Subcutaneous Tocilizumab May Be Effective in Refractory Fibromyalgia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Examinations and 40-Joint Sonography
2.3. Clinical Parameters
2.4. Neutrophils Isolation
2.5. RNA Extraction from Neutrophils for Transcriptome Analysis
2.6. Library Preparation and Sequencing
2.7. Bioinformatics Analysis
2.8. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. The Therapeutic Effects of Tocilizumab in FM Patients
3.3. Differentially Expressed Genes in Neutrophils of Primary FM Patients
3.4. Effects of Tocilizumab on Gene Expression Profile of Neutrophils in Primary FM Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, D.J.; Linker-Israeli, M.; Hallegua, D.; Silverman, S.; Silver, D.; Weisman, M.H. Cytokines play an aetiopathogenetic role in fibromyalgia: A hypothesis and pilot study. Rheumatology 2001, 40, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roohi, E.; Jaafari, N.; Hashemian, F. On inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J. Neuroinflamm. 2021, 18, 45. [Google Scholar] [CrossRef]
- Rohleder, N.; Aringer, M.; Boentert, M. Role of interleukin-6 in stress, sleep, and fatigue. Ann. N. Y. Acad. Sci. 2012, 1261, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Krock, E.; Gentry, C.; Israel, M.R.; Jurczak, A.; Urbina, C.M.; Sandor, K.; Vastani, N.; Maurer, M.; Cuhadar, U.; et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Investig. 2021, 131, e144201. [Google Scholar] [CrossRef]
- Nuesch, E.; Hauser, W.; Bernardy, K.; Barth, J.; Juni, P. Comparative efficacy of pharmacological and non-pharmacological interventions in fibromyalgia syndrome: Network meta-analysis. Ann. Rheum. Dis. 2013, 72, 955–962. [Google Scholar] [CrossRef]
- Cunha, T.M.; Verri, W.A., Jr.; Schivo, I.R.; Napimoga, M.H.; Parada, C.A.; Poole, S.; Teixeira, M.M.; Ferreira, S.H.; Cunha, F.Q. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J. Leukoc. Biol. 2008, 83, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Muley, M.M.; Krustev, E.; Reid, A.R.; McDougall, J.J. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J. Neuroinflamm. 2017, 14, 168. [Google Scholar] [CrossRef]
- Choy, E.; Bykerk, V.; Lee, Y.C.; van Hoogstraten, H.; Ford, K.; Praestgaard, A.; Perrot, S.; Pope, J.; Sebba, A. Disproportionate articular pain is a frequent phenomenon in rheumatoid arthritis and responds to treatment with sarilumab. Rheumatology 2022. [Google Scholar] [CrossRef]
- Gaber, T.; Hahne, M.; Strehl, C.; Hoff, P.; Dorffel, Y.; Feist, E.; Burmester, G.R.; Buttgereit, F. Disentangling the effects of tocilizumab on neutrophil survival and function. Immunol. Res. 2016, 64, 665–676. [Google Scholar] [CrossRef]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, M.A.; Terslev, L.; Aegerter, P.; Backhaus, M.; Balint, P.; Bruyn, G.A.; Filippucci, E.; Grassi, W.; Iagnocco, A.; Jousse-Joulin, S.; et al. Scoring ultrasound synovitis in rheumatoid arthritis: A EULAR-OMERACT ultrasound taskforce-Part 1: Definition and development of a standardised, consensus-based scoring system. RMD Open 2017, 3, e000428. [Google Scholar] [CrossRef] [Green Version]
- Kitchen, J.; Kane, D. Greyscale and power Doppler ultrasonographic evaluation of normal synovial joints: Correlation with pro- and anti-inflammatory cytokines and angiogenic factors. Rheumatology 2015, 54, 458–462. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.M.; Friend, R.; Jones, K.D.; Ward, R.; Han, B.K.; Ross, R.L. The Revised Fibromyalgia Impact Questionnaire (FIQR): Validation and psychometric properties. Arthritis Res. Ther. 2009, 11, R120. [Google Scholar] [CrossRef] [Green Version]
- Farag, H.M.; Yunusa, I.; Goswami, H.; Sultan, I.; Doucette, J.A.; Eguale, T. Comparison of Amitriptyline and US Food and Drug Administration-Approved Treatments for Fibromyalgia: A Systematic Review and Network Meta-analysis. JAMA Netw. Open 2022, 5, e2212939. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Crow, M.; Richards, N.; Davey, G.I.; Levine, E.; Kelleher, J.H.; Agley, C.C.; Denk, F.; Harridge, S.D.; McMahon, S.B. Defining the nociceptor transcriptome. Front. Mol. Neurosci. 2014, 7, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.J.; Hao, J.X.; Andell-Jonsson, S.; Poli, V.; Bartfai, T.; Wiesenfeld-Hallin, Z. Nociceptive responses in interleukin-6-deficient mice to peripheral inflammation and peripheral nerve section. Cytokine 1997, 9, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Malsch, P.; Andratsch, M.; Vogl, C.; Link, A.S.; Alzheimer, C.; Brierley, S.M.; Hughes, P.A.; Kress, M. Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J. Neurosci. 2014, 34, 9845–9856. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, E.; Kahlenbach, J.; Segond von Banchet, G.; Konig, C.; Schaible, H.G.; Ebersberger, A. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum. 2012, 64, 2233–2242. [Google Scholar] [CrossRef]
- Corcoran, J.A.; Napier, B.A. C3aR plays both sides in regulating resistance to bacterial infections. PLoS Pathog 2022, 18, e1010657. [Google Scholar] [CrossRef]
- Aggarwal, N.; Deerhake, M.E.; DiPalma, D.; Shahi, S.K.; Gaggioli, M.R.; Mangalam, A.K.; Shinohara, M.L. Secreted osteopontin from CD4(+) T cells limits acute graft-versus-host disease. Cell Rep. 2021, 37, 110170. [Google Scholar] [CrossRef]
- Khamissi, F.Z.; Ning, L.; Kefaloyianni, E.; Dun, H.; Arthanarisami, A.; Keller, A.; Atkinson, J.J.; Li, W.; Wong, B.; Dietmann, S.; et al. Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure. Sci. Adv. 2022, 8, eabm5900. [Google Scholar] [CrossRef] [PubMed]
Patient | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Age (years/gender) | 52/female | 52/female | 43/female | 58/female | 36/male | 49/female |
Concomitant rheumatic diseases | No | No | Rheumatoid arthritis | Hypereosinophilic syndrome | Ankylosing spondylitis | Sjogren’s syndrome |
Number of painful tender points a | 18 | 11 | 18 | 17 | 15 | 18 |
Disease duration (years) | 3 | 3 | 4 | 6 | 2 | 7 |
Fibromyalgianess scale | 26 | 27 | 24 | 30 | 30 | 28 |
Revised Fibromyalgia Impact Questionnaire score | 78.5 | 81.5 | 92.2 | 90 | 71.3 | 72.5 |
ESR (mm/h)/CRP (mg/dl) | 31/0.079 | 3/0.04 | 12/0.062 | 14/0.055 | 3/0.11 | 9/0.592 |
Level of pain | 8 | 10 | 10 | 10 | 7 | 10 |
Depression | - | - | + | + | + | + |
Synovitis by 40-joint sonography | No | No | No | Bilateral elbows grade 1 synovitis | No | No |
Medications for fibromyalgia | Pregabalin 450 mg/day | Pregabalin 450 mg/day and tramadol 37.5 mg/acetaminophen 325 mg 8 tablets/day | Pregabalin 450 mg/day | Pregabalin 75 mg/day, 37.5 mg/acetaminophen 325 mg 6 tablets/day | Pregabalin 450 mg/day, duloxetine 60 mg/day, and 37.5 mg/acetaminophen 325 mg 8 tablets/day | Pregabalin 75 mg/day and duloxetine 60 mg/day |
Dose of tocilizumab | 126 mg every 2 weeks | 126 mg every 2 weeks | 126 mg every 2 weeks | 126 mg every 4 weeks | 126 mg every 2 weeks | 126 mg every 4 weeks |
Outcomes, Median (IQR) | Baseline | 4 Weeks | 12 Weeks |
---|---|---|---|
WPI | 18 (14.5, 19.0) | 11.5 (7.5, 15.3) * | 12 (9.0, 13.8) * |
SSS | 11 (9.0, 11.3) | 8 (7.0, 10.0) * | 9 (7.3, 10.5) |
Fibromyalgianess score | 27.5 (25.5, 30.0) | 19 (15.8, 23.8) * | 21.5 (16.3, 23.5) * |
FIQR | 80 (72.2, 90.5) | 55.8 (51.8, 69.8) * | 67.5 (57.5, 74.0) * |
Pain | 10 (7.8, 10.0) | 4.5 (3.8, 7.3) | 8 (7.8, 9.0) |
Energy | 9 (8.3, 10.0) | 6 (3.8, 7.3) | 7.5 (5.0, 8.5) * |
Sleep quality | 10 (9.8, 10.0) | 8 (4.8, 9.3) * | 8 (5.8, 8.5) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.-T.; Liao, T.-L.; Chen, Y.-H.; Chen, D.-Y.; Lai, K.-L. Subcutaneous Tocilizumab May Be Effective in Refractory Fibromyalgia Patients. Biomedicines 2023, 11, 1774. https://doi.org/10.3390/biomedicines11071774
Tang K-T, Liao T-L, Chen Y-H, Chen D-Y, Lai K-L. Subcutaneous Tocilizumab May Be Effective in Refractory Fibromyalgia Patients. Biomedicines. 2023; 11(7):1774. https://doi.org/10.3390/biomedicines11071774
Chicago/Turabian StyleTang, Kuo-Tung, Tsai-Ling Liao, Yi-Hsing Chen, Der-Yuan Chen, and Kou-Lung Lai. 2023. "Subcutaneous Tocilizumab May Be Effective in Refractory Fibromyalgia Patients" Biomedicines 11, no. 7: 1774. https://doi.org/10.3390/biomedicines11071774
APA StyleTang, K. -T., Liao, T. -L., Chen, Y. -H., Chen, D. -Y., & Lai, K. -L. (2023). Subcutaneous Tocilizumab May Be Effective in Refractory Fibromyalgia Patients. Biomedicines, 11(7), 1774. https://doi.org/10.3390/biomedicines11071774