Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer’s Disease via Gut Microbiome
Abstract
:1. Alzheimer’s Disease: Still No Cure
2. Stress, Enrichment and the Gut Microbiome: Potential Focus for a Cure
2.1. Stress and AD
2.2. Enrichment Effects on Cognition and AD
2.3. Microbiota–Gut–Brain Axis and AD
2.4. Stress and Gut Dysbiosis
3. Animal Models of Stress, Enrichment, and Gut Dysbiosis in AD
3.1. Roles of Enrichment in Animal Models of Alzheimer’s Disease
3.2. Roles of Stress in Animal Models of Alzheimer’s Disease
3.3. Stress and Gut Microbiota in Animal Models
3.3.1. Gut Dysbiosis and Stress
Stressor | Animal Model | Findings | Reference |
---|---|---|---|
Maternal Separation | C57BL/6J (male) | Early life stress-induced gut microbiota alterations and lasting CNS inflammation Rescued by probiotics Probiotics improve glucocorticoid sensitivity | [177] |
C57BL/6J (male) | Significant reduction of serum TNF-a and increase in IL-6 Reduction of IL-6 levels after probiotic ingestion | [197] | |
C57BL/6J (male) | Differential abundance of gut microbiota in maternal separation groups differed from control groups Stress exposure reduced the alpha diversity and altered microbial community at PD28 | [198] | |
C57BL/6J (male) | Maternal separation combined with chronic unpredictable stress paradigms increased systemic microbial load through gut barrier dysfunctions Stress-related increases in Clostridium were observed | [176] | |
C57BL/6N (both sexes) | Maternal separation-induced changes in animals lead to intestinal dysbiosis | [199] | |
NMRI mice (both sexes) | Maternal separation altered the composition of gut microbiota | [200] | |
C3H/HeN mice (male) | Maternal separation induces microbiota dysbiosis in favor of pathobionts IL-17 and IL-22 decreased in response to glucose intolerance in stressed animals compared to controls | [201] | |
C3H/HeN mice (both sexes) | Maternal separation induced the main features of IBS (intestinal hyperpermeability, visceral hypersensitivity, microbiota dysbiosis, and low-grade intestinal inflammation | [178] | |
SD (male) | Maternal separation reduced swim behaviour and decreased mobility in forced swim test Stress-related decrease in brain noradrenaline and increase in peripheral IL-6 Probiotic ingestion normalized these levels | [202] | |
Maternal Separation | SD (both sexes) | Maternal separation increased adhesion/penetration of total bacteria in gut and significantly reduced Lactobacillus species Stress-related elevation of corticosterone levels observed Probiotic ingestion ameliorated gut penetration and restored corticosterone levels | [179] |
SD (both sexes) | Maternal separation pups showed an adult-like profile of long-lasting fear memories and fear relapse following extinction Probiotic-treated pups exhibited age-appropriate infantile amnesia and resistance to relapse | [203] | |
SD (both sexes) | Maternal separation disrupted the Firmicutes-to-Bacteroides ratio in the gut Stress-related disruption of acetate, propionate, and butyrate in fecal samples was observed This was restored by a probiotic mixture | [204] | |
SD (both sexes) | Significant differences in microbial community of gut in Maternal separation group compared to control | [205] | |
SD (both sexes) | Maternal separation showed a difference in abundance of various bacteroids in fecal samples of both sexes Levels of proinflammatory cytokines were increased in the colon and sera of male stressed rats | [206] | |
SD (both sexes) | Maternal separation animals showed significantly lower levels of SCFA producers | [180] | |
SD (both sexes) | Maternal separation animals showed a difference in SCFA-producing genera, Fusobacterium and Clostridium compared to controls Fusobacterium stress-related increase positively correlated with the degree of visceral hypersensitivity | [181] | |
SD (both sexes) | Maternal separation triggered gut microbiota composition changes compared to control groups Gut dysbiosis was reversed by probiotic ingestion (Lactobacillus) | [142] | |
Maternal Separation | SD (both sexes) | Maternal separation produced alterations in the structure and composition of the gut microbiota Significant differences in bacterial types in stressed animal microbiomes compared to controls | [207] |
SD (both sexes) | Maternal separation rats showed hypercorticosteronemia, enhanced intestinal permeability, and changes in gut microbiota structure Probiotic feeding prevented these changes | [208] | |
Wistar rats (male) | Significant gut barrier dysfunction in maternal separation groups compared to control ML-7 (MLCK inhibitor) strengthened the intestinal barrier and restored levels of numerous bacteria in the gut | [173] | |
Physical Restraint | C57BL/6J (male) | Chronic restraint stress exacerbated kynurenine (Kyn) toxic signaling in the gut, especially the colon Indoleamine 2,3-dioxygenase was upregulated in the brain and gut, promoting transfer of Tryptophan metabolic pathway to Kyn signaling Stressed mice showed enhanced intestinal permeability compared to controls | [182] |
C57BL/6J (male) | Restraint stress increased intestinal hyperpermeability and disrupted tight junction proteins (ZO-1, Occludin, and Claudin1) Increased inflammation in enteric glial cells increased relative abundance of fecal Akkermansia (mucin-degrading Gram-negative bacteria) | [188] | |
C57BL/6J (male) | Chronic restraint animals showed decreased levels of SCFA in feces compared to controls Stressed animals showed gut dysbiosis, and decreased levels of Occludin and Claudin-1, correlating with decreased intestinal barrier function | [189] | |
C57BL/6J (both sexes) | Chronic restraint stress revealed sex differences in fecal microbiota makeup Fecal transplant of stressed mice to germ-free mice decreased pain threshold, and resulted in further sex differences in gut-microbiota makeup | [209] | |
Physical Restraint | C57BL/6N (male) | Chronic restraint mice exhibited alterations in microbiota composition, disruption of colonic mucus, and aggravation of colitis Abundance of Akkermansia was significantly decreased in stressed mice compared to controls | [183] |
C57BL/6 specific-pathogen free (both sexes) | Lactobaccillus animalis was enriched in stress group, and positively correlated to behavioural deficiencies | [210] | |
ICR mice (male) | Microbiome flora richness was significantly lower in the stress group compared to controls | [184] | |
Wistar rats (male) | Chronic restrain stress increased gut dysbiosis compared to controls Both alpha and beta diversity indexes were increased in stress animals | [185] | |
SD (male) | Chronic restraint stress enhanced the abundance of bacteroids and altered gut microbiota and metabolites Altered gut microbiota was correlated with PI3K/Akt/mTOR pathways Chronic restraint stress decreased phosphorylation of PI3K/Akt/mTOR pathway in microglia and enhanced LPS-induced microglia activation | [211] | |
SD (male) | Restraint-stressed rats exhibited dysregulated gut microbiota Fecal B-d-glucosidase activity differed from control rats, leading to systemic exposure to ginsenoside RB1 and its metabolites | [186] | |
SD (both sexes) | Chronic restraint stress-induced dysbiosis | [187] |
3.3.2. Role of Stress-Induced Gut Dysbiosis in AD
4. Therapeutic Potential of Probiotics on Gut Dysbiosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
Aβ | β-amyloid |
AD | Alzheimer’s disease |
BBB | blood–brain barrier |
CUS | chronic unpredictable stress |
CRF | corticotrophin-releasing factor |
EE | environmental enrichment |
GI | gastrointestinal tract |
GF | germ free |
HS | hormonal stress |
HPA | hypothalamic–pituitary–adrenal |
IBS | irritable bowel syndrome |
LPS | lipopolysaccharides |
MCI | mild cognitive impairment |
MS | maternal separation |
NFT | neurofibrillary tangles |
ptau | phosphorylated tau |
PD | postnatal day |
PE | physical enrichment |
PS | psychosocial stress |
RIS | restraint and immobility stress |
SCFA | short-chain fatty acids |
SS | sleep restriction stress |
SE | social enrichment |
References
- Alzheimer’s Association. What Is Alzheimer’s Disease? Alzheimer’s Disease and Dementia. 2023. Available online: https://www.alz.org/alzheimers-dementia/what-is-alzheimers (accessed on 2 March 2023).
- Alzheimer Society of Canada. What Is Alzheimer’s disease? Alzheimer Society of Canada. 2023. Available online: https://alzheimer.ca/en/about-dementia/what-alzheimers-disease (accessed on 2 March 2023).
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res. 2018, 7, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, D.W. The Pathogenesis of Senile Plaques. J. Neuropathol. Exp. Neurol. 1997, 56, 321–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selkoe, D.J. Alzheimer’s disease: Genes, Proteins, and Therapy. Physiol. Rev. 2001, 81, 741–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022, 21, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Crous-Bou, M.; Minguillón, C.; Gramunt, N.; Molinuevo, J.L. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimer’s Res. Ther. 2017, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Schneider, L.S.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R.; Mantua, V.; Mecocci, P.; Pani, L.; Winbald, B.; et al. Clinical trials and late-stage drug development for Alzheimer’s disease: An appraisal from 1984 to 2014. J. Intern. Med. 2015, 275, 251–283. [Google Scholar] [CrossRef]
- Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 399–415. [Google Scholar] [CrossRef]
- Soeda, Y.; Saito, M.; Maeda, S.; Ishida, K.; Nakamura, A.; Kojima, S.; Takashima, A. Methylene Blue Inhibits Formation of Tau Fibrils but not of Granular Tau Oligomers: A Plausible Key to Understanding Failure of a Clinical Trial for Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2019, 68, 1677–1686. [Google Scholar] [CrossRef]
- Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; et al. A walk through tau therapeutic strategies. Acta Neuropathol. Commun. 2019, 7, 22. [Google Scholar] [CrossRef]
- Varidaki, A.; Hong, Y.; Coffey, E.T. Repositioning Microtubule Stabilizing Drugs for Brain Disorders. Front. Cell. Neurosci. 2018, 12, 226. [Google Scholar] [CrossRef]
- Ozben, T.; Ozben, S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin. Biochem. 2019, 72, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Cacace, R.; Sleegers, K.; Van Broeckhoven, C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s Dement. 2016, 12, 733–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Wingo, T.S.; Lah, J.J.; Levey, A.I.; Cutler, D.J. Autosomal Recessive Causes Likely in Early-Onset Alzheimer Disease. Arch. Neurol. 2012, 69, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F.X. Stress Acts Cumulatively to Precipitate Alzheimer’s disease-Like Tau Pathology and Cognitive Deficits. J. Neurosci. 2011, 31, 7840–7847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodt, C.; Dittman, J.; Hruby, J.; Späth-Schwalbe, E.; Born, J.; Schüttler, R.; Fehm, H.L. Cortisol Secretion in Young, Mentally Healthy Elderly and Patients with Senile Dementia of Alzheimer’s Type. J. Clin. Endocrinol. Metab. 1991, 72, 272–276. [Google Scholar] [CrossRef]
- Caruso, A.; Nicoletti, F.; Mango, D.; Saidi, A.; Orlando, R.; Scaccianoce, S. Stress as risk factor for Alzheimer’s disease. Pharmacol. Res. 2018, 132, 130–134. [Google Scholar] [CrossRef]
- Budas, G.; Coughlan, C.M.; Seckl, J.R.; Breen, K.C. The effect of corticosteroids on amyloid beta precursor protein/amyloid precursor-like protein expression and processing in vivo. Neurosci. Lett. 1999, 276, 61–64. [Google Scholar] [CrossRef]
- Green, K.N.; Billings, L.M.; Roozendaal, B.; McGaugh, J.L.; LaFerla, F.M. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J. Neurosci. 2006, 26, 9047–9056. [Google Scholar] [CrossRef] [Green Version]
- Justice, N.J. The relationship between stress and Alzheimer’s disease. Neurobiol. Stress 2018, 8, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Escher, C.M.; Sannemann, L.; Jessen, F. Stress and Alzheimer’s disease. J. Neural Transm. 2019, 126, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.S.; Evans, D.A.; Bienias, J.L.; Mendes de Leon, C.F.; Schneider, J.A.; Bennett, D.A. Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology 2003, 61, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.F. The relationship between anxiety and Alzheimer’s disease. J. Alzheimer’s Dis. Rep. 2021, 5, 171–177. [Google Scholar] [CrossRef]
- Xu, H.; Yang, R.; Dintica, C.; Qi, X.; Song, R.; Bennett, D.A.; Xu, W. Association of lifespan cognitive reserve indicator with the risk of mild cognitive impairment and its progression to dementia. Alzheimer’s Dement. 2020, 16, 873–882. [Google Scholar] [CrossRef]
- Wilson, R.S.; Barnes, L.L.; Aggarwal, N.T.; Boyle, P.A.; Hebert, L.E.; de Leon, C.F.M.; Evans, D.A. Cognitive activity and the cognitive morbidity of Alzheimer’s disease. Neurology 2010, 75, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Pillai, J.A.; Hall, C.B.; Dickson, D.W.; Buschke, H.; Lipton, R.B.; Verghese, J. Association of Crossword Puzzle Participation with memory decline in persons who develop dementia. J. Int. Neuropsychol. Soc. 2011, 17, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.B.; Lipton, R.B.; Sliwinski, M.; Katz, M.J.; Derby, C.A.; Verghese, J. Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology 2009, 73, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Roe, C.M.; Mintun, M.A.; D’Angelo, G.; Xiong, C.; Grant, E.A.; Morris, J.C. Alzheimer disease and cognitive reserve. Arch. Neurol. 2008, 65, 1467. [Google Scholar] [CrossRef] [Green Version]
- Bassuk, S.S.; Glass, T.A.; Berkman, L.F. Social Disengagement and Incident Cognitive Decline in Community-Dwelling Elderly Persons. Ann. Intern. Med. 1999, 131, 165–173. [Google Scholar] [CrossRef]
- Wilson, R.S.; Krueger, K.R.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Barnes, L.L.; Tang, Y.; Bennett, D.A. Loneliness and risk of Alzheimer disease. Arch. Gen. Psychiatry 2007, 64, 234. [Google Scholar] [CrossRef] [Green Version]
- Friedman, E.M.; Hayney, M.S.; Love, G.D.; Urry, H.L.; Rosenkranz, M.A.; Davidson, R.J.; Singer, B.H.; Ryff, C.D. Social relationships, sleep quality, and interleukin-6 in aging women. Proc. Natl. Acad. Sci. USA 2005, 102, 18757–18762. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Liu, W. Dance activity interventions targeting cognitive functioning in older adults with mild cognitive impairment: A meta-analysis. Front. Psychol. 2022, 13, 966675. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Lin, M.-S.; Tzeng, I.-S. Relationship between exercise and Alzheimer’s disease: A narrative literature review. Front. Neurosci. 2020, 14, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlskog, J.E.; Geda, Y.E.; Graff-Radford, N.R.; Peterson, R.C. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin. Proc. 2011, 86, 876–884. [Google Scholar] [CrossRef] [Green Version]
- Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; et al. The Potential Role of Gut Microbiota in Alzheimer’s disease: From Diagnosis to Treatment. Nutrients 2022, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; et al. INDIA-FBP Group Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 2017, 49, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; et al. Gut Microbiota is altered in Patients with Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2018, 63, 1337–1346. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 2019, 80, 633–643. [Google Scholar] [CrossRef]
- Weeks, S.R.; McAuliffe, C.L.; Durussel, D.; Pasquina, P.F. Physiological and psychological fatigue in extreme conditions: The military example. J. Inj. Funct. Rehabil. 2010, 2, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.M.; Cameron, K.L.; Bojescul, J.A. Lower extremity stress fractures in the military. Clin. Sports Med. 2014, 33, 591–613. [Google Scholar] [CrossRef] [PubMed]
- Henning, P.C.; Park, B.S.; Kim, J.S. Physiological decrements during sustained military operational stress. Mil. Med. 2011, 176, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasiakos, S.M.; Margolis, L.M.; Murphy, N.E.; McClung, H.L.; Martini, S.; Gundersen, Y.; Castellani, J.W.; Karl, J.P.; Teien, H.K.; Madslien, E.H.; et al. Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiol. Rep. 2016, 4, e12820. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.L.; Cooper, M.J.; Myers, C.A.; Cummings, J.F.; Vest, K.G.; Russell, K.L.; Sanchez, J.L.; Hiser, M.J.; Gaydos, C.A. Respiratory Infections in the U.S. Military: Recent Experience and Control. Clin. Microbiol. Rev. 2015, 28, 743–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyte, M.; Ernst, S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992, 50, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Galley, J.D.; Bailey, M.T. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 2014, 5, 390–396. [Google Scholar] [CrossRef] [Green Version]
- van Wijck, K.; Lenaerts, K.; Grootjans, J.; Wijnands, K.A.; Poeze, M.; van Loon, L.J.; Dejong, C.H.; Buurman, W.A. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: Strategies for evaluation and prevention. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G155–G168. [Google Scholar] [CrossRef] [Green Version]
- Karl, J.P.; Margolis, L.M.; Madslien, E.H.; Murphy, N.E.; Castellani, J.W.; Gundersen, Y.; Hoke, A.V.; Levangie, M.W.; Kumar, R.; Chakraborty, N.; et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G559–G571. [Google Scholar] [CrossRef] [Green Version]
- Knowles, S.R.; Nelson, E.A.; Palombo, E.A. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: A possible mechanism underlying susceptibility to illness. Biol. Psychol. 2008, 77, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Kawai, M.; Kikuchi-Hayakawa, H.; Suda, K.; Ishikawa, H.; Gondo, Y.; Shimizu, K.; Matsuki, T.; et al. Fermented Milk Containing Lactobacillus casei Strain Shirota Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical Students Exposed to Academic Stress. Appl. Environ. Microbiol. 2016, 82, 3649–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res. 2021, 164, 105314. [Google Scholar] [CrossRef] [PubMed]
- Liew, A.K.Y.; Teo, C.H.; Soga, T. The Molecular Effects of Environmental. Enrichment on Alzheimer’s disease. Mol. Neurobiol. 2022, 59, 7095–7118. [Google Scholar] [CrossRef]
- Mohammadi, S.; Zandi, M.; Kataj, P.D.; Zandi, L.K. Chronic stress and Alzheimer’s disease. Biotechnol. Appl. Biochem. 2021, 69, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Hu, P.-P.; Zhang, Y.-L.; Yan, Y.-X.; Shields, C.B.; Zhang, Y.-P.; Hu, G.; Xiao, M. Enriched physical environment reverses spatial cognitive impairment of socially isolated APPswe/PS1dE9 transgenic mice before amyloidosis onset. CNS Neurosci. Ther. 2018, 24, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Lahiani-Cohen, I.; Lourbopoulos, A.; Haber, E.; Rozenstein-Tsalkovich, L.; Abramsky, O.; Grigoriadis, N.; Rosenmann, H. Moderate Environmental Enrichment Mitigates Tauopathy in a Neurofibrillary Tangle Mouse Model. J. Neuropathol. Exp. Neurol. 2011, 70, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Prado Lima, M.G.; Schimidt, H.L.; Garcia, A.; Daré, L.R.; Carpes, F.P.; Izquierdo, I.; Mello-Carpes, P.B. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc. Natl. Acad. Sci. USA 2018, 115, 2403–2409. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.J.; Noristani, H.N.; Olabarria, M.; Fletcher, J.; Somerville, T.D.D.; Yeh, C.Y.; Verkhratsky, A. Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 2011, 8, 707–717. [Google Scholar] [CrossRef]
- Torraville, S. Understanding Differential Roles of Stress and Enrichment in Pathogenesis of Alzheimer’s Disease in a Novel Rat Tau Model. Master’s Thesis, Memorial University of Newfoundland, St. John, NL, Canada, 2022. Publication No. 15659. MUN Research Repository. Available online: http://research.library.mun.ca/id/eprint/15659 (accessed on 31 October 2022).
- Valero, J.; España, J.; Parra-Damas, A.; Martín, E.; Rodríguez-Álvarez, J.; Saura, C.A. Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP(Sw,Ind) transgenic mice. PLoS ONE 2011, 6, e16832. [Google Scholar] [CrossRef] [Green Version]
- Yeung, S.T.; Martinez-Coria, H.; Ager, R.R.; Rodriguez-Ortiz, C.J.; Baglietto-Vargas, D.; LaFerla, F.M. Repeated cognitive stimulation alleviates memory impairments in an Alzheimer’s disease mouse model. Brain Res. Bull. 2015, 117, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-S.; Zhu, L.; Peng, Y.; Zhang, L.; Chao, F.-L.; Jiang, L.; Xiao, Q.; Liang, X.; Tang, J.; Yang, H.; et al. Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J. Neuroinflamm. 2022, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Mirochnic, S.; Wolf, S.; Staufenbiel, M.; Kempermann, G. Age Effects on the Regulation of Adult Hippocampal Neurogenesis by Physical Activity and Environmental Enrichment in the APP23 Mouse Model of Alzheimer Disease. Hippocampus 2009, 19, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015, 26, 26050. [Google Scholar] [CrossRef]
- Robison, L.S.; Francis, N.; Popescu, D.L.; Anderson, M.E.; Hatfield, J.; Xu, F.; Anderson, B.J.; Van Nostrand, W.E.; Robinson, J.K. Environmental Enrichment: Disentangling the Influence of Novelty, Social, and Physical Activity on Cerebral Amyloid Angiopathy in a Transgenic Mouse Model. Int. J. Mol. Sci. 2020, 21, 843. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.-S.; Xu, P.; Pigino, G.; Brady, S.T.; Larson, J.; Lazarov, O. Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1ΔE9 mice. J. Fed. Am. Soc. Exp. Biol. 2010, 24, 1667–1681. [Google Scholar] [CrossRef]
- Herring, A.; Ambrée, O.; Tomm, M.; Habermann, H.; Sachser, N.; Paulus, W.; Keyvani, K. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp. Neurol. 2009, 216, 184–192. [Google Scholar] [CrossRef]
- Salmin, V.V.; Komleva, Y.K.; Kuvacheva, N.V.; Morgun, A.V.; Khilazheva, E.D.; Lopatina, O.L.; Pozhilenkova, E.A.; Shapovalov, K.A.; Uspenskaya, Y.A.; Salmina, A.B. Differential Roles of Environmental Enrichment in Alzheimer’s Type Neurodegeneration and Physiological Aging. Front. Aging Neurosci. 2017, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Waldkirch, S.; d’Errico, P.; Sauer, J.-F.; Erny, D.; Savanthrapadian, S.; Loreth, D.; Katzmarski, N.; Blank, T.; Bartos, M.; Prinz, M.; et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer’s disease. EMBO J. 2018, 37, 167–182. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Kim, J.M.; Yoo, J.; Lee, S.H.; Kim, H.-S.; Suh, Y.-H. Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. J. Neurochem. 2011, 119, 1282–1293. [Google Scholar] [CrossRef]
- Stazi, M.; Wirths, O. Physical activity and cognitive stimulation ameliorate learning and motor deficits in a transgenic mouse model of Alzheimer’s disease. Behav. Brain Res. 2021, 397, 112951. [Google Scholar] [CrossRef] [PubMed]
- Berardi, N.; Braschi, C.; Capsoni, S.; Cattaneo, A.; Maffei, L. Environmental Enrichment Delays the Onset of Memory Deficits and Reduces Neuropathological Hallmarks in a Mouse Model of Alzheimer-Like Neurodegeneration. J. Alzheimer’s Dis. 2007, 11, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gelyana, E.; Rajsombath, M.; Yang, T.; Li, S.; Selkoe, D. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid β-Protein Oligomers. J. Neurosci. 2016, 36, 9041–9056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balthazar, J.; Schöwe, N.M.; Cipolli, G.C.; Buck, H.S.; Viel, T.A. Enriched Environment Significantly Reduced Senile Plaques in a Transgenic Mice Model of Alzheimer’s Disease, Improving Memory. Front. Aging Neurosci. 2018, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- Cattaud, V.; Bezzina, C.; Rey, C.C.; Lejards, C.; Dahan, L.; Verret, L. Early disruption of parvalbumin expression and perineuronal nets in the hippocampus of the Tg2576 mouse model of Alzheimer’s disease can be rescued by enriched environment. Neurobiol. Aging 2018, 72, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Z.; Hao, X.-H.; Wu, H.-P.; Li, M.; Liu, X.-M.; Wu, Z.-B. An enriched environment delays the progression from mild cognitive impairment to Alzheimer’s disease in senescence-accelerated mouse prone 8 mice. Exp. Ther. Med. 2021, 22, 1320. [Google Scholar] [CrossRef]
- Song, M.K.; Kim, Y.J.; Lee, J.-M.; Kim, Y.-J. Neurovascular integrative effects of long-term environmental enrichment on chronic hypoperfusion rat model. Brain Res. Bull. 2020, 163, 160–169. [Google Scholar] [CrossRef]
- Griñán-Ferré, C.; Izquierdo, V.; Otero, E.; Puigoriol-Illamola, D.; Corpas, R.; Sanfeliu, C.; Ortuño-Sahagún, D.; Pallàs, M. Environmental Enrichment Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations Presented in 5xFAD Mouse Model. Front. Cell. Neurosci. 2018, 12, 224. [Google Scholar] [CrossRef] [Green Version]
- Lazarov, O.; Robinson, J.; Tang, Y.-P.; Hairston, I.S.; Korade-Mirnics, Z.; Lee, V.M.-Y.; Hersh, L.B.; Sapolsky, R.M.; Mirnics, K. Environmental Enrichment Reduces Aβ Levels and Amyloid Deposition in Transgenic Mice. Cell 2005, 120, 701–713. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.A.; Cracchiolo, J.R.; Bachstetter, A.D.; Hughes, T.F.; Bales, K.R.; Paul, S.M.; Mervis, R.F.; Arendash, G.W.; Potter, H. Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol. Aging 2007, 28, 831–844. [Google Scholar] [CrossRef]
- Selvi, Y.; Gergerlioglu, H.S.; Akbaba, N.; Oz, M.; Kandeger, A.; Demir, E.A.; Yerlikaya, F.H.; Nurullahoglu-Atalikm, K.E. Impact of enriched environment on production of tau, amyloid precursor protein and, amyloid-β peptide in high-fat and high-sucrose-fed rats. Acta Neuropsychiatr. 2016, 29, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Maesako, M.; Uemura, K.; Kubota, M.; Kuzuya, A.; Sasaki, K.; Asada, M.; Watanabe, K.; Hayashida, N.; Ihara, M.; Ito, H.; et al. Environmental enrichment ameliorated high-fat diet-induced Aβ deposition and memory deficit in APP transgenic mice. Neurobiol. Aging 2012, 33, 1011.e11–1011.e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cracchiolo, J.R.; Mori, T.; Nazian, S.J.; Tan, J.; Potter, H.; Arendash, G.W. Enhanced cognitive activity—Over and above social or physical activity—Is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiol. Learn. Mem. 2007, 88, 277–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arranz, L.; De Castro, N.M.; Baeza, I.; Giménez-Llort, L.; De la Fuente, M. Effect of Environmental Enrichment on the Immunoendocrine Aging of Male and Female Triple-Transgenic 3xTg-AD Mice for Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 25, 727–737. [Google Scholar] [CrossRef]
- Polito, L.; Chierchia, A.; Tunesi, M.; Bouybayoune, I.; Kehoe, P.G.; Albani, D.; Forloni, G. Environmental Enrichment Lessens Cognitive Decline in APP23 Mice Without Affecting Brain Sirtuin Expression. J. Alzheimer’s Dis. 2014, 42, 851–864. [Google Scholar] [CrossRef]
- Verret, L.; Krezymon, A.; Halley, H.; Trouche, S.; Zerwas, M.; Lazouret, M.; Lassalle, J.-M.; Rampon, C. Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol. Aging 2013, 34, 211–225. [Google Scholar] [CrossRef]
- Ziegler-Waldkirch, S.; Marksteiner, K.; Stoll, J.; d’Errico, P.; Friesen, M.; Eiler, D.; Neudel, L.; Sturn, V.; Opper, I.; Datta, M.; et al. Environmental enrichment reverses Aβ pathology during pregnancy in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 2018, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cao, L.; Zhang, X.; Liang, Y.; Xu, Y.; Zhu, C. Memantine Differentially Regulates Tau Phosphorylation Induced by Chronic Restraint Stress of Varying Duration in Mice. Neural Plast. 2019, 2019, 4168472. [Google Scholar] [CrossRef]
- Torres-Lista, V.; Giménez-Llort, L. Early postnatal handling and environmental enrichment improve the behavioral responses of 17-month-old 3xTg-AD and non-transgenic mice in the Forced Swim Test in a gender-dependent manner. Behav. Process. 2015, 120, 120–127. [Google Scholar] [CrossRef]
- Cañete, T.; Blázquez, G.; Tobeňa, A.; Giménez-Llort, L.; Fernández-Teruel, A. Cognitive and emotional alterations in young Alzheimer’s disease (3xTgAD) mice: Effects of neonatal handling stimulation and sexual dimorphism. Behav. Brain Res. 2015, 281, 156–171. [Google Scholar] [CrossRef]
- Liao, K.; Liu, D.; Zhu, L.-Q. Enriched odor exposure decrease tau phosphorylation in the rat hippocampus and cortex. Neurosci. Lett. 2012, 507, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Stuart, K.E.; King, A.E.; Fernandez-Martos, C.M.; Dittmann, J.; Summers, M.J.; Vickers, J.C. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy aging. J. Comp. Neurol. 2017, 525, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Kubota, K.; Hashizume, S.; Kobayashi, E.; Chikenji, T.S.; Saito, Y.; Fujimiya, M. An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus. Brain Behav. Immun. Health 2020, 9, 100149. [Google Scholar] [CrossRef] [PubMed]
- Pietropaolo, S.; Feldon, J.; Yee, B.K. Environmental enrichment eliminates the anxiety phenotypes in a triple transgenic mouse model of Alzheimer’s disease. Cogn. Affect. Behav. Neurosci. 2014, 14, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Görtz, N.; Lewejohann, L.; Tomm, M.; Ambrée, O.; Keyvani, K.; Paulus, W.; Sachser, N. Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behav. Brain Res. 2008, 191, 43–48. [Google Scholar] [CrossRef]
- Hüttenrauch, M.; Walter, S.; Kaufmann, M.; Weggen, S.; Wirths, O. Limited Effects of Prolonged Environmental Enrichment on the Pathology of 5xFAD Mice. Mol. Neurobiol. 2016, 54, 6542–6555. [Google Scholar] [CrossRef]
- Stuart, K.E.; King, A.E.; King, N.E.; Collins, J.M.; Vickers, J.C.; Ziebell, J.M. Late-life environmental enrichment preserves short-term memory and may attenuate microglia in male APP/PS1 mice. Neuroscience 2019, 408, 282–292. [Google Scholar] [CrossRef]
- Cotel, M.-C.; Jawhar, S.; Christensen, D.Z.; Bayer, T.A.; Wirths, O. Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1K1 mice. Neurobiol. Aging 2012, 33, 96–107. [Google Scholar] [CrossRef]
- Stozicka, Z.; Korenova, M.; Uhrinova, I.; Cubinkova, V.; Cente, M.; Kovacech, B.; Babindakova, N.; Matyasova, K.; Vargova, G.; Novak, M.; et al. Environmental Enrichment Rescues Functional Deficit and Alters Neuroinflammation in Transgenic Model of Tauopathy. J. Alzheimer’s Dis. 2020, 74, 951–964. [Google Scholar] [CrossRef]
- Arrendash, G.W.; Garcia, M.F.; Costa, D.A.; Cracchiolo, J.R.; Wefes, I.M.; Potter, H. Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable β-amyloid deposition. Neuro Rep. 2004, 15, 1751–1754. [Google Scholar] [CrossRef]
- Beauquis, J.; Pavía, P.; Pomilio, C.; Vinuesa, A.; Podlutskaya, N.; Galvan, V.; Saravia, F. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp. Neurol. 2013, 239, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, G.; Cañete, T.; Tobeña, A.; Giménez-Llort, L.; Fernández-Teruel, A. Cognitive and emotional profiles of aged Alzheimer’s disease (3xTgAD) mice: Effects of environmental enrichment and sexual dimorphism. Behav. Brain Res. 2014, 268, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Mate, V.; Smolek, T.; Kazmerova, Z.V.; Jadhav, S.; Brezovakova, V.; Jurkanin, B.; Uhrinova, I.; Basheer, N.; Zilka, N.; Katina, S.; et al. Enriched environment ameliorates propagation of tau pathology and improves cognition in rat model of tauopathy. Front. Aging Neurosci. 2022, 14, 935973. [Google Scholar] [CrossRef]
- Jankowsky, J.L.; Xu, G.; Fromholt, D.; Gonzales, V.; Borchelt, D.R. Environmental Enrichment Exacerbates Amyloid Plaque Formation in a Transgenic Mouse Model of Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2003, 62, 1220–1227. [Google Scholar] [CrossRef]
- Levi, O.; Michaelson, D.M. Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J. Neurochem. 2006, 100, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Jankowsky, J.L.; Melnikova, T.; Fadale, D.J.; Xu, G.M.; Slunt, H.H.; Gonzales, V.; Younkin, L.H.; Younkin, S.G.; Borchelt, D.R.; Savonenko, A.V. Environmental Enrichment Mitigates Cognitive Deficits in a Mouse Model of Alzheimer’s disease. J. Neurosci. 2005, 25, 5217–5224. [Google Scholar] [CrossRef] [Green Version]
- Montarolo, F.; Parolisi, R.; Hoxha, E.; Boda, E.; Tempia, F. Early Enriched Environment Exposure Protects Spatial Memory and Accelerates Amyloid Plaque Formation in APPSwe/PS1L166P Mice. Public Libr. Sci. One 2013, 8, e69381. [Google Scholar] [CrossRef] [Green Version]
- Fulopova, B.; Stuart, K.E.; Bennett, W.; Bindoff, A.; King, A.E.; Vickers, J.C.; Canty, A.J. Regional differences in beta amyloid plaque deposition and variable response to midlife environmental enrichment in the cortex of APP/PS1 mice. J. Comp. Neurol. 2021, 529, 1849–1862. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, X.; Zhang, L.; Han, F.; Pang, K.-L.; Li, X.; Shen, J.-Y. Magnesium boosts the memory restorative effect of environmental enrichment in Alzheimer’s disease mice. CNS Neurosci. Ther. 2018, 24, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Guo, M.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Bifidobacterium breve intervention combined with environmental enrichment alleviates cognitive impairment by regulating the gut microbiota and microbial metabolites in Alzheimer’s disease mice. Front. Immunol. 2022, 13, 1013664. [Google Scholar] [CrossRef]
- Dong, J.; Zhou, M.; Wu, X.; Du, M.; Wang, X. Memantine combined with environmental enrichment improves spatial memory and alleviates Alzheimer’s disease-like pathology in senescence-accelerated prone-8 (SAMP8) mice. J. Biomed. Res. 2012, 26, 439–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, J.; Nagah, S.S.; Rajabian, A.; Saburi, E.; Hajali, V. The effect of combination pretreatment of donepezil and environmental enrichment on memory deficits in amyloid-beta-induced Alzheimer-like rat model. Biochem. Biophys. Rep. 2022, 32, 101392. [Google Scholar] [CrossRef] [PubMed]
- Stazi, M.; Zampar, S.; Klafki, H.-W.; Meyer, T.; Wirths, O. A Combination of Caffeine Supplementation and Enriched Environment in an Alzheimer’s disease Mouse Model. Int. J. Mol. Sci. 2023, 24, 2155. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.S.; Ayo, J.O.; Danjuma, N.M.; AbdulWahab, A.; Isa, A.S.; Umar, A.H. Modulation of Memory and Neurochemical Changes by Resveratrol and Environmental Enrichment in Rodent Model of Alzheimer’s disease. Niger. J. Physiol. Sci. 2022, 37, 59–67. [Google Scholar] [CrossRef]
- Liu, E.; Zhou, Q.; Xie, A.-J.; Li, M.; Zhang, S.; Huang, H.; Liuyang, Z.; Wang, Y.; Liu, B.; Li, X.; et al. Enriched gestation activates the IGF pathway to evoke embryo-adult benefits to prevent Alzheimer’s disease. Transl. Neurodegener. 2019, 8, 8. [Google Scholar] [CrossRef]
- Campbell, S.N.; Zhang, C.; Monte, L.; Roe, A.D.; Rice, K.C.; Taché, Y.; Masliah, E.; Rissman, R.A. Increased Tau Phosphorylation and Aggregation in the Hippocampus of Mice Overexpressing Corticotropin-Releasing Factor. J. Alzheimer’s Dis. 2015, 43, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.C.; Iba, M.; Bangasser, D.A.; Valentino, R.J.; James, M.J.; Brunden, K.R.; Lee, V.M.-Y.; Trojanowski, J.Q. Chronic Stress Exacerbates Tau Pathology, Neurodegeneration, and Cognitive Performance through a Corticotropin-Releasing Factor Receptor-Dependent Mechanism in a Transgenic Mouse Model of Tauopathy. J. Neurosci. 2011, 31, 14436–14449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Sex- and brain region-specific acceleration of b-amyloidogenesis following behavioral stress in a mouse model of Alzheimer’s disease. Mol. Brain 2010, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Wang, J.-H.; Geng, Y.; Shen, L.; Wang, H.-L.; Wang, Y.-Y.; Wang, M.-W. Chronic Stress Contributes to Cognitive Dysfunction and Hippocampal Metabolic Abnormalities in APP/PS1 Mice. Cell. Physiol. Biochem. 2017, 41, 1766–1776. [Google Scholar] [CrossRef]
- Joshi, Y.B.; Chu, J.; Praticò, D. Stress Hormone Leads to Memory Deficits and Altered Tau Phosphorylation in a Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2012, 31, 167–176. [Google Scholar] [CrossRef]
- Justice, N.J.; Huang, L.; Tian, J.-B.; Cole, A.; Pruski, M.; Hunt, A.J.J.; Flores, R.; Zhu, M.X.; Arenkiel, B.R.; Zheng, H. Posttraumatic Stress Disorder-Like Induction Elevates b-Amyloid Levels, Which Directly Activates Corticotropin-Releasing Factor Neurons to Exacerbate Stress Responses. J. Neurosci. 2015, 35, 2612–2623. [Google Scholar] [CrossRef] [Green Version]
- Rothman, S.M.; Herdener, N.; Frankola, K.A.; Mughal, M.R.; Mattson, M.P. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Ab and pTau in a mouse model of Alzheimer’s disease. Brain Res. 2013, 1529, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Srivareerat, M.; Tran, T.T.; Alzoubi, K.H.; Alkadhi, K.A. Chronic Psychosocial Stress Exacerbates Impairment of Cognition and Long-Term Potentiation in b-Amyloid Rat Model of Alzheimer’s disease. Biol. Psychiatry 2009, 65, 918–926. [Google Scholar] [CrossRef]
- Dong, H.; Yuede, C.M.; Yoo, H.-S.; Martin, M.V.; Deal, C.; Mace, A.G.; Csernansky, J.G. Corticosterone and Related Receptor Expression are Associated with Increased β-Amyloid Plaques in Isolated Tg2576 Mice. Neuroscience 2008, 155, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-W.; Kim, J.-B.; Seo, J.-S.; Kim, T.-K.; Im, J.-Y.; Baek, I.-S.; Kim, K.-S.; Lee, J.-K.; Han, P.-L. Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J. Neurochem. 2008, 108, 165–175. [Google Scholar] [CrossRef] [PubMed]
- AbdAlla, S.; el Hakim, A.; Abdelbaset, A.; Elfaramawy, Y.; Quitterer, U. Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress. BioMed Res. Int. 2015, 2015, 917156. [Google Scholar] [CrossRef] [Green Version]
- Brice, K.N.; Hagen, C.W.; Peterman, J.L.; Figg, J.W.; Braden, P.N.; Chumley, M.J.; Boehm, G.W. Chronic sleep restriction increases soluble hippocampal Aβ-42 and impairs cognitive performance. Physiol. Behav. 2020, 226, 113128. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, J.; Yang, L.; Zeng, X.-A.; Zhang, Y.; Wang, X.; Chen, M.; Li, X.; Zhang, Y.; Zhang, M. Sleep deprivation accelerates the progression of Alzheimer’s disease by influencing Aβ-related metabolism. Neurosci. Lett. 2017, 650, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Gong, W.-G.; Wang, Y.-J.; Sun, J.-J.; Zhou, H.; Zhang, Z.-J.; Ren, Q.-G. Escitalopram alleviates stress-induced Alzheimer’s disease-like tau pathologies and cognitive deficits by reducing HPA-axis reactivity and insulin/GSK-3β signal pathway activity. Neurobiol. Aging 2018, 67, 137–147. [Google Scholar] [CrossRef]
- Yang, C.; Guo, X.; Wang, G.H.; Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress. Braz. J. Med. Biol. Res. 2014, 47, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, X.; Xiao, A.; Han, J.; Wang, Z.; Wen, M. Ketogenic diet prevents chronic sleep deprivation-induced Alzheimer’s disease by inhibiting iron dyshomeostasis and promoting repair via Sirt1/Nrf2 pathway. Front. Aging Neurosci. 2022, 14, 998292. [Google Scholar] [CrossRef]
- Cuadrado-Tejedor, M.; García-Osta, A. Chronic Mild Stress Assay Leading to Early Onset and Propagation of Alzheimer’s Disease Phenotype in Mouse Models. Syst. Biol. Alzheimer’s Dis. 2016, 1303, 241–246. [Google Scholar] [CrossRef]
- Cuadrado-Tejedor, M.; Ricobaraza, A.; Frechilla, D.; Franco, R.; Pérez-Mediavilla, A.; García-Osta, A. Chronic Mild Stress Accelerates the Onset and Progression of Alzheimer’s Disease Phenotype in Tg2576 Mice. J. Alzheimer’s Dis. 2012, 28, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yuan, J.; Pang, J.; Ma, J.; Han, B.; Geng, Y.; Shen, L.; Wang, H.; Ma, Q.; Wang, Y.; et al. Effects of Chronic Stress on Cognition in Male SAMP8 Mice. Cell. Physiol. Biochem. 2016, 39, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Cortese, A.; Delgado-Morales, R.; Almeida, O.F.X.; Romberg, C. The Arctic/Swedish APP mutation alters the impact of chronic stress on cognition in mice. Eur. J. Neurosci. 2019, 50, 2773–2785. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Yu, L.; Geng, Y.; Shen, L.; Wang, H.; Wang, Y.; Wang, J.; Wang, M. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice. J. Alzheimer’s Dis. 2016, 53, 1539–1552. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.; Dai, X.; Xiao, N.; Ye, Q.; Chen, X. ApoE4 increases susceptibility to stress-induced age-dependent depression-like behavior and cognitive impairment. J. Psychiatr. Res. 2021, 143, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, S.; Yang, X.; Li, W.; Si, J.; Yang, X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci. Lett. 2022, 774, 136474. [Google Scholar] [CrossRef]
- Sethi, M.; Joshi, S.S.; Webb, R.L.; Beckett, T.L.; Donohue, K.D.; Murphy, M.P.; O’Hara, B.F.; Duncan, M.J. Increased fragmentation of sleep-wake cycles in the 5xFAD mouse model of Alzheimer’s disease. Neuroscience 2015, 290, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Kincheski, G.C.; Valentim, I.S.; Clarke, J.R.; Cozachenco, D.; Castelo-Branco, M.T.L.; Ramos-Lobo, A.M.; Rumjanek, V.M.B.D.; Donato, J.J.; De Felice, F.G.; Ferreira, S.T. Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-β oligomers in mice. Brain Behav. Immun. 2017, 64, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Meng, Y.; Wang, N.; Lei, Q.; He, L.; Hong, X.; Li, Z. Disturbance of REM sleep exacerbates microglial activation in APP/PS1 mice. Neurobiol. Learn. Mem. 2023, 200, 107737. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, W.-R.; Yin, J.; Wang, Z.-J.; Qi, J.-S.; Cai, H.-Y.; Wu, M.-N. Chronic sleep deprivation exacerbates cognitive and synaptic plasticity impairments in APP/PS1 transgenic mice. Behav. Brain Res. 2021, 412, 113400. [Google Scholar] [CrossRef] [PubMed]
- Holth, J.K.; Mahan, T.E.; Robinson, G.O.; Rocha, A.; Holtzman, D.M. Altered sleep and EEG power in the P301S Tau transgenic mouse model. Ann. Clin. Transl. Neurol. 2017, 4, 180–190. [Google Scholar] [CrossRef]
- Liu, S.; Lei, Q.; Liu, Y.; Zhang, X.; Li, Z. Acoustic Stimulation Improves Memory and Reverses the Contribution of Chronic Sleep Deprivation to Pathology in 3xTgAD Mice. Brain Sci. 2022, 12, 1509. [Google Scholar] [CrossRef] [PubMed]
- Di Meco, A.; Joshi, Y.B.; Praticò, D. Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer’s disease with plaques and tangles. Neurobiol. Aging 2014, 35, 1813–1820. [Google Scholar] [CrossRef]
- Roh, J.H.; Jiang, H.; Finn, M.B.; Stewart, F.R.; Mahan, T.E.; Cirrito, J.R.; Heda, A.; Snider, B.J.; Li, M.; Yanagisawa, M.; et al. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J. Exp. Med. 2014, 211, 2487–2496. [Google Scholar] [CrossRef]
- Kang, J.-E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid-β Dynamics are Regulated by Orexin and the Sleep-Wake Cycle. Science 2009, 326, 1005–1007. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Zhong, R.; Liu, H.; Zhang, F.; Li, S.; Le, W. Chronic Sleep Deprivation Exacerbates Learning-Memory Disability and Alzheimer’s Disease-Like Pathologies in AβPPSWE/PS1ΔE9 Mice. J. Alzheimer’s Dis. 2016, 50, 669–685. [Google Scholar] [CrossRef]
- Minakawa, E.N.; Miyazaki, K.; Maruo, K.; Yagihara, H.; Fujita, H.; Wada, K.; Nagai, Y. Chronic sleep fragmentation exacerbates amyloid β deposition in Alzheimer’s disease model mice. Neurosci. Lett. 2017, 653, 362–369. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, F.; Xu, X.; Yang, Y.; Li, S.; Liu, H.; Le, W. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol. 2021, 32, e13028. [Google Scholar] [CrossRef]
- Sierksma, A.S.R.; Prickaerts, J.; Chouliaras, L.; Rostamian, S.; Delbroek, L.; Rutten, B.P.F.; Steinbusch, H.W.M.; van den Hove, D.L.A. Behavioral and neurobiological effects of prenatal stress exposure in male and female APPswe/PS1dE9 mice. Neurobiol. Aging 2013, 34, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, T.; Wang, M.; Zhang, F.; Zhang, G.; Zhao, J.; Zhang, Y.; Wu, E.; Li, X. Icariin Attenuates M1 Activation of Microglia and Aβ Plaque Accumulation in the Hippocampus and Prefrontal Cortex by Up-Regulating PPARγ in Restraint/Isolation-Stressed APP/PS1 Mice. Front. Neurosci. 2019, 13, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunimoto, S.; Nakamura, S.; Wada, K.; Inoue, T. Chronic stress-mutated presenilin 1 gene interaction perturbs neurogenesis and accelerates neurodegeneration. Exp. Neurol. 2010, 221, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-E.; Cirrito, J.R.; Dong, H.; Holtzman, D.M. Acute stress increases intersticial fluid amyloid-β via corticotropin-releasing factor and neuronal activity. Proc. Natl. Acad. Sci. USA 2007, 104, 10673–10678. [Google Scholar] [CrossRef]
- Perez Nievas, B.G.; Hammerschmidt, T.; Kummer, M.P.; Terwel, D.; Leza, J.C.; Heneka, M.T. Restraint stress increases neuroinflammation independently of amyloid β levels in amyloid precursor protein/PS1 transgenic mice. J. Neurochem. 2010, 116, 43–52. [Google Scholar] [CrossRef]
- Joshi, Y.B.; Giannopoulos, P.F.; Chu, J.; Sperow, M.; Kirby, L.G.; Abood, M.E.; Praticò, D. Absence of ALOX5 gene prevents stress-induced memory deficits, synaptic dysfunction and tauopathy in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 2014, 23, 6894–6902. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.H.; Park, C.H.; Yoo, J.; Shin, K.Y.; Ahn, S.-M.; Kim, H.-S.; Lee, S.H.; Emson, P.C.; Suh, Y.H. Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV7171-CT100 transgenic mice, an Alzheimer’s disease mom. FASEB J. 2006, 20, 587–802. [Google Scholar] [CrossRef] [Green Version]
- Vicens, P.; Heredia, L.; Torrente, M.; Domingo, J.L. Behavioural effects of PNU-282987 and stress in an animal model of Alzheimer’s disease. Psychogeriatrics 2006, 17, 33–42. [Google Scholar] [CrossRef]
- Yuan, Q.; Su, H.; Chau, W.-H.; Ng, C.T.; Huang, J.-D.; Wu, W.; Lin, Z.-X. Behavioral Stress Fails to Accelerate the Onset and Progression of Plaque Pathology in the Brain of a Mouse Model of Alzheimer’s disease. Public Libr. Sci. One 2013, 8, e53480. [Google Scholar] [CrossRef] [Green Version]
- Pentkowski, N.S.; Bouquin, S.J.; Maestas-Olguin, C.R.; Villasenor, Z.M.; Clark, B.J. Differential effects of chronic stress on anxiety-like behavior and contextual fear conditioning in the TgF344-AD rat model of Alzheimer’s disease. Behav. Brain Res. 2022, 418, 113661. [Google Scholar] [CrossRef]
- Hui, J.; Feng, G.; Zheng, C.; Jin, H.; Jia, N. Maternal separation exacerbates Alzheimer’s disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice. Behav. Brain Res. 2017, 318, 18–23. [Google Scholar] [CrossRef]
- Tanaka, T.; Hirai, S.; Hosokawa, M.; Saito, T.; Sakuma, H.; Saido, T.; Hasegawa, M.; Okado, H. Early-life stress induces the development of Alzheimer’s disease pathology via angiopathy. Exp. Neurol. 2021, 337, 113552. [Google Scholar] [CrossRef]
- Bachiller, S.; Hidalgo, I.; Garcia, M.G.; Boza-Serrano, A.; Paulus, A.; Denis, Q.; Haikal, C.; Manouchehrian, O.; Klementieva, O.; Li, J.Y.; et al. Early-life stress elicits peripheral and brain immune activation differently in wild type and 5xFAD mice in a sex-specific manner. J. Neuroinflammation 2022, 19, 151. [Google Scholar] [CrossRef]
- de Jonge, W.J. The gut’s little brain in control of intestinal immunity. Int. Sch. Res. Not. 2013, 2013, 630159. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 2004, 558, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.H.; Hofer, M.A.; Weiner, H. Early maternal separation increases gastric ulcer risk in rats by producing a latent thermoregulatory disturbance. Science 1978, 201, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014, 20, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhou, M.; Wang, J.; Yao, J.; Yu, J.; Liu, W.; Wu, L.; Wang, J.; Gao, R. Involvement of the microbiota-gut-brain axis in chronic restraint stress: Disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes 2021, 13, 1869501. [Google Scholar] [CrossRef]
- Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The central nervous system and the gut microbiome. Cell 2016, 167, 915–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 2017, 33, 194–201. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A.J.; Green, W.; Denou, E.; Silva, M.A.; Santacruz, A.; Sanz, Y.; et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 2015, 6, 7735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya-Pérez, A.; Perez-Villalba, A.; Benítez-Páez, A.; Campillo, I.; Sanz, Y. Bifidobacterium CECT 7765 modulates early stress-induced immune neuroendocrine and behavioral alterations in mice. Brain Behav. Immun. 2017, 65, 43–56. [Google Scholar] [CrossRef]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Cowan, C.S.; Callaghan, B.L.; Richardson, R. The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl. Psychiatry 2016, 6, e823. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Y.; Li, M.; Li, X.; Long, X.; Zuo, X.L.; Hou, X.H.; Cong, Y.Z.; Li, Y.Q. Visceral hypersensitive rats share common dysbiosis features with irritable bowel syndrome patients. World J. Gastroenterol. 2016, 22, 5211–5227. [Google Scholar] [CrossRef]
- Lingpeng, P.; Jingzhu, S.; Wei, L.; Enqi, W.; Yaqin, L. Effect of water extracts from Cynanchum thesioides (Freyn) K. Schum. On visceral hypersensitivity and gut microbiota profile in maternally separated rats. J. Ethnopharmacol. 2021, 264, 113352. [Google Scholar] [CrossRef]
- Dodiya, H.B.; Forsyth, C.B.; Voigt, R.M.; Engen, P.A.; Patel, J.; Shaikh, M.; Green, S.J.; Naqib, A.; Roy, A.; Kordower, J.H.; et al. Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol. Dis. 2020, 135, 104352. [Google Scholar] [CrossRef]
- Ji, S.; Han, S.; Yu, L.; Du, L.; You, Y.; Chen, J.; Wang, M.; Wu, S.; Li, S.; Sun, X.; et al. Jia Wei Xiao Yao San ameliorates chronic stress-induced depression-like behaviors in mice by regulating the gut microbiome and brain metabolome in relation to purine metabolism. Phytomedicine 2022, 98, 153940. [Google Scholar] [CrossRef]
- Vorvul, A.O.; Bobyntsev, I.I.; Medvedeva, O.A.; Mukhina, A.Y.; Svishcheva, M.V.; Azarova, I.E.; Andreeva, L.A.; Myasoedov, N.F. ACTH (6-9)-Pro-Gly-Pro ameliorates anxiety-like and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress. Neuropeptides 2022, 93, 102247. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Duan, W.; Zhao, Z.; Yang, L.; Wei, W.; Li, J.; Li, Y.; Yu, Y.; Dai, B.; et al. Shugan granule contributes to the improvement of depression-like behaviors in chronic restraint stress-stimulated rats by altering gut microbiota. CNS Neurosci. Ther. 2022, 28, 1409–1424. [Google Scholar] [CrossRef]
- Medel-Matus, J.S.; Shin, D.; Dorfman, E.; Sankar, R.; Mazarati, A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 2018, 3, 290–294. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Shu, R.; Wu, C.; Tong, Y.; Xiong, Z.; Zhou, J.; Yu, C.; Xie, X.; Fu, Z. Crocin-I alleviates the depression-like behaviors probably via modulating “microbiota-gut-brain” axis in mice exposed to chronic restraint stress. J. Affect. Disord. 2020, 276, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhan, G.; Chen, R.; Wang, D.; Guan, S.; Xu, H. Gut microbiota and its role in stress-induced hyperalgesia: Gender-specific responses linked to different changes in serum metabolites. Pharmacol. Res. 2022, 177, 106129. [Google Scholar] [CrossRef]
- Gispen-de Wied, C.C.; D’Haenen, H.; Verhoeven, W.M.; Wynne, H.J.; Westenberg, H.G.; Thijssen, J.H.; Van Ree, J.M. Inhibition of the pituitary-adrenal axis with dexamethasone and cortisol in depressed patients and healthy subjects: A dose-response study. Psychoneuroendocrinology 1993, 18, 191–204. [Google Scholar] [CrossRef]
- Barreau, F.; Cartier, C.; Leveque, M.; Ferrier, L.; Moriez, R.; Laroute, V.; Rosztoczy, A.; Fioramonti, J.; Bueno, L. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: Corticotropin-releasing factor and nerve growth factor interplay. J. Physiol. 2007, 580 Pt 1, 347–356. [Google Scholar] [CrossRef]
- la Fleur, S.E.; Wick, E.C.; Idumalla, P.S.; Grady, E.F.; Bhargava, A. Role of peripheral corticotropin-releasing factor and urocortin II in intestinal inflammation and motility in terminal ileum. Proc. Natl. Acad. Sci. USA 2005, 102, 7647–7652. [Google Scholar] [CrossRef]
- Plotsky, P.M.; Thrivikraman, K.V.; Meaney, M.J. Central and feedback regulation of hypothalamic corticotropin-releasing factor secretion. Ciba Found. Symp. 1993, 172, 59–84. [Google Scholar] [CrossRef]
- Chatzaki, E.; Charalampopoulos, I.; Leontidis, C.; Mouzas, I.A.; Tzardi, M.; Tsatsanis, C.; Margioris, A.N.; Gravanis, A. Urocortin in human gastric mucosa: Relationship to inflammatory activity. J. Clin. Endocrinol. Metab. 2003, 88, 478–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohno, M.; Kawahito, Y.; Tsubouchi, Y.; Hashiramoto, A.; Yamada, R.; Inoue, K.I.; Kusaka, Y.; Kubo, T.; Elenkov, I.J.; Chrousos, G.P.; et al. Urocortin expression in synovium of patients with rheumatoid arthritis and osteoarthritis: Relation to inflammatory activity. J. Clin. Endocrinol. Metab. 2001, 86, 4344–4352. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011, 25, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.W.; Liu, W.H.; Wu, C.C.; Juan, Y.C.; Wu, Y.C.; Tsai, H.P.; Wang, S.; Tsai, Y.C. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 2016, 1631, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kuti, D.; Winkler, Z.; Horváth, K.; Juhász, B.; Paholcsek, M.; Stágel, A.; Gulyás, G.; Czeglédi, L.; Ferenczi, S.; Kovács, K.J. Gastrointestinal (non-systemic) antibiotic rifaximin differentially affects chronic stress-induced changes in colon microbiome and gut permeability without effect on behavior. Brain Behav. Immun. 2020, 84, 218–228. [Google Scholar] [CrossRef]
- Amini-Khoei, H.; Haghani-Samani, E.; Beigi, M.; Soltani, A.; Mobini, G.R.; Balali-Dehkordi, S.; Haj-Mirzaian, A.; Rafieian-Kopaei, M.; Alizadeh, A.; Hojjati, M.R.; et al. On the role of corticosterone in behavioral disorders, microbiota composition alteration and neuroimmune response in adult male mice subjected to maternal separation stress. Int. Immunopharmacol. 2019, 66, 242–250. [Google Scholar] [CrossRef]
- Ilchmann-Diounou, H.; Olier, M.; Lencina, C.; Riba, A.; Barretto, S.; Nankap, M.; Sommer, C.; Guillou, H.; Ellero-Simatos, S.; Guzylack-Piriou, L.; et al. Early life stress induces type 2 diabetes-like features in ageing mice. Brain Behav. Immun. 2019, 80, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Riba, A.; Olier, M.; Lacroix-Lamandé, S.; Lencina, C.; Bacquié, V.; Harkat, C.; Van Langendonck, N.; Gillet, M.; Cartier, C.; Baron, M.; et al. Early life stress in mice is a suitable model for Irritable Bowel Syndrome but does not predispose to colitis nor increase susceptibility to enteric infections. Brain Behav. Immun. 2018, 73, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Gareau, M.G.; Jury, J.; MacQueen, G.; Sherman, P.M.; Perdue, M.H. Probiotic treatment of rat pups normalizes corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 2007, 56, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Dandekar, M.P.; Palepu, M.S.K.; Satti, S.; Jaiswal, Y.; Singh, A.A.; Dash, S.P.; Gajula, S.N.R.; Sonti, R. Multi-strain Probiotic Formulation Reverses Maternal Separation and Chronic Unpredictable Mild Stress-Generated Anxiety- and Depression-like Phenotypes by Modulating Gut Microbiome-Brain Activity in Rats. ACS Chem. Neurosci. 2022, 13, 1948–1965. [Google Scholar] [CrossRef]
- Enqi, W.; Jingzhu, S.; Lingpeng, P.; Yaqin, L. Comparison of the Gut Microbiota Disturbance in Rat Models of Irritable Bowel Syndrome Induced by Maternal Separation and Multiple Early-Life Adversity. Front. Cell. Infect. Microbiol. 2021, 10, 581974. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, S.A.; Kang, W.S.; Kim, J.W. Early-Life Stress Modulates Gut Microbiota and Peripheral and Central Inflammation in a Sex-Dependent Manner. Int. J. Mol. Sci. 2021, 22, 1899. [Google Scholar] [CrossRef]
- Egerton, S.; Donoso, F.; Fitzgerald, P.; Gite, S.; Fouhy, F.; Whooley, J.; Dinan, T.G.; Cryan, J.F.; Culloty, S.C.; Ross, R.P.; et al. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr. Neurosci. 2022, 25, 356–378. [Google Scholar] [CrossRef]
- Fukui, H.; Oshima, T.; Tanaka, Y.; Oikawa, Y.; Makizaki, Y.; Ohno, H.; Tomita, T.; Watari, J.; Miwa, H. Effect of probiotic Bifidobacterium bifidum G9-1 on the relationship between gut microbiota profile and stress sensitivity in maternally separated rats. Sci. Rep. 2018, 8, 12384. [Google Scholar] [CrossRef] [PubMed]
- Rincel, M.; Darnaudéry, M. Maternal separation in rodents: A journey from gut to brain and nutritional perspectives. Proc. Nutr. Soc. 2019, 79, 113–132. [Google Scholar] [CrossRef]
- Chen, T.; Wang, R.; Duan, Z.; Yuan, X.; Ding, Y.; Feng, Z.; Bu, F.; Liu, L.; Wang, Q.; Zhou, J.; et al. Akkermansia muciniphila Protects Against Psychological Disorder-Induced Gut Microbiota-Mediated Colonic Mucosal Barrier Damage and Aggravation of Colitis. Front. Cell. Infect. Microbiol. 2021, 11, 723856. [Google Scholar] [CrossRef]
- Lin, S.; Li, Q.; Jiang, S.; Xu, Z.; Jiang, Y.; Liu, L.; Jiang, J.; Tong, Y.; Wang, P. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. J. Ethnopharmacol. 2021, 268, 113608. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.; Zhang, S.; Zhu, D.; Dong, Y.; Shan, J.; Xie, T.; Wen, H.; Di, L. Gut microbiota in the pharmacokinetics and colonic deglycosylation metabolism of ginsenoside Rb1 in rats: Contrary effects of antimicrobials treatment and restraint stress. Chem. Biol. Interact. 2016, 258, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Cho, J.H.; Whary, M.T.; Philpott, D.J.; Macqueen, G.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011, 60, 307–317. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, L.J.; Zhang, L.J. Neuroinflammation, gut microbiome, and Alzheimer’s disease. Mol. Neurobiol. 2018, 55, 8243–8250. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Fornai, M.; D’Antongiovanni, V.; Antonioli, L.; Bernardini, N.; Derkinderen, P. The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol. Hepatol. 2023, 8, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.T.; Coe, C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 1999, 35, 146–155. [Google Scholar] [CrossRef]
- Liang, S.; Wang, T.; Hu, X.; Luo, J.; Li, W.; Wu, X.; Jin, F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015, 310, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Sayas, C.L.; Avila, J. GSK-3 and tau: A key duet in Alzheimer’s disease. Cells 2021, 10, 721. [Google Scholar] [CrossRef]
- Kesika, P.; Suganthy, N.; Sivamaruthi, B.S.; Chaiyasut, C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci. 2021, 264, 118627. [Google Scholar] [CrossRef] [PubMed]
- Generoso, J.S.; Giridharan, V.V.; Lee, J.; Macedo, D.; Barichello, T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Rev. Bras. De Psiquiatr. 2021, 43, 293–305. [Google Scholar] [CrossRef]
- Zhao, Y.; Lukiw, W.J. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J. Nat. Sci. 2015, 1, e138. [Google Scholar]
- McKernan, D.P.; Nolan, A.; Brint, E.K.; O’Mahony, S.M.; Hyland, N.P.; Cryan, J.F.; Dinan, T.G. Toll-like receptor mRNA expression is selectively increased in the colonic mucosa of two animal models relevant to irritable bowel syndrome. PLoS ONE 2009, 4, e8226. [Google Scholar] [CrossRef] [Green Version]
- Sanders, M.E.; Heimbach, J.T.; Pot, B.; Tancredi, D.J.; Lenoir-Wijnkoop, I.; Lahteenmaki-Uutela, A.; Gueimonde, M.; Bañares, S. Health claims substantiation for probiotic and prebiotic products. Gut Microbes 2011, 2, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.P.; Sutherland, D.; Hewlett, P. An Investigation of the Acute Effects of Oligofructose-Enriched Inulin on Subjective Wellbeing, Mood and Cognitive Performance. Nutrients 2015, 7, 8887–8896. [Google Scholar] [CrossRef]
- Xue, L.; He, J.; Gao, N.; Lu, X.; Li, M.; Wu, X.; Liu, Z.; Jin, Y.; Liu, J.; Xu, J.; et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci. Rep. 2017, 7, 45176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693 Pt B, 128–133. [Google Scholar] [CrossRef]
- Arseneault-Bréard, J.; Rondeau, I.; Gilbert, K.; Girard, S.A.; Tompkins, T.A.; Godbout, R.; Rousseau, G. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr. 2012, 107, 1793–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillisch, K.; Labus, J.; Kilpatrick, L.; Jiang, Z.; Stains, J.; Ebrat, B.; Guyonnet, D.; Legrain-Raspaud, S.; Trotin, B.; Naliboff, B.; et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013, 144, 1394–1401. [Google Scholar] [CrossRef] [Green Version]
- Flynn, C.M.; Yuan, Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front. Neurosci. 2023, 17, 1159314. [Google Scholar] [CrossRef]
- Savignac, H.M.; Corona, G.; Mills, H.; Chen, L.; Spencer, J.P.; Tzortzis, G.; Burnet, P.W. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem. Int. 2013, 63, 756–764. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, E.; Barrett, E.; Grenham, S.; Fitzgerald, P.; Stanton, C.; Ross, R.P.; Quigley, E.M.; Cryan, J.F.; Dinan, T.G. BDNF expression in the hippocampus of maternally separated rats: Does Bifidobacterium breve 6330 alter BDNF levels? Benef. Microbes 2011, 2, 199–207. [Google Scholar] [CrossRef]
- Roy Sarkar, S.; Banerjee, S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 2019, 328, 98–104. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.T. Dysfunction of the Microbiota-Gut-Brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation with Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. J. Evid. Based Integr. Med. 2020, 25, 2515690x20957225. [Google Scholar] [CrossRef]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra, E.; Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxidative Med. Cell. Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Srivastava, S.; Kakkar, P. Bacopa monnieri modulates antioxidant responses in brain and kidney of diabetic rats. Environ. Toxicol. Pharmacol. 2009, 27, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Kuboyama, T.; Tohda, C.; Komatsu, K. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol. Pharm. Bull. 2014, 37, 892–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.K.; Bhattacharya, A.; Kumar, A.; Ghosal, S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother. Res. PTR 2000, 14, 174–179. [Google Scholar] [CrossRef]
- Garcez, M.L.; Falchetti, A.C.B.; Mina, F.; Budni, J. Alzheimer’s disease associated with Psychiatric Comorbidities. Ann. Braz. Acad. Sci. 2015, 87, 1461–1473. [Google Scholar] [CrossRef] [Green Version]
Enrichment Paradigm | Animal Model | Findings | Reference |
---|---|---|---|
Cognitive Enrichment | 3xTg-AD (both sexes—mouse) | Repeated spatial learning training reduced cognitive decline in a separate spatial task | [64] |
Environmental Enrichment | E257K/P301S-Tau-Tg (both sexes—mice) | Increased neurogenesis Improved cognition Reduced tau pathology | [59] |
apoE4 (male—mouse) | Improved neurogenesis in apoE3 controls Worsened in apoE4 animals | [108] | |
APPswe/PS1ΔE9 (female—mice) | Increased Aβ burden | [109] | |
APPSw,Ind (female—mouse) | Improved cognitive performance Increased neurogenesis | [63] | |
APPswe/PS1ΔE9 (male—mice) | Increased neurogenesis Reduced Aβ and ptau | [69] | |
Environmental Enrichment | TgCRND8 (female—mouse) | Increased neurogenesis Reduced Aβ burden | [70] |
Aβ1-42 infusion at CA1 (male—rat) | Improved neurogenesis in Aβ animals | [71] | |
5xFAD (male—mouse) | Reversed cell death and reduced neurogenesis of Aβ seeded animals | [72] | |
Tg4-42hom (both sexes—mouse) | Preserved spatial and recognition memory | [74] | |
AD11 (both sexes—mouse) | Improved memory and reduced Aβ burden | [75] | |
oAβ intraventricular injection (male—mouse) | Prevented Aβ-mediated changes in microglia and inflammatory gene mRNA | [76] | |
PDBFG-APPSwlnd (both sexes—mouse) | Improved spatial memory Reduced Aβ burden | [77] | |
Tg2576 (female—mouse) | Reversed parvalbumin deficit | [78] | |
SAMP8 (male—mouse) | Increased spatial memory Increased synaptic plasticity Reduced apoptosis Reduced Aβ burden | [79] | |
Chronic cerebral hypoperfusion (male—rat) | Improved spatial memory Reduced inflammation | [80] | |
5xFAD (female—mouse) | Increased exploration Reduced cognitive deficits Reduced AD pathological markers | [81] | |
APPswe/PS1ΔE9 (male—mouse) | Reduced Aβ deposition Increased Aβ-degrading enzymes | [82] | |
PS1/PDAPP (both sexes—mouse) | Increased cognitive performance Reduced Aβ burden | [83] | |
APP23 (male—mouse) | Improved spatial memory at 7–8 mo. Reduced Aβ deposition by 18 mo. | [88] | |
High sucrose or high-fat diet (male—rat) | High sucrose and fat diets increased AD pathology Enrichment returned to control levels | [84] | |
APPSwe,Ind, high-fat diet (both sexes—mouse) | High-fat diet worsened memory and pathology Ameliorated by enrichment | [85] | |
Environmental Enrichment | Tg2576 (female—mouse) | Protective against cognitive decline and Aβ but did not rescue later | [89] |
3xTg-AD (both sexes—mouse) | Improved immune system activity for males | [87] | |
APPswe/PS1ΔE9 (male—mouse) | Improved synaptic health but not cognitive abilities | [95] | |
5xFAD (male—mouse) | Prevented learning impairment Increased synaptic plasticity Reduced inflammation | [96] | |
3xTg-AD (female—mouse) | Reduced anxiety-like behaviour | [97] | |
TgCRND8 (female—mouse) | Improved exploratory behaviour Reduced anxiety-like behaviour No memory improvement | [98] | |
5xFAD (female—mouse) | Increased survival rate Improved motor skills No improvement of anxiety, Aβ, or inflammation | [99] | |
APPswe/PS1ΔE9 (male—mouse) | Improved short-term spatial memory Prevented increases in inflammation | [100] | |
APP/PS1KI (female—mouse) | Mild improvement in motor skills No changes to memory, Aβ, or neuronal loss | [101] | |
SHR72 (male—rat) | Improved motor skills Mildly improved inflammation Did not influence ptau | [102] | |
APPsw (both sexes—mouse) | Increased spatial memory despite continued Aβ deposition | [103] | |
PDAPP-J20 (female—mouse) | Reduced Aβ Improved astroglial response toward plaques | [104] | |
3xTg-AD (both sexes—mouse) | Mild improvements to spatial learning in advanced stages | [105] | |
SHR72 (male—rat) | Increased spatial memory performance Reduced ptau in mild cases | [106] | |
APPswe/PS1ΔE9 (female—mouse) | Improved spatial memory Reduced Aβ deposition | [107] | |
APPSwe/PS1L166P (female—mouse) | Reduced spatial memory impairment Worsened Aβ deposition | [110] | |
APPswe/PS1ΔE9 (male—mouse) | Improved spatial memory Reduced Aβ in motor and sensory cortices | [111] | |
Physical Enrichment | APPswe/PS1ΔE9 (male—mouse) | Improved cognition Reduced inflammation | [65] |
Environmental and Physical Enrichment | APP23 (female—mouse) | At 18 mo. time point, both enrichment types reduced Aβ and increased neurogenesis | [66] |
3xTg-AD (both sexes—mouse) | EE alone reduced inflammation Combined EE and PE reduced to control levels | [67] | |
3xTg-AD (both sexes—mouse) | Both enrichment types reversed deficits in neurogenesis | [61] | |
Environmental, Physical, and Social Enrichment | Aβ infusion at CA1 (male—rat) | EE and PE prevent memory impairment SE prevents social recognition impairment | [60] |
APP/PS1 (both sexes—mouse) | EE alone prevented cognitive impairment, reduced Aβ, and increased synaptic plasticity | [86] | |
Environmental Enrichment with B. breve | Aβ1-42 infusion at hippocampus (male—mouse) | Combined treatment rescues impaired cognitive performance | [113] |
Environmental Enrichment with Magnesium | APPswe/PS1ΔE9 (female–mouse) | EE alone improved short-term memory Combined treatment with MgT improved long-term memory | [112] |
Environmental Enrichment with Resveratrol | AlCl3 (male—mouse) | Both treatments individually reduced Aβ Combined treatment worsened | [117] |
Environmental Enrichment with Caffeine | Tg4-42 (both sexes—mouse) | Combined treatment improved spatial memory, but did not add to individual effects of EE or Caf alone on motor skills, recognition, or neurogenesis | [116] |
Environmental Enrichment with Donepezil | Aβ1-42 infusion at hippocampus (male—rat) | Combined treatment only was able to restore spatial memory and elevate BDNF to control levels | [115] |
Environmental Enrichment with Memantine | SAMP8 (male—mouse) | Both treatment options effective, but more so when combined, at improving spatial memory and reducing ptau and Aβ | [114] |
Gestational Enrichment | 3xTg-AD (both sexes—mouse) | Offspring of enriched dams had preserved synaptic plasticity and memory | [118] |
5xFAD (female—mouse) | While pregnancy and lactation worsen Aβ and neurogenesis, EE rescues to non-pregnant levels | [90] | |
Neonatal Handling | 3xTg-AD (both sexes—mouse) | Handling provided mild protective effects against spatial memory decline, especially in females | [93] |
3xTg-AD (both sexes—mouse) | Handling improved performance in forced swim test | [92] | |
Environmental Enrichment and Maternal Separation | htauE14 infusion at locus coeruleus (both sexes—rat) | EE reduced anxiety-like behaviour Both types of enrichment improved spatial recall | [62] |
Environmental Enrichment and Stress | Tg2576 (female—mouse) | EE counteracted spatial memory deficits induced by stress, reduced ptau, and improved neurogenesis | [73] |
Olfactory Enrichment | WT (male—rat) | Long-term, but not short-term enrichment reduced ptau | [94] |
Environmental and Social Enrichment | Tg-SwDI (female—mouse) | SE, but especially EE, improved motor skills and cognitive performance | [68] |
Environmental Enrichment in Social Isolation | APPswe/PS1ΔE9 (male—mouse) | EE reversed cognitive decline seen in isolation, reduced apoptosis and inflammation | [58] |
Stress Paradigm | Animal Model | Findings | Reference |
---|---|---|---|
Chronic Unpredictable Stress | APPswe/PS1ΔE9 (male—mouse) | Increased Aβ deposition | [122] |
Aβ infusion in lateral ventricle (male—rat) | Increased ptau accumulation | [18] | |
WT (male—rat) | Induced ptau, especially with repeat exposure, in hippocampus and PFC | [134] | |
Tg2576 (female—mouse) | Worsened spatial memory Increased ptau and Aβ | [136] | |
Tg2576 (female—mouse) | Accelerated spatial memory decline Increased ptau and Aβ | [137] | |
SAMP8 (male—mouse) | Worsens spatial memory deficit Reduces synaptic plasticity | [138] | |
arcAβ (male—mouse) | In WT controls, stress impaired attention and impulsivity In Aβ mice, stress reduced impulsivity | [139] | |
APPswe/PS1ΔE9 (male—mouse) | Increased Aβ deposition Increased glucocorticoids | [140] | |
apoE4-TR (male—mouse) | apoE4 mice were more susceptible to stress-induced cognitive decline and depression than controls | [141] | |
Chronic Unpredictable Stress with Ace Inhibitor | WT (male—rat) | Stress-induced ptau development, mediated through ACE enzyme activity | [129] |
Chronic Unpredictable Stress with Escitalopram | WT (male—rat) | Stress increased ptau burden Escitalopram reduced ptau | [133] |
Chronic Unpredictable Stress and Maternal Separation | htauE14 infusion at locus coeruleus (both sexes—rat) | CUS worsened, while maternal separation improved, discrimination learning in htauE14 animals | [62] |
Maternal Separation | APPswe/PS1ΔE9 (male—mouse) | Reduced spatial memory Increased Aβ deposition | [165] |
APPNL-G-F (male—mouse) | Induced Aβ deposition Impaired spatial memory Increased inflammation | [166] | |
Model Mimics Stress Response | corticotropin-releasing factor overexpression (female—mouse) | CRF-OE increases ptau Treatment with CRFR-1 antagonist reduces phosphorylation | [119] |
Dexamethasone Administration | Tg2576 (female—mouse) | Impaired fear recall Increased Aβ | [123] |
Isolation | Tg2576 (both sexes-mouse) | Increased corticosterone and CRFR-1 expression Increased Aβ deposition | [127] |
Isolation and Environmental Enrichment | 5xFAD (male—mouse) | Increased Aβ Reduced fear learning EE did not rescue those effects | [130] |
Isolation and Restraint | Tg2576 (both sexes—mouse) | Long-term isolation and short-term restraint increased Aβ, mediated through CRF | [158] |
Psychosocial Stress | Aβ1-42 infusion at left ventricle (male—rat) | Stress worsened spatial memory | [126] |
Gestational Restraint | APPswe/PS1ΔE9 (both sexes—mouse) | Males had reduced spatial memory and HPA response Females had increased spatial memory and depressive-like symptoms and reduced Aβ | [155] |
Restraint | TgF344-AD (male—rat) | No significant changes in anxiety- or fear-like behaviour | [164] |
TgCRND8 (female—mouse) | Restraint did not worsen Aβ pathology | [163] | |
APP-CT100, Tg2576 (both sexes—mouse) | Accelerated cognitive decline Increased Aβ and ptau pathology | [161] | |
APPswe/PS1ΔE9 (male—mouse) | Increased inflammation | [159] | |
L/V-Tg (male—mouse) | Short-term stress-induced neurodegeneration Long-term also reduced neurogenesis | [157] | |
5xFAD (both sexes—mouse) | Increased Aβ deposition in females | [121] | |
APP/hAβ/PS1 (male—mouse) | AD model animals more susceptible to effects of stress Stress exacerbated AD pathology | [124] | |
Chronic Unpredictable Stress and Restraint | Tg2576 (female), P301S (male), CRF-OE (female) (mouse) | Restraint increased Aβ and ptau pathology and worsened memory in AD models, not in CRF-OE | [120] |
Restraint with ALOX5 Knockout | 3xTg-AD (female—mouse) | Stress worsened ptau and impaired fear memory but not in ALOX5 KO animals | [123] |
Restraint with Icariin | APP/PS1 (male—mouse) | Stress-induced depressive-like behaviour, worsened spatial memory, and increased Aβ. Icariin reversed memory impairment and reduced Aβ | [156] |
Restraint with Memantine | WT (male—mouse) | Restraint-induced ptau by day 16 MEM dose-dependently reduced ptau On day 28 MEM worsened ptau | [91] |
Restraint with CRFR NBI 27914 | Tg2576 (both sexes—mouse) | Restraint increased Aβ and ptau pathology NBI prevented such effects | [128] |
Restraint with PNU-282987 | APPswe/PS1ΔE9 (male—mouse) | Stress-impaired spatial memory PNU did not rescue | [162] |
Sleep Deprivation | WT (male—rat) | Reduced spatial learning Increased Aβ | [131] |
WT (male—mouse) | Reduced fear learning Increased Aβ | [130] | |
APPswe/PS1ΔE9 (male—mouse) | Reduced spatial memory Increased Aβ and ptau | [154] | |
APPswe/PS1ΔE9 (female—mouse) | Fragmented sleep increased Aβ Severity of sleep deprivation correlated with amount of Aβ | [153] | |
APPswe/PS1ΔE9 (both sexes—mouse) | Impaired spatial memory Increased Aβ and ptau | [152] | |
5xFAD (both sexes—mouse) | AD model animals had more fragmented sleep and were more susceptible to effects of sleep deprivation | [143] | |
3xTg-AD (both sexes—mouse) | Poorer spatial memory Reduced synaptic plasticity | [149] | |
P301S (male—mouse) | AD model mice had reduced sleep which worsened with age Reduced sleep correlated with increased ptau | [147] | |
APPswe/PS1ΔE9 (male—mouse) | Reduced spatial and fear memory Reduced synaptic plasticity Increased Aβ Increased inflammation | [146] | |
Sleep Deprivation | APP/PS1 (both sexes—mouse) | Poorer spatial memory Increased inflammation Reduced synaptic plasticity Increased Aβ | [145] |
Aβ1-42 infusion at lateral ventricle (male—mouse) | Aβ infusion disrupted sleep patterns Sleep-deprived animals more prone to Aβ effects on memory | [144] | |
3xTg-AD (male—mouse) | Increased corticosterone Reduced spatial memory Increased Aβ and ptau | [125] | |
Sleep Deprivation and Acoustic Stimulation | 3xTg-AD (both sexes—mouse) | Sleep deprivation worsened spatial memory and increased Aβ and ptau Acoustic stimulation reversed such effects | [148] |
Sleep Deprivation and Ketogenic Diet | WT (female—mouse) | Sleep deprivation worsened spatial memory and increased Aβ and ptau Keto diet reversed such effects | [135] |
Sleep Deprivation and Orexin Receptor Antagonist | Tg2576 (sex not specified—mouse) | Sleep deprivation increased Aβ deposition Aβ reduced following almorexant treatment | [151] |
Sleep Deprivation and Orexin Knockout | APPswe/PS1ΔE9 (both sexes—mouse) | Orexin KO mice had reduced Aβ and increased sleep time Rescuing orexin neurons increased Aβ | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torraville, S.E.; Flynn, C.M.; Kendall, T.L.; Yuan, Q. Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer’s Disease via Gut Microbiome. Biomedicines 2023, 11, 1884. https://doi.org/10.3390/biomedicines11071884
Torraville SE, Flynn CM, Kendall TL, Yuan Q. Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer’s Disease via Gut Microbiome. Biomedicines. 2023; 11(7):1884. https://doi.org/10.3390/biomedicines11071884
Chicago/Turabian StyleTorraville, Sarah E., Cassandra M. Flynn, Tori L. Kendall, and Qi Yuan. 2023. "Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer’s Disease via Gut Microbiome" Biomedicines 11, no. 7: 1884. https://doi.org/10.3390/biomedicines11071884
APA StyleTorraville, S. E., Flynn, C. M., Kendall, T. L., & Yuan, Q. (2023). Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer’s Disease via Gut Microbiome. Biomedicines, 11(7), 1884. https://doi.org/10.3390/biomedicines11071884