Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Data Extraction
2.3. Quality Assessment
2.4. Data Analysis
3. Results
3.1. Selection and Description of Included Studies
3.2. Description of Interventions
3.3. Risk of Bias
3.4. Effectiveness of Dietary Interventions
3.4.1. Walking Distance
Maximum Walking Distance
Initial Claudication Distance
Six-Minute Walking Distance
3.4.2. Quality of Life
SF-36: Physical Function Domain
WIQ: Walking Distance and Walking Speed Domains
3.4.3. ABI
3.4.4. Safety Outcomes
Adverse Events
Serious Adverse Events
Mortality
Requirement for Lower Extremity Revascularisation or Amputation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kullo, I.J.; Rooke, T.W. Peripheral Artery Disease. N. Engl. J. Med. 2016, 374, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.D.; Giordano, T.; Kevil, C.G. Nitrite and nitric oxide metabolism in peripheral artery disease. Nitric Oxide 2012, 26, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedenis, R.; Stewart, M.; Cleanthis, M.; Robless, P.; Mikhailidis, D.P.; Stansby, G. Cilostazol for intermittent claudication. Cochrane Database Syst. Rev. 2014, 10, CD003748. [Google Scholar] [CrossRef] [PubMed]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48 (Suppl. S102), 1–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismaeel, A.; Papoutsi, E.; Miserlis, D.; Lavado, R.; Haynatzki, G.; Casale, G.P.; Bohannon, W.T.; Smith, R.S.; Eidson, J.L.; Brumberg, R.; et al. The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins. Antioxidants 2020, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Woessner, M.N.; VanBruggen, M.D.; Pieper, C.F.; O’Reilly, E.K.; Kraus, W.E.; Allen, J.D. Combined Dietary Nitrate and Exercise Intervention in Peripheral Artery Disease: Protocol Rationale and Design. JMIR Res. Protoc. 2017, 6, e139. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Carlström, M.; Larsen, F.J.; Weitzberg, E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc. Res. 2011, 89, 525–532. [Google Scholar] [CrossRef]
- Omar, S.A.; Webb, A.J.; Lundberg, J.O.; Weitzberg, E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J. Intern. Med. 2016, 279, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Lansley, K.E.; Winyard, P.G.; Fulford, J.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. J. Appl. Physiol. 2011, 110, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, M.J.; Justus, N.W.; Hauser, J.I.; Case, A.H.; Helms, C.C.; Basu, S.; Rogers, Z.; Lewis, M.T.; Miller, G.D. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide 2015, 48, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coggan, A.R.; Leibowitz, J.L.; Spearie, C.A.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Mahmood, K.; Park, S.; Waller, S.; Farmer, M.; et al. Acute Dietary Nitrate Intake Improves Muscle Contractile Function in Patients with Heart Failure: A Double-Blind, Placebo-Controlled, Randomized Trial. Circ. Heart Fail. 2015, 8, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Eggebeen, J.; Kim-Shapiro, D.B.; Haykowsky, M.; Morgan, T.M.; Basu, S.; Brubaker, P.; Rejeski, J.; Kitzman, D.W. One Week of Daily Dosing with Beetroot Juice Improves Submaximal Endurance and Blood Pressure in Older Patients with Heart Failure and Preserved Ejection Fraction. JACC Heart Fail. 2016, 4, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Zamani, P.; Rawat, D.; Shiva-Kumar, P.; Geraci, S.; Bhuva, R.; Konda, P.; Doulias, P.T.; Ischiropoulos, H.; Townsend, R.R.; Margulies, K.B.; et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation 2015, 131, 371–380. [Google Scholar] [CrossRef]
- Jahangir, E.; Vita, J.A.; Handy, D.; Holbrook, M.; Palmisano, J.; Beal, R.; Loscalzo, J.; Eberhardt, R.T. The effect of L-arginine and creatine on vascular function and homocysteine metabolism. Vasc. Med. 2009, 14, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Nosova, E.V.; Conte, M.S.; Grenon, S.M. Advancing beyond the “heart-healthy diet” for peripheral arterial disease. J. Vasc. Surg. 2015, 61, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Mao, Q.; Cao, J.; Wang, Y.; Zhou, X.; Fan, L. Effects of coenzyme Q10 on vascular endothelial function in humans: A meta-analysis of randomized controlled trials. Atherosclerosis 2012, 221, 311–316. [Google Scholar] [CrossRef]
- Brostow, D.P.; Hirsch, A.T.; Collins, T.C.; Kurzer, M.S. The role of nutrition and body composition in peripheral arterial disease. Nat. Rev. Cardiol. 2012, 9, 634–643. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [Green Version]
- Abramson, B.L.; Al-Omran, M.; Anand, S.S.; Albalawi, Z.; Coutinho, T.; de Mestral, C.; Dubois, L.; Gill, H.L.; Greco, E.; Guzman, R.; et al. Canadian Cardiovascular Society 2022 Guidelines for Peripheral Arterial Disease. Can. J. Cardiol. 2022, 38, 560–587. [Google Scholar] [CrossRef] [PubMed]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e686–e725. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef]
- Sterne, J.A.; Gavaghan, D.; Egger, M. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 2000, 53, 1119–1129. [Google Scholar] [CrossRef]
- Review Manager (RevMan), Version 5.4; The Cochrane Collaboration: London, UK, 2020.
- Bock, J.M.; Treichler, D.P.; Norton, S.L.; Ueda, K.; Hughes, W.E.; Casey, D.P. Inorganic nitrate supplementation enhances functional capacity and lower-limb microvascular reactivity in patients with peripheral artery disease. Nitric Oxide Biol. Chem. 2018, 80, 45–51. [Google Scholar] [CrossRef]
- Brevetti, G.; Chiariello, M.; Ferulano, G.; Policicchio, A.; Nevola, E.; Rossini, A.; Attisano, T.; Ambrosio, G.; Siliprandi, N.; Angelini, C. Increases in walking distance in patients with peripheral vascular disease treated with L-carnitine: A double-blind, cross-over study. Circulation 1988, 77, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Brevetti, G.; Diehm, C.; Lambert, D. European multicenter study on propionyl-L-carnitine in intermittent claudication. J. Am. Coll. Cardiol. 1999, 34, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
- Brevetti, G.; Perna, S.; Sabba, C.; Martone, V.D.; Condorelli, M. Propionyl-L-carnitine in intermittent claudication: Double-blind, placebo-controlled, dose titration, multicenter study. J. Am. Coll. Cardiol. 1995, 26, 1411–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brevetti, G.; Perna, S.; Sabba, C.; Martone, V.D.; Di Iorio, A.; Barletta, G. Effect of propionyl-L-carnitine on quality of life in intermittent claudication. Am. J. Cardiol. 1997, 79, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Collins, E.G.; Edwin Langbein, W.; Orebaugh, C.; Bammert, C.; Hanson, K.; Reda, D.; Edwards, L.C.; Littooy, F.N. PoleStriding exercise and vitamin E for management of peripheral vascular disease. Med. Sci. Sports Exerc. 2003, 35, 384–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coto, V.; D’Alessandro, L.; Grattarola, G.; Imparato, L.; Lingetti, M.; Mancini, M.; Nolfe, G.; Rengo, F. Evaluation of the therapeutic efficacy and tolerability of levocarnitine propionyl in the treatment of chronic obstructive arteriopathies of the lower extremities: A multicentre controlled study vs. placebo. Drugs Exp. Clin. Res. 1992, 18, 29–36. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med3&NEWS=N&AN=1600865 (accessed on 16 November 2021).
- da Silva, N.D., Jr.; Roseguini, B.T.; Chehuen, M.; Fernandes, T.; Mota, G.F.; Martin, P.K.M.; Han, S.W.; Forjaz, C.L.M.; Wolosker, N.; de Oliveira, E.M. Effects of oral N-acetylcysteine on walking capacity, leg reactive hyperemia, and inflammatory and angiogenic mediators in patients with intermittent claudication. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H897–H905. [Google Scholar] [CrossRef] [Green Version]
- Dal Lago, A.; De Martini, D.; Flore, R.; Gaetani, E.; Gasbarrini, A.; Gerardino, L.; Pola, R.; Santoliquido, A.; Serricchio, M.; Tondi, P.; et al. Effects of propionyl-L-carnitine on peripheral arterial obliterative disease of the lower limbs: A double-blind clinical trial. Drugs Exp. Clin. Res. 1999, 25, 29–36. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=10337502 (accessed on 16 November 2021).
- Deckert, J. Propionyl-L-carnitine for intermittent claudication. J. Fam. Pract. 1997, 44, 533–534. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=9191622 (accessed on 16 November 2021).
- Domingues, W.J.R.; Ritti-Dias, R.M.; Cucato, G.G.; Wolosker, N.; Zerati, A.E.; Puech-Leão, P.; Coelho, D.B.; Nunhes, P.M.; Moliterno, A.A.; Avelar, A. Effect of creatine supplementation on functional capacity and muscle oxygen saturation in patients with symptomatic peripheral arterial disease: A pilot study of a randomized, double-blind placebo-controlled clinical trial. Nutrients 2021, 13, 149. [Google Scholar] [CrossRef]
- Gardner, C.D.; Taylor-Piliae, R.E.; Kiazand, A.; Nicholus, J.; Rigby, A.J.; Farquhar, J.W. Effect of Ginkgo biloba (Egb 761) on treadmill walking time among adults with peripheral artery disease: A randomized clinical trial. J. Cardiopulm. Rehabil. Prev. 2008, 28, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, N.A.; Krantz, M.J.; Hiatt, W.R. L-Carnitine plus cilostazol versus cilostazol alone for the treatment of claudication in patients with peripheral artery disease: A multicenter, randomized, double-blind, placebo-controlled trial. Vasc. Med. 2012, 17, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenon, S.M.; Owens, C.D.; Nosova, E.V.; Hughes-Fulford, M.; Alley, H.F.; Chong, K.; Perez, S.; Yen, P.K.; Boscardin, J.; Hellmann, J.; et al. Short-Term, High-Dose Fish Oil Supplementation Increases the Production of Omega-3 Fatty Acid-Derived Mediators in Patients with Peripheral Artery Disease (the OMEGA-PAD I Trial). J. Am. Heart Assoc. 2015, 4, e002034. [Google Scholar] [CrossRef] [Green Version]
- Gresele, P.; Migliacci, R.; Arosio, E.; Bonizzoni, E.; Minuz, P.; Violi, F. Effect on walking distance and atherosclerosis progression of a nitric oxide-donating agent in intermittent claudication. J. Vasc. Surg. 2012, 56, 1622–1628.e1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiatt, W.R.; Creager, M.A.; Amato, A.; Brass, E.P. Effect of Propionyl-L-carnitine on a Background of Monitored Exercise in Patients with Claudication Secondary to Peripheral Artery Disease. J. Cardiopulm. Rehabil. Prev. 2011, 31, 125–132. [Google Scholar] [CrossRef]
- Kenjale, A.A.; Ham, K.L.; Stabler, T.; Robbins, J.L.; Johnson, J.L.; Vanbruggen, M.; Privette, G.; Yim, E.; Kraus, W.E.; Allen, J.D. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J. Appl. Physiol. 2011, 110, 1582–1591. [Google Scholar] [CrossRef]
- Kiesewetter, H.; Jung, F.; Jung, E.M.; Blume, J.; Mrowietz, C.; Birk, A.; Koscielny, J.; Wenzel, E. Effects of garlic coated tablets in peripheral arterial occlusive disease. Clin. Investig. 1993, 71, 383–386. [Google Scholar] [CrossRef]
- Leng, G.C.; Lee, A.J.; Fowkes, F.G.; Horrobin, D.; Jepson, R.G.; Lowe, G.D.; Rumley, A.; Skinner, E.R.; Mowat, B.F. Randomized controlled trial of antioxidants in intermittent claudication. Vasc. Med. 1997, 2, 279–285. [Google Scholar] [CrossRef]
- Loffredo, L.; Perri, L.; Catasca, E.; Pignatelli, P.; Brancorsini, M.; Nocella, C.; De Falco, E.; Bartimoccia, S.; Frati, G.; Carnevale, R.; et al. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease. J. Am. Heart Assoc. 2014, 3, e001072. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Li, J.; Li, L.; Yang, B.; Liu, C.; Zheng, Q.; Jin, B.; Chen, Z.; Li, K.; Zhang, X.; et al. A study on the efficacy and safety assessment of propionyl-L-carnitine tablets in treatment of intermittent claudication. Thromb. Res. 2013, 132, 427–432. [Google Scholar] [CrossRef]
- Maxwell, A.J.; Anderson, B.E.; Cooke, J.P. Nutritional therapy for peripheral arterial disease: A double-blind, placebo-controlled, randomized trial of HeartBar®. Vasc. Med. 2000, 5, 11–19. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Criqui, M.H.; Domanchuk, K.; Ferrucci, L.; Guralnik, J.M.; Kibbe, M.R.; Kosmac, K.; Kramer, C.M.; Leeuwenburgh, C.; Li, L.; et al. Cocoa to Improve Walking Performance in Older People With Peripheral Artery Disease: The COCOA-PAD Pilot Randomized Clinical Trial. Circ. Res. 2020, 126, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Micker, M.; Krauss, H.; Ast, J.; Chȩciński, P.; Jabłecka, A. The influence of oral supplementation of L-arginine on intermittent claudication in patients with peripheral arterial disease of the lower extremities. Acta Angiol. 2007, 13, 1–14. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34447509863&partnerID=40&md5=31e46ceb43f9ad59f1024d2bbcd5349a (accessed on 16 November 2021).
- Mohler, E.R., 3rd; Hiatt, W.R.; Gornik, H.L.; Kevil, C.G.; Quyyumi, A.; Haynes, W.G.; Annex, B.H. Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: Safety, walking distance and endothelial function. Vasc. Med. 2014, 19, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Oka, R.K.; Szuba, A.; Giacomini, J.C.; Cooke, J.P. A pilot study of L-arginine supplementation on functional capacity in peripheral arterial disease. Vasc. Med. 2005, 10, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Pekas, E.J.; Headid, R.J., III; Son, W.M.; Wooden, T.K.; Song, J.; Layec, G.; Yadav, S.K.; Mishra, P.K.; Pipinos, I.I. Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, H456–H467. [Google Scholar] [CrossRef]
- Pekas, E.J.; Wooden, T.K.; Yadav, S.K.; Park, S.Y. Body mass-normalized moderate dose of dietary nitrate intake improves endothelial function and walking capacity in patients with peripheral artery disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R162–R173. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Gasper, W.J.; Khetani, S.A.; Zahner, G.J.; Hills, N.K.; Mitchell, P.T.; Sansbury, B.E.; Conte, M.S.; Spite, M.; Grenon, S.M. Fish Oil Increases Specialized Pro-resolving Lipid Mediators in PAD (The OMEGA-PAD II Trial). J. Surg. Res. 2019, 238, 164–174. [Google Scholar] [CrossRef]
- Santo, S.S.; Sergio, N.; Luigi, D.P.; Giuseppe, M.; Margherita, F.; Gea, O.C.; Roberto, F.; Gabriella, C.; Giuseppe, P.; Massimiliano, A. Effect of PLC on functional parameters and oxidative profile in type 2 diabetes-associated PAD. Diabetes Res. Clin. Pract. 2006, 72, 231–237. [Google Scholar] [CrossRef]
- Tenore, G.C.; D’Avino, M.; Caruso, D.; Buonomo, G.; Acampora, C.; Caruso, G.; Simone, C.; Ciampaglia, R.; Novellino, E. Effect of Annurca Apple Polyphenols on Intermittent Claudication in Patients with Peripheral Artery Disease. Am. J. Cardiol. 2019, 123, 847–853. [Google Scholar] [CrossRef]
- Van Der Avoort, C.M.T.; Van Loon, L.J.C.; Verdijk, L.B.; Poyck, P.P.C.; Thijssen, D.T.J.; Hopman, M.T.E. Acute effects of dietary nitrate on exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. Int. J. Sport Nutr. Exer. Metabol. 2021, 31, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.K.; Bourguignon, C.M.; Vincent, K.R.; Taylor, A.G. Effects of alpha-lipoic acid supplementation in peripheral arterial disease: A pilot study. J. Altern. Complement. Med. 2007, 13, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.M.; Harada, R.; Nair, N.; Balasubramanian, N.; Cooke, J.P. L-arginine supplementation in peripheral arterial disease: No benefit and possible harm. Circulation 2007, 116, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Woessner, M.; VanBruggen, M.D.; Pieper, C.F.; Sloane, R.; Kraus, W.E.; Gow, A.J.; Allen, J.D. Beet the Best? Dietary inorganic nitrate to augment exercise training in lower extremity peripheral artery disease with intermittent claudication. Circ. Res. 2018, 123, 654–659. [Google Scholar] [CrossRef]
- McDermott, M.M.; Leeuwenburgh, C.; Guralnik, J.M.; Tian, L.; Sufit, R.; Zhao, L.; Criqui, M.H.; Kibbe, M.R.; Stein, J.H.; Lloyd-Jones, D.; et al. Effect of Resveratrol on Walking Performance in Older People with Peripheral Artery Disease: The RESTORE Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Kruidenier, L.M.; Nicolaï, S.P.A.; Willigendael, E.M.; de Bie, R.A.; Prins, M.H.; Teijink, J.A.W. Functional claudication distance: A reliable and valid measurement to assess functional limitation in patients with intermittent claudication. BMC Cardiovasc. Disord. 2009, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Guralnik, J.M.; Criqui, M.H.; Liu, K.; Kibbe, M.R.; Ferrucci, L. Six-minute walk is a better outcome measure than treadmill walking tests in therapeutic trials of patients with peripheral artery disease. Circulation 2014, 130, 61–68. [Google Scholar] [CrossRef] [Green Version]
Intervention Group | Control Group | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | Country | Design | Total Participants | Attrition | Follow-Up Duration | Type of Intervention | Brief Population Description | N | Age | Female | Smoking | Diabetes | N | Age | Female | Smoking | Diabetes |
Nitric Oxide Donors | |||||||||||||||||
Bock (2018) [31] | USA | DB RCT | 21 | 0 | 2 months | 1 g daily of sodium nitrate tablets | Adults with PAD aged 50–85 years with IC | 13 | 73 (9) | 7 (53.8%) | 0 (0.0%) | 4 (30.8%) | 8 | 69 (10) | 2 (25.0%) | 0 (0.0%) | 2 (25.0%) |
Gresele (2012) [45] | Multiple European | DB RCT | 442 | 70 (15.8%) | 6 months | 1.6 g daily of NCX 4016 | Adults aged 40–80 years with PAD and IC | 221 | 66.7 (8.2) | 44 (19.9%) | 91 (41.2%) | 77 (34.8%) | 221 | 66.4 (9.1) | 48 (21.7%) | 91 (41.2%) | 67 (30.3%) |
Kenjale (2011) [47] | USA | CO RCT | 8 | 0 | 1 day | 500 mL of nitrate rich beetroot juice | Adults with PAD and IC | 8 | 67 (13) | 4 (50.0%) | NR | NR | NA | NA | NA | NA | NA |
Mohler (2014) [55] | USA | DB RCT | 36 | 6 (16.7%) | 3 months | 80 mg or 160 mg daily of sodium nitrite tablets | Adults aged 35–85 years with PAD | 19 | 65.3 (8.9) | 4 (21.1%) | 7 (36.8%) | 12 (63.2%) | 18 | 64.9 (9.0) | 5 (27.8%) | 7 (38.9%) | 10 (55.6%) |
18 | 67.9 (10.0) | 5 (27.8%) | 2 (11.1%) | 12 (66.7%) | |||||||||||||
Pekas (2021) [58] | USA | CO DB RCT | 11 | 0 | 1 day | Single dose of body-mass normalized beetroot juice | Adults with PAD and IC | 11 | 70.0 (7.0) | 6 (54.5%) | 1 (9.1%) | 3 (27.3%) | NA | NA | NA | NA | NA |
Van der Avoort (2021) [62] | Netherlands | CO RCT | 18 | 0 | 1 month | 150 g nitrate rich vegetables, 70 mL nitrate-rich beetroot juice | Adults with PAD and stable IC for >3 months | 18 | 73 (8) | 7 (38.9%) | 5 (27.8%) | 4 (22.2%) | NA | NA | NA | NA | NA |
Woessner (2018) [65] | USA | DB RCT | 35 | 11 (31.4%) | 3 months | Beetroot juice and a 36-session exercise program | Adults with PAD aged 40–80 years and stable IC pain | 11 | 67.5 (8.6) | 2 (18.2%) | 4 (36.4%) | 6 (54.5%) | 13 | 71.5 (7.3) | 7 (53.8%) | 5 (38.5%) | 2 (15.4%) |
Enhancers of NO Availability | |||||||||||||||||
Domingues (2021) [41] | Brazil | DB RCT | 32 | 3 (9.4%) | 2 months | 5 g daily creatinine monohydrate (after 20 g/day for 7 days) | Adults with PAD and IC | 14 | 64 (10) | 6 (42.9%) | 11 (78.6%) | 7 (50.0%) | 15 | 64 (8) | 8 (53.3%) | 12 (78.6%) | 9 (60.0%) |
Maxwell (2000) [52] | USA | DB RCT | 41 | 1 (2.4%) | 2 weeks | One or two 50 g L-arginine-enriched nutrient bars daily | Adults with PAD and stable IC | 15 | 68.2 (7.7) | 1 (6.7%) | 2 (13.3%) | 2 (13.3%) | 14 | 70.6 (7.5) | 5 (35.7%) | 4 (28.6%) | 4 (28.6%) |
12 | 66.3 (10.4) | 4 (25.0%) | 0 | 2 (16.7%) | |||||||||||||
Micker (2007) [54] | Poland | DB RCT | 48 | 0 | 1 month | 12 g daily L-arginine tablets | Adults with PAD | 24 | 59.1 (8.8) | 12 (50.0%) | 11 (45.8%) | 0 | 24 | 66.0 (7.6) | 11 (45.8%) | 13 (54.2%) | 0 |
Oka (2005) [56] | USA | DB RCT | 80 | 8 (10.0%) | 3 months | 3 g, 6 g, or 9 g daily of L-arginine tablets | Adults aged at least 40 years with PAD and IC | 18 | 75 (9) | 6 (33.0%) | 2 (11.1%) | 11 (61.1%) | 18 | 72 (9) | 3 (16.7%) | 2 (11.1%) | 1 (5.6%) |
17 | 76 (6) | 6 (35.3%) | 2 (11.8%) | 6 (35.3%) | |||||||||||||
19 | 73 (6) | 7 (36.8%) | 1 (5.3%) | 7 (36.8%) | |||||||||||||
Wilson (2007) [64] | USA | DB RCT | 133 | 14 (10.5%) | 6 months | 1 g three times daily of L-arginine tablets | Adults with PAD aged at least 45 years with stable IC pain | 66 | 73 (9) | 14 (21.2%) | 8 (12.1%) | 20 (30.3%) | 67 | 72 (7) | 18 (26.9%) | 12 (17.9%) | 20 (29.9%) |
Nitric Oxide Synthase Inducers | |||||||||||||||||
Loffredo (2014) [50] | USA | CO SB RCT | 20 | 0 | 1 day | Single dose of 40 g of dark chocolate | Adults with PAD and IC | 20 | 69 (9) | 6 (30.0%) | 0 | 6 (30%) | NA | NA | NA | NA | NA |
McDermott (2017) [66] | USA | DB RCT | 66 | 2 (3.0%) | 6 months | 125 mg or 500 mg of resveratrol daily | Adults aged at least 65 years with PAD | 44 | 74.6 (7.0) | 14 (31.8%) | 9 (20.5%) | 12 (27.3%) | 22 | 74.1 (6.1) | 7 (31.8%) | 5 (22.7%) | 14 (63.6%) |
McDermott (2020) [53] | USA | DB RCT | 44 | 4 (9.1%) | 6 months | Three flavanol-rich packets mixed with water daily | Adults aged at least 60 years with PAD | 23 | 71 (7) | 8 (34.8%) | 11 (47.8%) | 13 (56.5%) | 21 | 73 (7) | 7 (33.3%) | 3 (14.3%) | 11 (52.4%) |
Tenore (2019) [61] | Italy | DB RCT | 180 | 0 | 6 months | 1 g twice daily of Annurca apple polyphenolic extract | Adults with PAD aged 35 to 75 years with IC pain | 90 | 71.5 (9.4) | 28 (31.1%) | 0 | 20 (22.2%) | 90 | 70.5 (10.2) | 22 (24.4%) | 0 | 24 (26.7%) |
Antioxidants | |||||||||||||||||
Brevetti (1988) [32] | Italy | CO DB RCT | 20 | 0 | 3 weeks | 4 g daily of L-carnitine | Adults with PAD and IC | 20 | 59.8 (7.0) | 0 | NR | NR | NA | NA | NA | NA | NA |
Brevetti (1995) [34] | Italy | DB RCT | 245 | 31 (12.7%) | 6 months | 3 g daily (via up-titration) of propionyl-L-carnitine | Adults with PAD aged at least 40 years | 118 | 61.8 (7.6) | 8 (6.8%) | 114 (96.6%) | 17 (14.4%) | 127 | 58.9 (7.9) | 13 (10.2%) | 120 (94.5%) | 26 (20.5%) |
Brevetti (1999) [33] | Multiple European | DB RCT | 501 | 173 (34.5%) | 12 months | 2 g daily of propionyl-L-carnitine | Adults with PAD | 239 | 61.9 (8.8) | 38 (15.9%) | 208 (87.0%) | 12 (5.0%) | 246 | 62.7 (8.9) | 51 (20.7%) | 209 (85.0%) | 12 (4.9%) |
Collins (2003) [36] | USA | DB RCT | 25 | 2 (8.0%) | 6 months | 400IU daily of Vitamin E | Adults with PAD and IC | 13 | 67.2 (9.4) | 0 | 6 (46.2%) | NR | 12 | 70.2 (8.3) | 0 | 3 (25.0%) | NR |
Coto (1992) [37] | Italy | DB RCT | 300 | 18 (6.0%) | 6 months | 2 g daily of propionyl-L-carnitine capsules | Adults with PAD and IC limiting walking ability | 150 | 60.6 (6.9) | 62 (41.3%) | NR | 41 (27.3%) | 150 | 60.3 (6.5) | 55 (36.7%) | 34 (22.7%) | NR |
Da Silva (2015) [38] | Brazil | CO DB RCT | 11 | 1 (9.1%) | 4 days | 1.8 g daily of N-acetylcysteine effervescent tablets | Adults with PAD and IC | 10 | 62 (6.3) | 0 | 6 (60.0%) | 4 (40.0%) | NA | NA | NA | NA | NA |
Dal Lago (1999) [39] | Italy | DB RCT | 22 | 2 (9.1%) | 3 months | 3 g daily of propionyl-L-carnitine | Adults with PAD aged 40–75 years with IC | 11 | NR | NR | NR | 0 | 11 | NR | NR | NR | 0 |
Deckert (1997) [40] | Italy | DB RCT | 245 | 58 (23.7%) | 6 months | 1 g to 3 g daily or propionyl-L-carnitine | Adults aged at least 40 years with PAD and IC | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Gardner (2008) [42] | USA | DB RCT | 62 | 6 (9.7%) | 4 months | 300 mg daily of EGb 761 (Ginkgo Biloba) | Adults with PAD and IC | 31 | 70 (8) | 7 (22.6%) | 6 (19.4%) | 13 (41.9%) | 31 | 69 (8) | 18 (58.1%) | 4 (12.9%) | 18 (58.1%) |
Goldenberg (2012) [43] | USA | DB RCT | 163 | 34 (20.9%) | 6 months | 2 g daily L-carnitine plus 200 mg daily cilostazol | Adults aged at least 40 years with PAD and IC | 74 | 65.8 (9.4) | 12 (16.2%) | 32 (43.2%) | NR | 71 | 67.3 (8.0) | 15 (21.1%) | 23 (32.4%) | NR |
Grenon (2015) [44] | USA | DB RCT | 80 | 8 (10.0%) | 1 month | 4.4 g daily of n3-PUFA (fish oil) | Adults aged at least 50 years with PAD and IC | 40 | 68 (7) | 1 (2.5%) | 38 (95.0%) | 11 (27.5%) | 40 | 69 (9) | 1 (2.5%) | 36 (90.0%) | 14 (35.0%) |
Hiatt (2011) [46] | USA | DB RCT | 69 | 10 (14.5%) | 6 months | 2 g daily of propionyl-L-carnitine and exercise therapy | Adults aged 40–80 years with PAD and IC | 32 | 67.4 (8.7) | 12 (37.5%) | 12 (37.5%) | 3 (9.4%) | 30 | 66.6 (8.8) | 5 (16.7%) | 5 (16.7%) | 10 (33.3%) |
Kiesewetter (1993) [48] | Germany | DB RCT | 80 | 16 (20.0%) | 3 months | 800 mg daily of garlic powder | Adults aged 40–75 years with PAD and stable IC | 32 | 59.9 (10.6) | 9 (28.1%) | 24 (75%) | 5 (15.6%) | 32 | 60.1 (7.7) | 12 (37.5%) | 24 (75%) | 8 (25%) |
Leng (1997) [49] | UK | DB RCT | 120 | 45 (37.5%) | 24 months | Multi-ingredient antioxidant capsules | Adults with PAD and stable IC | 55 | 66.2 (7.0) | 19 (34.5%) | 21 (38.2%) | 5 (9.1%) | 65 | 65.3 (7.3) | 19 (29.2%) | 26 (40.0%) | 6 (9.2%) |
Luo (2013) [51] | China | DB RCT | 239 | 23 (9.6%) | 4 months | 2 g daily of propionyl-L-carnitine | Adults aged 40–75 years with PAD and stable IC | 120 | NR | NR | NR | NR | 119 | NR | NR | NR | NR |
Park (2020) [57] | USA | CO RCT | 11 | 0 | 1 day | Single dose of 80 mg MitoQ | Adults with PAD and IC | 11 | 66.1 (10.6) | 6 (54.5%) | NR | 2 (18.9%) | NA | NA | NA | NA | NA |
Ramirez (2019) [59] | USA | DB RCT | 24 | 4 (16.7%) | 3 months | 2.2 g twice daily of n-3 polyunsaturated fatty acid | Adults with PAD aged at least 50 years with IC pain | 11 | 69 (8) | 0 | 10 (90.9%) | 3 (27.3%) | 13 | 73 (7) | 0 | 13 (100%) | 4 (30.8%) |
Santo (2006) [60] | Italy | DB RCT | 74 | 0 | 12 months | 2 g daily of propionyl L-carnitine | Adults with PAD and type 2 diabetes | 37 | 61.8 (3.0) | NR | 0 | 37 (100%) | 37 | 61.3 (1.6) | NR | 0 | 37 (100%) |
Vincent (2007) [63] | USA | DB RCT | 32 | 4 (12.5%) | 3 months | 300 mg twice daily of alpha-lipoic acid capsules | Adults with PAD aged at least 50 years with IC pain | 16 | 75.1 (8.2) | 7 (43.8%) | 0 | 4 (25.0%) | 12 | 70.7 (18.9) | 6 (50.0%) | 0 | 3 (25.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, S.A.; Drovandi, A.; Jones, R.; Golledge, J. Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis. Biomedicines 2023, 11, 1859. https://doi.org/10.3390/biomedicines11071859
Wong SA, Drovandi A, Jones R, Golledge J. Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis. Biomedicines. 2023; 11(7):1859. https://doi.org/10.3390/biomedicines11071859
Chicago/Turabian StyleWong, Shannon A., Aaron Drovandi, Rhondda Jones, and Jonathan Golledge. 2023. "Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis" Biomedicines 11, no. 7: 1859. https://doi.org/10.3390/biomedicines11071859
APA StyleWong, S. A., Drovandi, A., Jones, R., & Golledge, J. (2023). Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis. Biomedicines, 11(7), 1859. https://doi.org/10.3390/biomedicines11071859