Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
1.1. B-ALL
1.1.1. Blinatumomab
Blinatumomab Adult Data
Blinatumomab Pediatric Data (Table 1)
Patient Population Number of Patients (n) Age Range | Study Phase NCT# Design | Outcome | Toxicity | Refs. |
---|---|---|---|---|
R/R 93 0–17 years | I/II NCT01471782 (COG AALL1121) Monotherapy | Of 70 who received RP2D: CR 39% after 2 cycles, of whom 52% MRD-negative | Grade 4 CRS (n = 4) Grade 5 respiratory failure (n = 1) Grade 2 neuro (n = 9) | [14] |
1st relapse HR/IR 208 1–30 years | III NCT02101853 (COG AALL1331) Chemo ± Blina | 2-year DFS 54.4% (Blina) vs. 39% (chemo) (p = 0.03) 2-year OS 71.3% (Blina) vs. 58.4% (chemo) (p = 0.02) | Grade 3–4 toxicity (infection, sepsis, mucositis) higher in chemo arm Toxic deaths: Chemo (n = 5) Blina (none) Blina: ≥Grade 3 CRS (n = 1) Neuro (n = 5) | [16] |
1st relapse LR 255 1–30 years | III NCT02101853 (COG AALL1331) Chemo ± Blina | No significant difference overall Subgroup BM +/− EM relapse: 4-year DFS 74% (Blina) vs. 51.8% (chemo) (p = 0.016) 4-year OS 96.6% (Blina) vs. 84.4% (chemo) (p = 0.013) Isolated CNS relapse: 61% 2nd relapse | ≥Grade 3 toxicity significantly higher in chemo arm (% per cycle): CRS (all grades) 12/7/7 Neuro (all grades): Seizure 3/1/3 Other 19/9/5 All reversible | [17] |
1st relapse 108 ≤18 years | III NCT02393859 Chemo ± Blina | MRD-negative CR: 90% (Blina) vs. 54% (chemo) 2-year EFS: 66.2% (Blina) vs. 27.1% (chemo) (p < 0.001) | Serious toxicity 24.1% (Blina) vs. 43.1% (chemo) ≥Grade 3 toxicity 57.4% (Blina) vs. 82.4% (chemo) | [18] |
1st relapse 1–31 years | II NCT04546399 (COG AALL1821) HR: Blina ± Nivo + HSCT LR: Chemo + Blina ± Nivo | Ongoing | ||
Frontline-SR 1–10 years (Down Syndrome and Lymphoma) 1–31 years | III NCT03914625 Chemo ± Blina for subsets | Ongoing | ||
Frontline-MR and HR 0–17 years | III NCT03643276 Chemo ± Blina | Ongoing |
1.1.2. Inotuzumab
Inotuzumab Adult Data
Inotuzumab Pediatric Data (Table 3)
Patient Population Number of Patients(n) Age Range | Study Phase NCT# Design | Outcome | Toxicity- SOS | Refs. |
---|---|---|---|---|
R/R 51 0–21 years | Retrospective | Of 42 with M2/M3 marrow: 67% CR, of whom 71% MRD-neg | 6 (12%) Grade 3 hepatic No SOS during therapy 11/21 (52%) of HSCT patients—SOS | [26] |
R/R 12 3–18 years | Retrospective | 8/12 CR/Cri, 2 of whom MRD-neg 1-year EFS 33% & OS 38% | 4 (33%) Grade 3/4 hepatic 2/4 HSCT patients—SOS | [27] |
R/R 16 0.5–18 years | Retrospective | 68.7% CR, all MRD-neg 1-year EFS 27.5% & OS 45.8% | 2 Grade 3 SOS with HSCT | [28] |
R/R Phase I: 25 Phase II: 32 1–18 years | I/II (ITC-059) Monotherapy | Phase II: 1-year EFS 36.7%/OS 55.1% | 7/18 SOS in HSCT or CART | [30] |
R/R Cohort 1: 48 1–21 years | II NCT02981628 (COG AALL1621) Cohort 1: Monotherapy Cohort 2: InO + chemo | Cohort 1: CR/CRi 58.3%, 66.7% of whom MRD-negative Cohort 2: ongoing | 6/21 Grade 3 SOS in HSCT | [31] |
Frontline | III NCT03959085 (COG AALL1732) Chemo +/− InO | Ongoing |
1.1.3. Chimeric Antigen Receptor T (CAR T)-Cell Therapy
- CD19 CAR T-Cell Therapy
- FDA Approved CD19 CAR T Therapy
- Mechanism of Action
- Clinical Data in Pediatric B-ALL (See Table 4 for Further Details on Specific Clinical Trial Results)
Patient Population- Number of Patients (Age Range) | Study Phase NCT# | Outcome | HSCT Post CAR-T Therapy | CAR-T Persistence | CRS and ICANS | Refs. |
---|---|---|---|---|---|---|
CD19 CAR T | ||||||
30 (25 pediatric patients 5–22 yrs and 5 adult patients 26–60 yrs) | Phase I/IIa NCT01626495 and NCT01029366 | CR: 90% (88% MRD-negative) 6 mo EFS and OS: 67% and 78% | 3 patients underwent HSCT: remained in remission at 7–12 months after CAR T therapy | Persistence at 6 mo: 68% | CRS: 100% (any grade), 27% (severe requiring ICU care) ICANS: 43% (any grade) | [38] |
75 (3–23 yrs) | Phase I/IIa ELIANA Trial NCT02435849 | 3 mo ORR: 81% (100% MRD-negative) 6 mo EFS and OS: 73% and 90% 12 mo EFS and OS: 50% and 76% 36-month RFS, EFS and OS: 52%, 44% and 63% | 8 patients underwent HSCT (including 2 with early B-cell recovery and 2 with +MRD)- no relapse to date. | Median duration: 168 days | CRS: 77% (any grade), 46% (grade ≥ 3) ICANS: 40% (any grade), 13% (grade 3), no grade 4 events. | [39,40] |
20 (5–25 yrs). | Phase I NCT01593696 | CR: 70% for B-ALL (60% MRD-negative) 10 mo OS: 51.6% LFS (for all 12 MRD-negative ALL): 79% at 4.8 mo. | 10 patients underwent HSCT—remained in MRD-negative remission at a median follow up of 10 months | No detectable CAR T cells after Day 68, although a majority of patients underwent HSCT which likely eliminated it | CRS: 76% (any grade), 28.6% (grade ≥ 3) ICANS: 28.6% (any grade) | [41] |
43 (1–25 yrs) | Phase I/II PLAT-02 Trial NCT02028455 | MRD-negative CR: 93% 12 mo EFS and OS: 50.8% and 69.5% | 11 patients underwent HSCT: 2 developed CD19+ relapses | 6.4 months (median duration of B-cell aplasia as a measure of CAR-T persistence) | CRS: 93% (any grade), 23% (severe) ICANS: 49% (any grade), 21% (severe) | [42] |
74 (72 B-ALL, 2 B-LLy) age 1–29 yrs CAR-naïve cohort: 41 Retreatment cohort: 33 | Phase I Humanized Anti-CD19 CAR T NCT02374333 | CAR-naïve MRD-negative CR#: 100% 12 mo RFS and OS: 84% and 90% 24 mo RFS and OS: 74% and 88% Retreatment: CR 64% (86% MRD-negative) 12 mo RFS and OS: 74% and 76% 24 mo RFS and OS: 58% and 55% | CAR-naïve: 4 patients proceeded to HSCT Retreatment cohort: 1 patient proceeded to HSCT due to early B-cell recovery | 6 mo cumulative incidence of loss of CAR-T persistence: 27% (CAR-naïve) and 48% (retreatment cohort) | CAR-naïve: CRS: 90% (any grade), 15% (grade ≥ 3) ICANS: 41% (any grade), 7% (grade ≥ 3) Retreatment cohort: CRS: 76% (any grade), 15% (grade ≥ 3) ICANS: 36% (all < grade 3) | [43] |
50 (4.3–30.4 yrs) | Phase I NCT01593696 | CR: 62% (90.3% MRD-negative) At median follow up at 4.8 yrs OS: 10.5 mo EFS: 3.1 mo | 21/28 in MRD-negative CR underwent HSCT and 2 relapsed. 7/28 in MRD-negative CR who did not proceed to HSCT all relapsed | N/A | CRS: 70% (any grade), 18% (grade ≥ 3) ICANS: 20% (any grade), 8% (severe) | [44] |
24 (3–20 yrs) | Phase I/II NCT02625480 ZUMA-4 | CR: 67% (100% MRD-negative) RP2D cohort (5/6 underwent HSCT): CR: 67% Median DOR, OS, and DFS were not reached. 24 mo OS: 87.5% RFS censoring and without censoring for HSCT: 5.2 mo vs. 7.4 mo | 16 underwent HSCT (67%) | CAR T not detectable after 3 months (but a majority of patients proceeded to HSCT at a median 2.3 mo after infusion) | CRS: 88% (any grade), 33% (grade ≥ 3) ICANS: 67% (any grade), 21% (grade ≥ 3) | [45] |
255 (0.4–26.1 yrs) | Non-interventional, prospective study | CR: 85.5% (99.1% MRD-negative) 12 mo DOR, EFS and OS: 60.9%, 52.4% and 77.2% | 34 responders (16.1% of all patients) underwent HSCT | N/A | CRS: 55% (any grade), 16.1% (grade ≥ 3) ICANS: 27% (any grade), 9% (grade ≥ 3) | [46] |
CD22 CAR-T | ||||||
21 (7–30 yrs) | Phase 1 NCT02315612 | CR: 57% in all pts (75% MRD-negative) CR: 73% in dose ≥ 1 × 106 CD22-CAR/kg (9/12 MRD-negative) | N/A | Day 28: 15/21 CAR T- cells detectable in blood 3 mo: 7/9 CAR T-cells detectable in blood | CRS: 76% (all < grade 3) ICANS: 37.5% (all mild or transient) | [47] |
56 (4.4–30.6 yrs) | Phase 1—Updated results of NCT02315612 | CR: 72.7% for ALL patients (63.6% MRD-negative) Median OS and RFS for responders: 13.4 mo and 6 mo | 13 underwent HSCT and 6 subsequently relapsed. | Median percentage of CAR-positive T cells at peak expansion between 14–21 days post-infusion: 77% | CRS: 86.2 (any grade), 10% (grade ≥ 3) ICANS: 32.8% (all < grade 3 except for one grade 4) | [48] |
17 (3–28 yrs) | Phase I NCT02650414 | CR: 77% (77% MRD-negative) Median RFS, EFS, and OS: 5.3 mo, 5.8 mo and 16.5 mo | 5 (in MRD-negative CR) underwent HSCT- 1 subsequently had a CD22+ relapse while 4 remained in CR 6 (in MRD-negative CR) did not undergo HSCT- 5 subsequently relapsed and 1 remained in CR at 30 mo post-infusion | Persistence correlate with clinical response | CRS: 88% (all < grade 3) ICANS: 35% (all < grade 3) 1 patient out of retreatment cohort experienced grade 3 CRS and ICANS | [49] |
8 (5 children, 3 adults, no specific age reported) | Phase 1 NCT02588456 (adult) NCT02650414 (pediatrics) | 12 mo CR: 50% | N/A | N/A | CRS: 75% (any grade), 12.5% (grade 3 in adult) ICANS: 0% | [50] |
Dual (CD19 and CD22) targeted CAR T | ||||||
14 (8 pediatric and 6 adult patients: 2–68 yrs) | Phase I NCT03233854 NCT03241940 | CR: 92% OS: 92% at median 9.5 months from infusion | 6 pediatric patients underwent HSCT and 1 died while in CR from complication related to HSCT No adult patient underwent HSCT | N/A | CRS: 75% (all < grade 3 in pediatrics) ICANS: 17% (all < grade 3 in pediatrics) 1 adult with high disease burden experienced Grade 4 CRS and ICANS | [51] |
15 (4–16 yrs) | Phase I/II AMELIA trial NCT03289455 | 1 mo CR: 86% 12 mo OS and EFS: 60% and 32% | 1 patient underwent HSCT | Longer median duration of detection of 344 days for patients who received 3 × 106 cells/kg than other dosages Median time to last detection: 119 days | CRS:80% (all < grade 3) ICANS: 27% (all grade 1) | [52] |
194 (≤20 yrs) | Phase II Chinese Clinical Trial Registry: ChiCTR2000032211 | CR: 99% (100% MRD-negative) 12 mo EFS and OS: 73.5% and 87.7% | 78 patients underwent HSCT 12 mo EFS (HSCT vs. no HSCT): 85% vs. 69.2% (p = 0.03) | Detection by RT-PCR found that CD19 CAR-T expansion occurred earlier and for longer duration than CD22 CAR T (measured up to 660 days post-infusion). | CRS: 88% (any grade), 28.4% (grade ≥ 3) ICANS: 20.9% (any grade), 4% (grade ≥ 3) 2 patients died following infusion due to CRS and neurotoxicity | [53] |
12 (<31 yrs) | Phase I NCT03330691 | CR: 91% (100% MRD-negative) | N/A | N/A | CRS: 45% (all grade 1) ICANS: 45% (all grade 1 except one self-limited grade 3 event) | [54] |
20 (5.4–34.6 yrs) | Phase 1 NCT03448393 | CR: 60% (for entire cohort) CR: 71.4% (CAR-naïve cohort) 6 mo and 12 mo RFS for pts in CR: 80.8% and 57.7% | N/A | N/A | CRS: 50% (any grade), 15% (grade ≥ 3) ICANS: 5% (grade 3) | [55] |
Universal CAR T | ||||||
21 (7 children and 14 adults 0.8–16.4 yrs) | Phase I NCT0280442 NCT02746952 | CR: 67% (71% MRD-negative) Median duration of response: 4.1 mo. 6 mo PFS and OS: 27% and 55% | 10 out of 14 responders underwent HSCT 6 mo PFS and OS: 27% and 55% | N/A | CRS: 91% (any grade), 14% (grade ≥ 3) ICANS: 38% (all < grade 3) | [56] |
- Challenges of CAR-T Therapy
- Adverse Events Related to CAR T-Cell Therapy
1.1.4. CD22 CAR T-Cell Therapy
- FDA Approved CD22-Directed CAR T: None
- Mechanism of Action
- Clinical Data in Pediatric B-ALL (See Table 4 for Further Details on Specific Clinical Trial Results)
- Adverse Events Related to CD22 CAR T-Cell Therapy
1.1.5. Dual Targeting (CD19/CD22) CAR T-Cell Therapy
Mechanism of Action [51,52,53,54,64]
Clinical Data in Pediatric ALL (See Table 4 for Further Details on Specific Clinical Trial Results)
Adverse Events Related to Dual Targeting (CD19/CD22) CAR T-Cell Therapy
1.1.6. Universal CAR T-Cell Therapy
1.2. T-ALL
2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rheingold, S.R.; Ji, L.; Xu, X.; Devidas, M.; Brown, P.A.; Gore, L.; Winick, N.J.; Carroll, W.L.; Hunger, S.; Raetz, E.A. Prognostic factors for survival after relapsed acute lymphoblastic leukemia (ALL): A Children’s Oncology Group (COG) study. Am. Soc. Clin. Oncol. 2019, 37, 10008. [Google Scholar] [CrossRef]
- Inaba, H.; Mullighan, C.G. Pediatric acute lymphoblastic leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, S.; De Los Reyes, F.A.; Yametti, G.C.; Pierro, J.; Raetz, E.; Carroll, W.L. Immunotherapy in Pediatric B-Cell Acute Lymphoblastic Leukemia: Advances and Ongoing Challenges. Paediatr. Drugs 2020, 22, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Asare, J.M.; Rabik, C.A.; Cooper, S.; Brown, P.A. Immunotherapy in Pediatric Acute Lymphoblastic Leukemia. J. Cancer Immunol. 2021, 2, 159–184. [Google Scholar]
- Przepiorka, D.; Ko, C.W.; Deisseroth, A.; Yancey, C.L.; Candau-Chacon, R.; Chiu, H.J.; Gehrke, B.J.; Gomez-Broughton, C.; Kane, R.C.; Kirshner, S.; et al. FDA Approval: Blinatumomab. Clin. Cancer Res. 2015, 21, 4035–4039. [Google Scholar] [CrossRef] [Green Version]
- Pulte, E.D.; Vallejo, J.; Przepiorka, D.; Nie, L.; Farrell, A.T.; Goldberg, K.B.; McKee, A.E.; Pazdur, R. FDA Supplemental Approval: Blinatumomab for Treatment of Relapsed and Refractory Precursor B-Cell Acute Lymphoblastic Leukemia. Oncologist 2018, 23, 1366–1371. [Google Scholar] [CrossRef] [Green Version]
- Jen, E.Y.; Xu, Q.; Schetter, A.; Przepiorka, D.; Shen, Y.L.; Roscoe, D.; Sridhara, R.; Deisseroth, A.; Philip, R.; Farrell, A.T.; et al. FDA Approval: Blinatumomab for Patients with B-cell Precursor Acute Lymphoblastic Leukemia in Morphologic Remission with Minimal Residual Disease. Clin. Cancer Res. 2019, 25, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Topp, M.S.; Gokbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 2014, 32, 4134–4140. [Google Scholar] [CrossRef]
- Topp, M.S.; Gokbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gokbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foa, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Rambaldi, A.; Ribera, J.M.; Kantarjian, H.M.; Dombret, H.; Ottmann, O.G.; Stein, A.S.; Tuglus, C.A.; Zhao, X.; Kim, C.; Martinelli, G. Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia. Cancer 2020, 126, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Gokbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Bruggemann, M.; Horst, H.A.; et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topp, M.S.; Gokbuget, N.; Zugmaier, G.; Degenhard, E.; Goebeler, M.E.; Klinger, M.; Neumann, S.A.; Horst, H.A.; Raff, T.; Viardot, A.; et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012, 120, 5185–5187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Stackelberg, A.; Locatelli, F.; Zugmaier, G.; Handgretinger, R.; Trippett, T.M.; Rizzari, C.; Bader, P.; O’brien, M.M.; Brethon, B.; Bhojwani, D. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J. Clin. Oncol. 2016, 34, 4381–4389. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Whitlock, J.A.; Peters, C.; Chen-Santel, C.; Chia, V.; Dennis, R.M.; Heym, K.M.; Katz, A.J.; Kelsh, M.A.; Sposto, R. Blinatumomab versus historical standard therapy in pediatric patients with relapsed/refractory Ph-negative B-cell precursor acute lymphoblastic leukemia. Leukemia 2020, 34, 2473–2478. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.; Bhatla, T.; Borowitz, M.; Raetz, E.A.; Gore, L.; Whitlock, J.A. A Randomized Phase 3 Trial of Blinatumomab Vs. Chemotherapy As Post-Reinduction Therapy in Low Risk (LR) First Relapse of B-Acute Lymphoblastic Leukemia (B-ALL) in Children and Adolescents/Young Adults (AYAs): A Report from Children’s Oncology Group Study AALL1331. Blood 2021, 138, 363. [Google Scholar]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Gore, L. A randomized phase 3 trial of blinatumomab vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-acute lymphoblastic leukemia (B-ALL) in children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of blinatumomab: A report from Children’s Oncology Group Study AALL1331. Blood 2019, 134, LBA-1. [Google Scholar]
- Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J.D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. Effect of Blinatumomab vs Chemotherapy on Event-Free Survival Among Children With High-risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021, 325, 843–854. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Liedtke, M.; Stock, W.; Gokbuget, N.; O’Brien, S.M.; Jabbour, E.; Wang, T.; Liang White, J.; et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 2019, 125, 2474–2487. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H.; Thomas, D.; Jorgensen, J.; Jabbour, E.; Kebriaei, P.; Rytting, M.; York, S.; Ravandi, F.; Kwari, M.; Faderl, S.; et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: A phase 2 study. Lancet Oncol. 2012, 13, 403–411. [Google Scholar] [CrossRef]
- Kantarjian, H.; Thomas, D.; Jorgensen, J.; Kebriaei, P.; Jabbour, E.; Rytting, M.; York, S.; Ravandi, F.; Garris, R.; Kwari, M.; et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 2013, 119, 2728–2736. [Google Scholar] [CrossRef] [PubMed]
- DeAngelo, D.J.; Stock, W.; Stein, A.S.; Shustov, A.; Liedtke, M.; Schiffer, C.A.; Vandendries, E.; Liau, K.; Ananthakrishnan, R.; Boni, J.; et al. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: A phase 1/2 study. Blood Adv. 2017, 1, 1167–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gokbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Maese, L.; Raetz, E.A. Can Ph-like ALL be effectively targeted? Best Pract. Res. Clin. Haematol. 2019, 32, 101096. [Google Scholar] [CrossRef] [PubMed]
- McNeer, J.L.; Rau, R.E.; Gupta, S.; Maude, S.L.; O’Brien, M.M. Cutting to the front of the line: Immunotherapy for childhood acute lymphoblastic leukemia. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e132–e143. [Google Scholar] [CrossRef]
- Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2019, 33, 884–892. [Google Scholar] [CrossRef]
- Calvo, C.; Cabannes-Hamy, A.; Adjaoud, D.; Bruno, B.; Blanc, L.; Boissel, N.; Tabone, M.-D.; Willson-Plat, G.; Villemonteix, J.; Baruchel, A. Inotuzumab ozogamicin compassionate use for French paediatric patients with relapsed or refractory CD22-positive B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2020, 190, e53–e56. [Google Scholar] [CrossRef]
- Fuster, J.L.; Molinos-Quintana, A.; Fuentes, C.; Fernández, J.M.; Velasco, P.; Pascual, T.; Rives, S.; Dapena, J.L.; Sisinni, L.; López-Godino, O. Blinatumomab and inotuzumab for B cell precursor acute lymphoblastic leukaemia in children: A retrospective study from the Leukemia Working Group of the Spanish Society of Pediatric Hematology and Oncology (SEHOP). Br. J. Haematol. 2020, 190, 764–771. [Google Scholar] [CrossRef]
- Brivio, E.; Locatelli, F.; Lopez-Yurda, M.; Malone, A.; Diaz-de-Heredia, C.; Bielorai, B.; Rossig, C.; van der Velden, V.H.J.; Ammerlaan, A.C.J.; Thano, A.; et al. A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood 2021, 137, 1582–1590. [Google Scholar] [CrossRef]
- Pennesi, E.; Michels, N.; Brivio, E.; van der Velden, V.H.J.; Jiang, Y.; Thano, A.; Ammerlaan, A.J.C.; Boer, J.M.; Beverloo, H.B.; Sleight, B.; et al. Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: Results from a phase II trial. Leukemia 2022, 36, 1516–1524. [Google Scholar] [CrossRef]
- O’Brien, M.M.; Ji, L.; Shah, N.N.; Rheingold, S.R.; Bhojwani, D.; Yuan, C.M.; Xu, X.; Yi, J.S.; Harris, A.C.; Brown, P.A. Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory b-cell acute lymphoblastic leukemia: Children’s oncology group protocol AALL1621. J. Clin. Oncol. 2022, 40, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Ragoonanan, D.; Sheikh, I.N.; Gupta, S.; Khazal, S.J.; Tewari, P.; Petropoulos, D.; Li, S.; Mahadeo, K.M. The Evolution of Chimeric Antigen Receptor T-Cell Therapy in Children, Adolescents and Young Adults with Acute Lymphoblastic Leukemia. Biomedicines 2022, 10, 2286. [Google Scholar] [CrossRef]
- Boettcher, M.; Joechner, A.; Li, Z.; Yang, S.F.; Schlegel, P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J. Clin. Med. 2022, 11, 2158. [Google Scholar] [CrossRef]
- Rogosic, S.; Ghorashian, S. CAR-T cell therapy in paediatric acute lymphoblastic leukaemia—Past, present and future. Br. J. Haematol. 2020, 191, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Sengsayadeth, S.; Savani, B.N.; Oluwole, O.; Dholaria, B. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. EJHaem 2022, 3, 6–10. [Google Scholar] [CrossRef]
- Singh, A.K.; McGuirk, J.P. CAR T cells: Continuation in a revolution of immunotherapy. Lancet Oncol. 2020, 21, e168–e178. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Teachey, D.T.; Porter, D.L.; Grupp, S.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015, 125, 4017–4023. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; De Moerloose, B.; Qayed, M.; et al. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial. J. Clin. Oncol. 2023, 41, 1664–1669. [Google Scholar] [CrossRef]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Myers, R.M.; Li, Y.; Barz Leahy, A.; Barrett, D.M.; Teachey, D.T.; Callahan, C.; Fasano, C.C.; Rheingold, S.R.; DiNofia, A.; Wray, L.; et al. Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2021, 39, 3044–3055. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Lee, D.W.; Yates, B.; Yuan, C.M.; Shalabi, H.; Martin, S.; Wolters, P.L.; Steinberg, S.M.; Baker, E.H.; Delbrook, C.P.; et al. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. J. Clin. Oncol. 2021, 39, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Wayne, A.S.; Huynh, V.; Hijiya, N.; Rouce, R.H.; Brown, P.A.; Krueger, J.; Kitko, C.L.; Ziga, E.D.; Hermiston, M.L.; Richards, M.K.; et al. Three-year results from phase I of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica 2023, 108, 747–760. [Google Scholar] [CrossRef]
- Pasquini, M.C.; Hu, Z.H.; Curran, K.; Laetsch, T.; Locke, F.; Rouce, R.; Pulsipher, M.A.; Phillips, C.L.; Keating, A.; Frigault, M.J.; et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020, 4, 5414–5424. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.N.; Highfill, S.L.; Shalabi, H.; Yates, B.; Jin, J.; Wolters, P.L.; Ombrello, A.; Steinberg, S.M.; Martin, S.; Delbrook, C.; et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J. Clin. Oncol. 2020, 38, 1938–1950. [Google Scholar] [CrossRef]
- Myers, R.M.; DiNofia, A.M.; Li, Y.; Diorio, C.; Aplenc, R.; Baniewicz, D.; Brogdon, J.L.; Callahan, C.; Engels, B.; Fraietta, J.A. CD22-Targeted CAR-Modified T-Cells Safely Induce Remissions in Children and Young Adults with Relapsed, CD19-Negative B-ALL after Treatment with CD19-Targeted CAR T-Cells. Blood 2022, 140, 2376–2377. [Google Scholar] [CrossRef]
- Singh, N.; Frey, N.V.; Engels, B.; Barrett, D.M.; Shestova, O.; Ravikumar, P.; Cummins, K.D.; Lee, Y.G.; Pajarillo, R.; Chun, I.; et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 2021, 27, 842–850. [Google Scholar] [CrossRef]
- Schultz, L.M.; Muffly, L.S.; Spiegel, J.Y.; Ramakrishna, S.; Hossain, N.; Baggott, C.; Sahaf, B.; Patel, S.; Craig, J.; Yoon, J. Phase I trial using CD19/CD22 bispecific CAR T cells in pediatric and adult acute lymphoblastic leukemia (ALL). Blood 2019, 134, 744. [Google Scholar] [CrossRef]
- Cordoba, S.; Onuoha, S.; Thomas, S.; Pignataro, D.S.; Hough, R.; Ghorashian, S.; Vora, A.; Bonney, D.; Veys, P.; Rao, K.; et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: A phase 1 trial. Nat. Med. 2021, 27, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tang, Y.; Cai, J.; Wan, X.; Hu, S.; Lu, X.; Xie, Z.; Qiao, X.; Jiang, H.; Shao, J.; et al. Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. J. Clin. Oncol. 2023, 41, 1670–1683. [Google Scholar] [CrossRef] [PubMed]
- Annesley, C.; Summers, C.; Pulsipher, M.A.; Skiles, J.L.; Li, A.M.; Vatsayan, A.; Lindgren, C.; Mgebroff, S.; Wilson, A.; Huang, W. SCRI-CAR19x22v2 T cell product demonstrates bispecific activity in B-ALL. Blood 2021, 138, 470. [Google Scholar] [CrossRef]
- Shalabi, H.; Qin, H.; Su, A.; Yates, B.; Wolters, P.L.; Steinberg, S.M.; Ligon, J.A.; Silbert, S.; DeDe, K.; Benzaoui, M.; et al. CD19/22 CAR T cells in children and young adults with B-ALL: Phase 1 results and development of a novel bicistronic CAR. Blood 2022, 140, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, R.; Graham, C.; Yallop, D.; Jozwik, A.; Mirci-Danicar, O.C.; Lucchini, G.; Pinner, D.; Jain, N.; Kantarjian, H.; Boissel, N.; et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: Results of two phase 1 studies. Lancet 2020, 396, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Lamble, A.J.; Myers, R.M.; Taraseviciute, A.; John, S.; Yates, B.; Steinberg, S.M.; Sheppard, J.; Kovach, A.E.; Wood, B.; Borowitz, M.J.; et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2023, 7, 575–585. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Park, J.H.; Riviere, I.; Gonen, M.; Wang, X.; Senechal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Gardner, R.A.; Ceppi, F.; Rivers, J.; Annesley, C.; Summers, C.; Taraseviciute, A.; Gust, J.; Leger, K.J.; Tarlock, K.; Cooper, T.M.; et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 2019, 134, 2149–2158. [Google Scholar] [CrossRef]
- Mahadeo, K.M.; Khazal, S.J.; Abdel-Azim, H.; Fitzgerald, J.C.; Taraseviciute, A.; Bollard, C.M.; Tewari, P.; Duncan, C.; Traube, C.; McCall, D.; et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 2019, 16, 45–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, A.M.; May, S.; Lei, M.; Qualls, S.; Bushey, K.; Rubin, D.B.; Barra, M.E. CAR T-Cell-Associated Neurotoxicity: Current Management and Emerging Treatment Strategies. Crit. Care Nurs. Q. 2020, 43, 191–204. [Google Scholar] [CrossRef]
- Gust, J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Wu, Z.; Jia, H.; Tong, C.; Guo, Y.; Ti, D.; Han, X.; Liu, Y.; Zhang, W.; Wang, C.; et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J. Hematol. Oncol. 2020, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Fousek, K.; Watanabe, J.; Joseph, S.K.; George, A.; An, X.; Byrd, T.T.; Morris, J.S.; Luong, A.; Martinez-Paniagua, M.A.; Sanber, K.; et al. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia 2021, 35, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lin, Q.; Song, Y.; Liu, D. Universal CARs, universal T cells, and universal CAR T cells. J. Hematol. Oncol. 2018, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qasim, W. Genome-edited allogeneic donor “universal” chimeric antigen receptor T cells. Blood 2023, 141, 835–845. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, Z.; Jiang, W.; Yang, R. Universal chimeric antigen receptor T cell therapy—The future of cell therapy: A review providing clinical evidence. Cancer Treat. Res. Commun. 2022, 33, 100638. [Google Scholar] [CrossRef]
- Qasim, W.; Zhan, H.; Samarasinghe, S.; Adams, S.; Amrolia, P.; Stafford, S.; Butler, K.; Rivat, C.; Wright, G.; Somana, K.; et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 2017, 9, eaaj2013. [Google Scholar] [CrossRef]
- Lato, M.W.; Przysucha, A.; Grosman, S.; Zawitkowska, J.; Lejman, M. The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2021, 22, 4502. [Google Scholar] [CrossRef]
- Bride, K.L.; Vincent, T.L.; Im, S.-Y.; Aplenc, R.; Barrett, D.M.; Carroll, W.L.; Carson, R.; Dai, Y.; Devidas, M.; Dunsmore, K.P. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2018, 131, 995–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, V.; Gormley, N.J.; Luo, L.; Shen, Y.L.; Sridhara, R.; Subramaniam, S.; Shen, G.; Ma, L.; Shord, S.; Goldberg, K.B. FDA approval summary: Daratumumab for treatment of multiple myeloma after one prior therapy. Oncologist 2017, 22, 1347–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vora, A.; Bhatla, T.; Teachey, D.; Bautista, F.; Moppett, J.; Puyó, P.V.; Micalizzi, C.; Rossig, C.; Shukla, N.; Gilad, G. P360: Efficacy and safety of daratumumab in pediatric and young adult patients with relapsed/refractory t-cell acute lymphoblastic leukemia or lymphoblastic lymphoma: Results from phase 2 delphinus study. HemaSphere 2022, 6, 260–261. [Google Scholar] [CrossRef]
- Hogan, L.E.; Bhatla, T.; Teachey, D.T.; Sirvent, F.J.B.; Moppett, J.; Puyó, P.V.; Micalizzi, C.; Rssig, C.; Shukla, N.; Gilad, G. Efficacy and safety of daratumumab (DARA) in pediatric and young adult patients (pts) with relapsed/refractory T-cell acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LL): Results from the phase 2 DELPHINUS study. Am. Soc. Clin. Oncol. 2022, 40, 10001. [Google Scholar] [CrossRef]
- Ren, A.; Tong, X.; Xu, N.; Zhang, T.; Zhou, F.; Zhu, H. CAR T-Cell Immunotherapy Treating T-ALL: Challenges and Opportunities. Vaccines 2023, 11, 165. [Google Scholar] [CrossRef]
- Kamiya, T.; Wong, D.; Png, Y.T.; Campana, D. A novel method to generate T-cell receptor–deficient chimeric antigen receptor T cells. Blood Adv. 2018, 2, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tan, Y.; Wang, G.; Deng, B.; Ling, Z.; Song, W.; Seery, S.; Zhang, Y.; Peng, S.; Xu, J. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: First-in-human, phase I trial. J. Clin. Oncol. 2021, 39, 3340–3351. [Google Scholar] [CrossRef]
- Diorio, C.; Murray, R.; Naniong, M.; Barrera, L.; Camblin, A.; Chukinas, J.; Coholan, L.; Edwards, A.; Fuller, T.; Gonzales, C. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood J. Am. Soc. Hematol. 2022, 140, 619–629. [Google Scholar] [CrossRef]
- Chiesa, R.; Georgiadis, C.; Syed, F.; Zhan, H.; Etuk, A.; Gkazi, S.A.; Preece, R.; Ottaviano, G.; Braybrook, T.; Chu, J. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2023. [Google Scholar] [CrossRef]
High Risk |
|
Intermediate Risk |
|
Low Risk |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glasser, C.L.; Chen, J. Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023, 11, 1886. https://doi.org/10.3390/biomedicines11071886
Glasser CL, Chen J. Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia. Biomedicines. 2023; 11(7):1886. https://doi.org/10.3390/biomedicines11071886
Chicago/Turabian StyleGlasser, Chana L., and Jing Chen. 2023. "Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia" Biomedicines 11, no. 7: 1886. https://doi.org/10.3390/biomedicines11071886
APA StyleGlasser, C. L., & Chen, J. (2023). Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia. Biomedicines, 11(7), 1886. https://doi.org/10.3390/biomedicines11071886