triglyceride accumulation. Int. J. Obes. (Lond.) 2016, 40, 1337–1345. [Google Scholar] [CrossRef]
- Yano, K.; Yamaguchi, K.; Seko, Y.; Okishio, S.; Ishiba, H.; Tochiki, N.; Takahashi, A.; Kataoka, S.; Okuda, K.; Liu, Y.; et al. Hepatocyte-specific fibroblast growth factor 21 overexpression ameliorates high-fat diet-induced obesity and liver steatosis in mice. Lab. Investig. 2022, 102, 281–289. [Google Scholar] [CrossRef]
- Takei, S.; Hoshino, T.; Matsunaga, K.; Sakazaki, Y.; Sawada, M.; Oda, H.; Takenaka, S.-I.; Imaoka, H.; Kinoshita, T.; Honda, S.; et al. Soluble interleukin-18 receptor complex is a novel biomarker in rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, R52. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.H.; Sherman, J.B.; Stanley, T.L.; Corey, K.E.; Fitch, K.V.; Looby, S.E.; Robinson, J.A.; Lu, M.T.; Burdo, T.H.; Lo, J. Pro-Inflammatory interleukin-18 is associated with hepatic steatosis and elevated liver enzymes in people with HIV monoinfection. AIDS Res. Hum. Retrovir. 2021, 37, 385–390. [Google Scholar] [CrossRef]
- Flisiak-Jackiewicz, M.; Bobrus-Chociej, A.; Tarasow, E.; Wojtkowska, M.; Bialokoz-Kalinowska, I.; Lebensztejn, D.M. Predictive role of interleukin-18 in liver steatosis in obese children. Can. J. Gastroenterol. Hepatol. 2018, 2018, 3870454. [Google Scholar] [CrossRef] [PubMed]
- Khodadi, E.; Shahrabi, S.; Shahjahani, M.; Azandeh, S.; Saki, N. Role of stem cell factor in the placental niche. Cell Tissue Res. 2016, 366, 523–531. [Google Scholar] [CrossRef]
- Baccarani, U.; De Stasio, G.; Adani, G.L.; Donini, A.; Sainz-Barriga, M.; Lorenzin, D.; Beltrami, A.P.; Bresadola, V.; Risaliti, A.; Bresadola, F. Implication of stem cell factor in human liver regeneration after transplantation and resection. Growth Factors 2006, 24, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Allaire, M.; Gilgenkrantz, H. The impact of steatosis on liver regeneration. Horm. Mol. Biol. Clin. Investig. 2018, 41. [Google Scholar] [CrossRef]
- Dushay, J.; Chui, P.C.; Gopalakrishnan, G.S.; Varela-Rey, M.; Crawley, M.; Fisher, F.M.; Badman, M.K.; Chantar, M.L.M.; Maratos–Flier, E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010, 139, 456–463. [Google Scholar] [CrossRef]
- Diaz-Lopez, A.; Chacon, M.R.; Bullo, M.; Maymo-Masip, E.; Martinez-Gonzalez, M.A.; Estruch, R.; Vendrell, J.; Basora, J.; Díez-Espino, J.; Covas, M.I.; et al. Serum sTWEAK concentrations and risk of developing type 2 diabetes in a high cardiovascular risk population: A nested case-control study. J. Clin. Endocrinol. Metab. 2013, 98, 3482–3490. [Google Scholar] [CrossRef]
- Kralisch, S.; Ziegelmeier, M.; Bachmann, A.; Seeger, J.; Lossner, U.; Bluher, M.; Stumvoll, M.; Fasshauer, M. Serum levels of the atherosclerosis biomarker sTWEAK are decreased in type 2 diabetes and end-stage renal disease. Atherosclerosis 2008, 199, 440–444. [Google Scholar] [CrossRef]
- Diaz-Lopez, A.; Bullo, M.; Chacon, M.R.; Estruch, R.; Vendrell, J.; Diez-Espino, J.; Fitó, M.; Corella, D.; Salas-Salvadó, J. Reduced circulating sTWEAK levels are associated with metabolic syndrome in elderly individuals at high cardiovascular risk. Cardiovasc. Diabetol. 2014, 13, 51. [Google Scholar] [CrossRef]
CAP < 250 | CAP 250–299 | CAP > 299 | p Value | |
---|---|---|---|---|
CAP dB/m (96 w) | 205 (100–249) | 267.5 (250–293) | 357 (302–400) | <0.0001 |
CAP dB/m (baseline) | 220 (100–322) | 238.5 (143–363) | 307 (189–400) | <0.0001 |
Number | 44 | 23 | 27 | - |
Age (y) | 52 (28–83) | 62 (27–71) | 60 (37–74) | 0.1700 |
Gender (male/female) | 16/28 | 10/13 | 13/14 | 0.6044 |
Genotype | 1B | 1B | 1B | - |
BMI kg/m2 (96 w) | 24.82 (19.00–33.33) | 26 (20.60–39.62) | 29.96 (22.59–45.67) | 0.0033 |
BMI kg/m2 (baseline) | 25.4 (19.00–32.97) | 25.6 (19.92–37.76) | 28.7 (21.80–43.20) | 0.0002 |
Fibroscan kPa (96 w) | 5.4 (2.4–22.2) | 6.4 (3.1–42.3) | 6.9 (4.2–60.9) | 0.0005 |
Fibroscan kPa (baseline) | 5.9 (3.1–47.2) | 9.8 (3.1–45.7) | 14 (4.4–60) | 0.0092 |
With/without diabetes | 6/38 | 6/17 | 7/20 | 0.3297 |
With/without alcohol consumption | 2/42 | 2/21 | 3/24 | 0.5726 |
Inflammation Panel | Pass the Quality Control in Total (n = 72) |
---|---|
Chemokines (n = 19) | MCP1, MCP2, MCP3, MCP4, CXCL1, CXCL5, CXCL6, CXCL9, CXCL10, CXCL11, CCL3, CCL4, CCL11, CCL19, CCL20, CCL23, CCL25, CCL28, CX3CL1 |
Interleukins (n = 12) | IL-6, IL-7, IL-8, IL-10, IL-10RA, IL-10RB, IL-12B, IL-15RA, IL-17A, IL-18, IL-18R1, IL-20RA |
TNF-associated cytokines (n = 6) | TNFRSF9, TNFB, TNFSF14, TWEAK, TRANCE, TRAIL |
Growth factor (n = 13) | Beta-NGF, GDNF, DNER, VEGFA, SCF, LAP, SCF-1, TGF, HGF, FGF-19, FGF-21, FGF-23, NT-3 |
Ligands or receptors (n = 9) | CDCP1, CD244, CD5, CD6, CD8A, CD40, PD-L1, LIF-R, Flt3L |
Others (n = 13) | MMP-1, MMP-10, ADA, OPG, uPA, AXIN1, CST5, OSM, SLAMF, SIRT2, 4E-BP1, STAMBP, CASP-8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Khera, T.; Liu, Z.; Tudrujek-Zdunek, M.; Dworzanska, A.; Cornberg, M.; Xu, C.-J.; Tomasiewicz, K.; Wedemeyer, H. Controlled Attenuation Parameter Is Associated with a Distinct Systemic Inflammatory Milieu after Clearance of HCV Infection. Biomedicines 2023, 11, 1529. https://doi.org/10.3390/biomedicines11061529
Du Y, Khera T, Liu Z, Tudrujek-Zdunek M, Dworzanska A, Cornberg M, Xu C-J, Tomasiewicz K, Wedemeyer H. Controlled Attenuation Parameter Is Associated with a Distinct Systemic Inflammatory Milieu after Clearance of HCV Infection. Biomedicines. 2023; 11(6):1529. https://doi.org/10.3390/biomedicines11061529
Chicago/Turabian StyleDu, Yanqin, Tanvi Khera, Zhaoli Liu, Magdalena Tudrujek-Zdunek, Anna Dworzanska, Markus Cornberg, Cheng-Jian Xu, Krzysztof Tomasiewicz, and Heiner Wedemeyer. 2023. "Controlled Attenuation Parameter Is Associated with a Distinct Systemic Inflammatory Milieu after Clearance of HCV Infection" Biomedicines 11, no. 6: 1529. https://doi.org/10.3390/biomedicines11061529
APA StyleDu, Y., Khera, T., Liu, Z., Tudrujek-Zdunek, M., Dworzanska, A., Cornberg, M., Xu, C.-J., Tomasiewicz, K., & Wedemeyer, H. (2023). Controlled Attenuation Parameter Is Associated with a Distinct Systemic Inflammatory Milieu after Clearance of HCV Infection. Biomedicines, 11(6), 1529. https://doi.org/10.3390/biomedicines11061529