Insights from a Case of Good’s Syndrome (Immunodeficiency with Thymoma)
Abstract
:1. Introduction
2. Case Description
3. Immunological Evaluation
3.1. Lymphocyte Subpopulations
3.2. Autoantibody Detection
4. Discussion
4.1. Review of Literature
4.2. Comment on Our Case Findings
4.3. Autoantibodies to Cytokines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Good, R.A.; Varco, R.L. A clinical and experimental study of agammaglobulinemia. J. Lancet 1955, 75, 245–271. [Google Scholar] [PubMed]
- Kelleher, P.; Misbah, S.A. What is Good’s syndrome? Immunological abnormalities in patients with thymoma. J. Clin. Pathol. 2003, 56, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Good, R.A.; Gabrielsen, A.E. The Function of the Thymus. Med. Sci. 1964, 15, 54–61. [Google Scholar]
- Good, R.A.; Dalmasso, A.P.; Martinez, C.; Archer, O.K.; Pierce, J.C.; Papermaster, B.W. The role of the thymus in development of immunologic capacity in rabbits and mice. J. Exp. Med. 1962, 116, 773–796. [Google Scholar] [CrossRef]
- Dalmasso, A.P.; Martinez, C.; Sjodin, K.; Good, R.A. Studies on the Role of the Thymus in Immunobiology; Reconstitution of Immunologic Capacity in Mice Thymectomized at Birth. J. Exp. Med. 1963, 118, 1089–1109. [Google Scholar] [CrossRef]
- Miller, J.F. The discovery of thymus function and of thymus-derived lymphocytes. Immunol. Rev. 2002, 185, 7–14. [Google Scholar] [CrossRef]
- Cooper, M.D.; Miller, J. Discovery of 2 Distinctive Lineages of Lymphocytes, T Cells and B Cells, as the Basis of the Adaptive Immune System and Immunologic Function: 2019 Albert Lasker Basic Medical Research Award. JAMA 2019, 322, 1247–1248. [Google Scholar] [CrossRef]
- Suster, S.; Moran, C.A. Thymoma, atypical thymoma, and thymic carcinoma. A novel conceptual approach to the classification of thymic epithelial neoplasms. Am. J. Clin. Pathol. 1999, 111, 826–833. [Google Scholar] [CrossRef]
- Marx, A.; Muller-Hermelink, H.K. Thymoma and thymic carcinoma. Am. J. Surg. Pathol. 1999, 23, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Okumura, M.; Ohta, M.; Tateyama, H.; Nakagawa, K.; Matsumura, A.; Maeda, H.; Todam, H.; Eimoto, T.; Matsuda, H.; Masaoka, A. The World Health Organization histologic classification system reflects the oncologic behavior of thymoma: A clinical study of 273 patients. Cancer 2002, 94, 624–632. [Google Scholar] [CrossRef]
- Peyser, D. Myasthenia gravis and thymoma. Acta Med. Orient. 1950, 9, 50–52. [Google Scholar] [PubMed]
- Brasher, G.W.; Howard, P.H., Jr.; Brindley, G.V., Jr. Thymoma and hypogammaglobulinemia (Good’s syndrome). Surg. Clin. N. Am. 1972, 52, 429–438. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, C. When the Good Syndrome Goes Bad: A Systematic Literature Review. Front. Immunol. 2021, 12, 679556. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.D.; Faulk, W.P.; Fudenberg, H.H.; Good, R.A.; Hitzig, W.; Kunkel, H.; Rosen, F.S.; Seligmann, M.; Soothill, J.; Wedgwood, R.J. Classification of primary immunodeficiencies. N. Engl. J. Med. 1973, 288, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Primary immunodeficiency diseases. Report of an IUIS Scientific Committee. Int. Union. Immunol. Societies Clin. Exp. Immunol. 1999, 118 (Suppl. S1), 1–28.
- Bousfiha, A.; Jeddane, L.; Picard, C.; Al-Herz, W.; Ailal, F.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J. Clin. Immunol. 2020, 40, 66–81. [Google Scholar] [CrossRef]
- Ide, S.; Koga, T.; Rikimaru, T.; Katsuki, Y.; Oizumi, K. Good’s syndrome presenting with cytomegalovirus pneumonia. Intern. Med. 2000, 39, 1094–1096. [Google Scholar] [CrossRef]
- Matta, L.; Ramirez-Velasco, M.C.; Zea-Vera, A.F. Herpes simplex virus type 2 meningitis as a manifestation of Good’s syndrome. J. Neurovirol. 2020, 26, 429–432. [Google Scholar] [CrossRef]
- Kaneko, F.; Tsuchiya, K.; Miura, Y.; Kishiyama, K.; Kusakabe, Y.; Matsumoto, S.; Watanabe, M. Clinical observations on a case of immuno-deficiency and thymoma (Good’s syndrome) associated with chronic mucocutaneous candidiasis. J. Dermatol. 1982, 9, 355–365. [Google Scholar] [CrossRef]
- Kwok, C.T.; Yeung, Y.C. Good’s syndrome presenting with CMV pneumonitis and oesophageal candidiasis: A case report. Respirol. Case Rep. 2022, 10, e0888. [Google Scholar] [CrossRef]
- Sasson, S.C.; Davies, S.; Chan, R.; Davies, L.; Garsia, R. Cerebral toxoplasmosis in a patient with myasthenia gravis and thymoma with immunodeficiency/Good’s syndrome: A case report. BMC Infect. Dis. 2016, 16, 457. [Google Scholar] [CrossRef] [PubMed]
- Akinosoglou, K.; Melachrinou, M.; Siagris, D.; Koletsis, E.; Marangos, M.; Gogos, C.A.; Solomou, E.E. Good’s syndrome and pure white cell aplasia complicated by cryptococcus infection: A case report and review of the literature. J. Clin. Immunol. 2014, 34, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Kuriyama, Y.; Tauchi, T.; Ohyashiki, J.H.; Toyama, K.; Ohyashiki, K. A patient with pure red cell aplasia and Good’s syndrome. Haematologica 1999, 84, 1048–1049. [Google Scholar]
- Nitta, H.; Harada, Y.; Okikawa, Y.; Fujii, M.; Arihiro, K.; Kimura, A.; Harada, H. Good’s syndrome-associated pure red cell aplasia with myelodysplastic syndrome. Intern. Med. 2011, 50, 2011–2014. [Google Scholar] [CrossRef]
- Seneschal, J.; Orlandini, V.; Duffau, P.; Viallard, J.F.; Pellegrin, J.L.; Doutre, M.S.; Beylot-Barry, M. Oral erosive lichen planus and Good’s syndrome: Just a coincidence or a direct link between the two diseases? J. Eur. Acad. Dermatol. Venereol. 2008, 22, 506–507. [Google Scholar] [CrossRef]
- Hanafusa, T.; Umegaki, N.; Yamaguchi, Y.; Katayama, I. Good’s syndrome (hypogammaglobulinemia with thymoma) presenting intractable opportunistic infections and hyperkeratotic lichen planus. J. Dermatol. 2010, 37, 171–174. [Google Scholar] [CrossRef]
- Le Gatt, P.; Nguyen, A.T.; Baaroun, V.; Rochefort, J. Oral Lichen Planus in Patients with Good’s Syndrome: A Literature Review. Cureus 2023, 15, e35177. [Google Scholar] [CrossRef]
- Verne, G.N.; Amann, S.T.; Cosgrove, C.; Cerda, J.J. Chronic diarrhea associated with thymoma and hypogammaglobulinemia (Good’s syndrome). South Med. J. 1997, 90, 444–446. [Google Scholar] [CrossRef]
- Mancuso, A.; Gentiluomo, M.; Vangeli, M.; Torre, M.D.; Belli, L.S. Diarrhea as sole presentation of Good’s syndrome mimicking Crohn’s disease. Clin. Immunol. 2013, 147, 9–10. [Google Scholar] [CrossRef]
- Hsu, D.S.; Wilde, S.A.; Velotta, J.B. Thymoma associated with severe pancytopenia and Good’s syndrome: Case report. AME Case Rep. 2021, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Matsumoto, K.; Yamamoto, M.; Hirata, H.; Shiroyama, T.; Miyake, K.; Yamamoto, Y.; Kuge, T.; Yoneda, M.; Naito, Y.; et al. A case of synchronous triple autoimmune disorders secondary to thymoma: Pure red cell aplasia, Good’s syndrome, and thymoma-associated multi-organ autoimmunity. Respir. Med. Case Rep. 2022, 36, 101619. [Google Scholar] [CrossRef]
- Pieplenbosch, B.; de Leijer, J.H.; van Dop, W.A.; Nagtegaal, I.D.; Witteman, E.M. Thymoma-associated autoimmune enteropathy with colonic stricture: A diagnostic and histological challenge. Clin. J. Gastroenterol. 2022, 15, 112–116. [Google Scholar] [CrossRef] [PubMed]
- De Keyzer, K.; Peeters, P.; Verhelst, C.; Dendooven, A.; Vonck, A.; Vanholder, R. Autoimmune haemolytic anaemia associated with a thymoma: Case report and review of the literature. Acta Clin. Belg. 2009, 64, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Fan, U.; Grewal, N.; Barnes, M.; Mehta, A.; Taylor, S.; Husebye, E.S.; Murphy, E.J.; Anderson, M.S. Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. N. Engl. J. Med. 2010, 362, 764–766. [Google Scholar] [CrossRef]
- Bernard, C.; Frih, H.; Pasquet, F.; Kerever, S.; Jamilloux, Y.; Tronc, F.; Guibert, B.; Isaac, S.; Devouassoux, M.; Chalabreysse, L.; et al. Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun. Rev. 2016, 15, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Solimani, F.; Maglie, R.; Pollmann, R.; Schmidt, T.; Schmidt, A.; Ishii, N.; Tackenberg, B.; Kirschbaum, A.; Didona, D.; Pickert, J.; et al. Thymoma-Associated Paraneoplastic Autoimmune Multiorgan Syndrome-From Pemphigus to Lichenoid Dermatitis. Front. Immunol. 2019, 10, 1413. [Google Scholar] [CrossRef]
- Zhu, K.; Li, J.; Huang, X.; Xu, W.; Liu, W.; Chen, J.; Chen, P.; Feng, H. Thymectomy is a beneficial therapy for patients with non-thymomatous ocular myasthenia gravis: A systematic review and meta-analysis. Neurol. Sci. 2017, 38, 1753–1760. [Google Scholar] [CrossRef]
- Rashid, M.H.; Yasir, H.K.M.; Piracha, M.U.; Salman, U.; Yousaf, H. Review Analysis on Thymectomy vs Conservative Medical Management in Myasthenia Gravis. Cureus 2020, 12, e7425. [Google Scholar] [CrossRef]
- Jaretzki, A. 3rd. Thymectomy for myasthenia gravis: Analysis of controversies--patient management. Neurologist 2003, 9, 77–92. [Google Scholar] [CrossRef]
- Bachmann, K.; Burkhardt, D.; Schreiter, I.; Kaifi, J.; Schurr, P.; Busch, C.; Thayssen, G.; Izbicki, J.R.; Strate, T. Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement. Surgery 2009, 145, 392–398. [Google Scholar] [CrossRef]
- Popperud, T.H.; Gul, K.A.; Brunborg, C.; Olaussen, R.W.; Abrahamsen, T.G.; Osnes, L.T.; Kerty, E. Thymectomy in Juvenile Myasthenia Gravis Is Safe Regarding Long Term Immunological Effects. Front. Neurol. 2021, 12, 596859. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Yang, H. Poor responses and adverse outcomes of myasthenia gravis after thymectomy: Predicting factors and immunological implications. J. Autoimmun. 2022, 132, 102895. [Google Scholar] [CrossRef]
- Laakso, S.M.; Myllynen, C.; Strbian, D.; Atula, S. Comorbidities worsen the prognosis of generalized myasthenia gravis post-thymectomy. J. Neurol. Sci. 2021, 427, 117549. [Google Scholar] [CrossRef]
- Gerli, R.; Paganelli, R.; Cossarizza, A.; Muscat, C.; Piccolo, G.; Barbieri, D.; Mariotti, S.; Monti, D.; Bistoni, O.; Raiola, E.; et al. Long-term immunologic effects of thymectomy in patients with myasthenia gravis. J. Allergy Clin. Immunol. 1999, 103, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, T.-M.; Chang, Y.-S.; Chen, W.-S.; Sheu, J.-J.; Chen, Y.-H.; Chen, J.-H. Thymectomy in patients with myasthenia gravis increases the risk of autoimmune rheumatic diseases: A nationwide cohort study. Rheumatology 2019, 58, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Hoehn, K.B.; Lee, C.S.; Pham, M.C.; Homer, R.J.; Detterbeck, F.C.; Aban, I.; Jacobson, L.; Vincent, A.; Nowak, R.J.; et al. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proc. Natl. Acad. Sci. USA 2020, 117, 30649–30660. [Google Scholar] [CrossRef]
- Habib, A.M.; Thornton, H.; Sewell, W.C.; Loubani, M. Good’s syndrome: Is thymectomy the solution? Case report and literature review. Asian Cardiovasc. Thorac. Ann. 2016, 24, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Ternavasio-de la Vega, H.G.; Velasco-Tirado, V.; Pozo-Rosado, L.; Soler-Fernández, M.C.; Pérez-Andres, M.; Orfao, A.; Sánchez-Sánchez, R.; González-Villaron, L. Persistence of immunological alterations after thymectomy in Good’s syndrome: A clue to its pathogenesis. Cytom. Part B Clin. Cytom. 2011, 80, 339–342. [Google Scholar] [CrossRef]
- Kelesidis, T.; Yang, O. Good’s syndrome remains a mystery after 55 years: A systematic review of the scientific evidence. Clin. Immunol. 2010, 135, 347–363. [Google Scholar]
- Tarr, P.E.; Lucey, D.R.; Infectious Complications of Immunodeficiency with Thymoma, I. Good’s syndrome: The association of thymoma with immunodeficiency. Clin. Infect. Dis. 2001, 33, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Alizadehfar, R.; Tsoukas, C.M. Good’s Syndrome: Time to Move on From Reviewing the Past. Front. Immunol. 2021, 12, 815710. [Google Scholar] [CrossRef]
- Tarr, P.E.; Sneller, M.C.; Mechanic, L.J.; Economides, A.; Eger, C.M.; Strober, W.; Cunningham-Rundles, C.; Lucey, D.R. Infections in patients with immunodeficiency with thymoma (Good syndrome). Report of 5 cases and review of the literature. Medicine 2001, 80, 123–133. [Google Scholar] [CrossRef]
- Jansen, A.; van Deuren, M.; Miller, J.; Litzman, J.; de Gracia, J.; Sáenz-Cuesta, M.; Szaflarska, A.; Martelius, T.; Takiguchi, Y.; Patel, S.; et al. Prognosis of Good syndrome: Mortality and morbidity of thymoma associated immunodeficiency in perspective. Clin. Immunol. 2016, 171, 12–17. [Google Scholar] [CrossRef]
- Agarwal, S.; Cunningham-Rundles, C. Thymoma and immunodeficiency (Good syndrome): A report of 2 unusual cases and review of the literature. Ann. Allergy Asthma Immunol. 2007, 98, 185–190. [Google Scholar] [CrossRef]
- Oritani, K.; Kanakura, Y. IFN-zeta/limitin: A member of type I IFN with mild lympho-myelosuppression. J. Cell. Mol. Med. 2005, 9, 244–254. [Google Scholar] [CrossRef]
- Oritani, K.; Medina, K.L.; Tomiyama, Y.; Ishikawa, J.; Okajima, Y.; Ogawa, M.; Yokota, T.; Aoyama, K.; Takahashi, I.; Kincade, P.W.; et al. Limitin: An interferon-like cytokine that preferentially influences B-lymphocyte precursors. Nat. Med. 2000, 6, 659–666. [Google Scholar] [CrossRef]
- Hayward, A.R.; Paolucci, P.; Webster, A.D.; Kohler, P. Pre-B cell suppression by thymoma patient lymphocytes. Clin. Exp. Immunol. 1982, 48, 437–442. [Google Scholar]
- Litwin, S.D.; Zanjani, E.D. Lymphocytes suppressing both immunoglobulin production and erythroid differentiation in hypogammaglobulinaemia. Nature 1977, 266, 57–58. [Google Scholar] [CrossRef]
- Sáenz-Cuesta, M.; Martínez-Pomar, N.; de Gracia, J.; Echaniz, P.; Villegas, E.; Prada, Á.; Otaegui, D.; Matamoros, N.; Cuadrado, E. TACI mutation in Good’s Syndrome: In search of a genetic basis. Clin. Immunol. 2012, 145, 27–30. [Google Scholar] [CrossRef]
- Lougaris, V.; Vitali, M.; Baronio, M.; Tampella, G.; Plebani, A. BAFF-R mutations in Good’s syndrome. Clin. Immunol. 2014, 153, 91–93. [Google Scholar] [CrossRef]
- Losi, C.G.; Silini, A.; Fiorini, C.; Soresina, A.; Meini, A.; Ferrari, S.; Notarangelo, L.D.; Lougaris, V.; Plebani, A. Mutational analysis of human BAFF receptor TNFRSF13C (BAFF-R) in patients with common variable immunodeficiency. J. Clin. Immunol. 2005, 25, 496–502. [Google Scholar] [CrossRef]
- Warnatz, K.; Salzer, U.; Rizzi, M.; Fischer, B.; Gutenberger, S.; Bohm, J.; Kathrin Kienzler, A.; Pan-Hammarström, Q.; Hammarström, L.; Rakhmanov, M.; et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 13945–13950. [Google Scholar] [CrossRef]
- Castigli, E.; Geha, R.S. Molecular basis of common variable immunodeficiency. J. Allergy Clin. Immunol. 2006, 117, 740–746. [Google Scholar] [CrossRef]
- Zuklys, S.; Balciunaite, G.; Agarwal, A.; Fasler-Kan, E.; Palmer, E.; Hollander, G.A. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol. 2000, 165, 1976–1983. [Google Scholar] [CrossRef]
- Cervato, S.; Morlin, L.; Albergoni, M.P.; Masiero, S.; Greggio, N.; Meossi, C.; Chen, S.; Del Pilar Larosa, M.; Furmaniak, J.; Smith, B.R.; et al. AIRE gene mutations and autoantibodies to interferon omega in patients with chronic hypoparathyroidism without APECED. Clin. Endocrinol. 2010, 73, 630–636. [Google Scholar] [CrossRef]
- Heino, M.; Kudoh, J.; Shimizu, N.; Antonarakis, S.E.; Scott, H.S.; Krohn, K.; Peterson, P. APECED mutations in the autoimmune regulator (AIRE) gene. Hum. Mutat. 2001, 18, 205–211. [Google Scholar] [CrossRef]
- Kisand, K.; Boe Wolff, A.S.; Podkrajsek, K.T.; Tserel, L.; Link, M.; Kisand, K.V.; Ersvaer, E.; Perheentupa, J.; Erichsen, M.M.; Bratanic, N.; et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 2010, 207, 299–308. [Google Scholar] [CrossRef]
- Kärner, J.; Pihlap, M.; Ranki, A.; Krohn, K.; Trebusak Podkrajsek, K.; Bratanic, N.; Battelino, T.; Willcox, N.; Peterson, P.; Kisand, K. IL-6-specific autoantibodies among APECED and thymoma patients. Immun. Inflamm. Dis. 2016, 4, 235–243. [Google Scholar] [CrossRef]
- Dong, J.P.; Gao, W.; Teng, G.G.; Tian, Y.; Wang, H.H. Characteristics of Good’s Syndrome in China: A Systematic Review. Chin. Med. J. 2017, 130, 1604–1609. [Google Scholar] [CrossRef]
- Zaman, M.; Huissoon, A.; Buckland, M.; Patel, S.; Alachkar, H.; Edgar, J.D.; Thomas, M.; Arumugakani, G.; Baxendale, H.; Burns, S.; et al. Clinical and laboratory features of seventy-eight UK patients with Good’s syndrome (thymoma and hypogammaglobulinaemia). Clin. Exp. Immunol. 2019, 195, 132–138. [Google Scholar] [CrossRef]
- Masci, A.M.; Palmieri, G.; Vitiello, L.; Montella, L.; Perna, F.; Orlandi, P.; Abbate, G.; Zappacosta, S.; De Palma, R.; Racioppi, L. Clonal expansion of CD8+ BV8 T lymphocytes in bone marrow characterizes thymoma-associated B lymphopenia. Blood 2003, 101, 3106–3108. [Google Scholar] [CrossRef]
- Rakhmanov, M.; Keller, B.; Gutenberger, S.; Foerster, C.; Hoenig, M.; Driessen, G.; van der Burg, M.; van Dongen, J.J.; Wiech, E.; Visentini, M.; et al. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc. Natl. Acad. Sci. USA 2009, 106, 13451–13456. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, C.; Camponeschi, A.; Visentini, M.; Telemo, E.; Ekwall, O.; Martensson, I.L. Switched CD21(-/low) B cells with an antigen-presenting phenotype in the infant thymus. J. Allergy Clin. Immunol. 2019, 143, 1616–1620.e7. [Google Scholar] [CrossRef] [PubMed]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef]
- Bousfiha, A.; Moundir, A.; Tangye, S.G.; Picard, C.; Jeddane, L.; Al-Herz, W.; Rundles, C.C.; Franco, J.L.; Holland, S.M.; Klein, C.; et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J. Clin. Immunol. 2022, 42, 1508–1520. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S. Human immunosenescence: The prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 2000, 18, 1717–1720. [Google Scholar] [CrossRef]
- Dock, J.N.; Effros, R.B. Role of CD8 T Cell Replicative Senescence in Human Aging and in HIV-mediated Immunosenescence. Aging Dis. 2011, 2, 382–397. [Google Scholar]
- Weyand, C.M.; Fulbright, J.W.; Goronzy, J.J. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp. Gerontol. 2003, 38, 833–841. [Google Scholar] [CrossRef]
- Bendtzen, K.; Hansen, M.B.; Ross, C.; Poulsen, L.K.; Svenson, M. Cytokines and autoantibodies to cytokines. Stem Cells. 1995, 13, 206–222. [Google Scholar] [CrossRef]
- Bendtzen, K.; Svenson, M.; Jonsson, V.; Hippe, E. Autoantibodies to cytokines—Friends or foes? Immunol. Today 1990, 11, 167–169. [Google Scholar] [CrossRef]
- Nielsen, C.H.; Bendtzen, K. Immunoregulation by naturally occurring and disease-associated autoantibodies: Binding to cytokines and their role in regulation of T-cell responses. Adv. Exp. Med. Biol. 2012, 750, 116–132. [Google Scholar]
- Bendtzen, K.; Svenson, M.; Hansen, M. Autoantibodies to cytokines in IVIG. J. Rheumatol. 1993, 20, 2176–2177. [Google Scholar] [PubMed]
- Puel, A.; Casanova, J.L. Autoantibodies against cytokines: Back to human genetics. Blood 2013, 121, 1246–1247. [Google Scholar] [CrossRef] [PubMed]
- Manry, J.; Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Michailidis, E.; Hoffmann, H.-H.; Eto, S.; Garcia-Prat, M.; et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. USA 2022, 119, e2200413119. [Google Scholar] [CrossRef]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef]
- Troya, J.; Bastard, P.; Casanova, J.L.; Abel, L.; Pujol, A. Low Lymphocytes and IFN-Neutralizing Autoantibodies as Biomarkers of COVID-19 Mortality. J. Clin. Immunol. 2022, 42, 738–741. [Google Scholar] [CrossRef]
- Bradford, H.F.; Haljasmagi, L.; Menon, M.; McDonnell, T.C.R.; Sarekannu, K.; Vanker, M.; Peterson, P.; Wincup, C.; Abida, R.; Gonzalez, R.F.; et al. Inactive disease in patients with lupus is linked to autoantibodies to type I interferons that normalize blood IFNalpha and B cell subsets. Cell. Rep. Med. 2023, 4, 100894. [Google Scholar] [CrossRef]
- Muri, J.; Cecchinato, V.; Cavalli, A.; Shanbhag, A.A.; Matkovic, M.; Biggiogero, M.; Maida, P.A.; Moritz, J.; Toscano, C.; Ghovehoud, E.; et al. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023, 24, 604–611. [Google Scholar] [CrossRef]
- Knight, V. Immunodeficiency and Autoantibodies to Cytokines. J. Appl. Lab. Med. 2022, 7, 151–164. [Google Scholar] [CrossRef]
- Ku, C.L.; Chi, C.Y.; von Bernuth, H.; Doffinger, R. Autoantibodies against cytokines: Phenocopies of primary immunodeficiencies? Hum. Genet. 2020, 139, 783–794. [Google Scholar] [CrossRef]
Marker | Total Number/μL | Marker | Total Number/μL |
---|---|---|---|
CD3+ | 1003 | CD3−CD16 + CD56+ | 52 |
CD4+ | 296 | CD3 + CD8+ | 636 |
CD4 + CD45RA+ | 71 | CD3 + CD8 + CD45RA+ | 444 |
CD4 + CD28+ | 223 | CD3 + CD8 + CD28+ | 46 |
CD4 + CD25+ | 25 | CD19+ | 15 |
CD4 + CD31+ | 1 | CD24 + CD19+ | 0 |
CD3 + DN | 73 | CD21+ | 0 |
CD19 + CD38+ | 10 | ||
CD19 + CD27 + IgD+ | 0 | ||
CD19 + CD27 + IgD− | 2 |
Main Clinical Findings of Good’s Syndrome (in Order of Incidence) |
---|
Thymoma (mandatory) |
Hypogammaglobulinemia (mandatory) |
Sinopulmonary bacterial infections |
Pure red cell aplasia |
CMV infection (different organs) |
Diarrhea, colitis |
Candidiasis (mucocutaneous and other sites) |
Lymphopenia, leukopenia, myelodysplastic syndromes |
Urinary tract infections |
Lichen planus |
Clinical Findings in Our Patient (in Order of Presentation or Diagnosis) |
---|
Hemolytic anemia |
Persistent diarrhea |
Hypogammaglobulinemia |
Esophageal candidiasis |
CMV (colitis) |
Lichen planus (oral) |
Thymoma |
Oral candidiasis |
Lymphopenia, aplastic anemia |
Sepsis |
Thymoma Type (Who Classification) | U.K. Series 2018 | China Series 2017 | Kelesidis Review 2010 | p Significance |
---|---|---|---|---|
Type A | 4 | 10 * | 2 | <0.01 |
Type AB | 27 | 14 | 10 | |
Type B | 6 | 4 | 10 * | <0.05 |
Type C | 9 * | 1 | 2 | <0.01 |
Total Typed | 46 | 29 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paganelli, R.; Di Lizia, M.; D’Urbano, M.; Gatta, A.; Paganelli, A.; Amerio, P.; Parronchi, P. Insights from a Case of Good’s Syndrome (Immunodeficiency with Thymoma). Biomedicines 2023, 11, 1605. https://doi.org/10.3390/biomedicines11061605
Paganelli R, Di Lizia M, D’Urbano M, Gatta A, Paganelli A, Amerio P, Parronchi P. Insights from a Case of Good’s Syndrome (Immunodeficiency with Thymoma). Biomedicines. 2023; 11(6):1605. https://doi.org/10.3390/biomedicines11061605
Chicago/Turabian StylePaganelli, Roberto, Michela Di Lizia, Marika D’Urbano, Alessia Gatta, Alessia Paganelli, Paolo Amerio, and Paola Parronchi. 2023. "Insights from a Case of Good’s Syndrome (Immunodeficiency with Thymoma)" Biomedicines 11, no. 6: 1605. https://doi.org/10.3390/biomedicines11061605
APA StylePaganelli, R., Di Lizia, M., D’Urbano, M., Gatta, A., Paganelli, A., Amerio, P., & Parronchi, P. (2023). Insights from a Case of Good’s Syndrome (Immunodeficiency with Thymoma). Biomedicines, 11(6), 1605. https://doi.org/10.3390/biomedicines11061605