Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media and Culture Conditions
2.2. Field Emission-Scanning Electron Microscopy (Fe-SEM) to Check Morphology
2.3. High-Performance Liquid Chromatography (HPLC) to Check Any Difference in Induced Cells
2.4. Gas Chromatography and Mass Spectrometry (GC–MS) to Check the Inducible Metabolites
2.5. Minimum Inhibitory Concentration (MIC) Using a Microplate Reader
3. Results and Discussion
3.1. N-Acetylglucosamine Acts as the Sole Carbon Source for C. albicans
3.2. Morphogenetic Changes in N-Acetylglucosamine-Induced Candida Cells
3.3. Field Emission-Scanning Electron Microscopy Study
3.4. Metabolite Profiling
3.5. Minimum Inhibitory Concentration (MIC) Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perlroth, J.; Choi, B.; Spellberg, B. Nosocomial Fungal Infections: Epidemiology, Diagnosis, and Treatment. Med. Mycol. 2007, 45, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Dollive, S.; Grunberg, S.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE 2013, 8, e66019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog. 2010, 6, e1000713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; Kong, H.H.; et al. Human Skin Fungal Diversity. Nature 2013, 498, 367–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drell, T.; Lillsaar, T.; Tummeleht, L.; Simm, J.; Aaspõllu, A.; Väin, E.; Saarma, I.; Salumets, A.; Donders, G.G.G.; Metsis, M. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive-Age Estonian Women. PLoS ONE 2013, 8, e54379. [Google Scholar] [CrossRef]
- Merenstein, D.; Hu, H.; Wang, C.; Hamilton, P.; Blackmon, M.; Chen, H.; Calderone, R.; Li, D. Colonization by Candida Species of the Oral and Vaginal Mucosa in HIV-Infected and Noninfected Women. AIDS Res. Hum. Retroviruses 2013, 29, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Romani, L.; Bistoni, F.; Puccetti, P. Adaptation of Candida Albicans to the Host Environment: The Role of Morphogenesis in Virulence and Survival in Mammalian Hosts. Curr. Opin. Microbiol. 2003, 6, 338–343. [Google Scholar] [CrossRef]
- Schmid, J.; Magee, P.T.; Holland, B.R.; Zhang, N.; Cannon, R.D.; Magee, B.B. Last Hope for the Doomed? Thoughts on the Importance of a Parasexual Cycle for the Yeast Candida albicans. Curr. Genet. 2015, 62, 81–85. [Google Scholar] [CrossRef]
- Du, H.; Huang, G. Environmental PH Adaptation and Morphological Transitions in Candida albicans. Curr. Genet. 2015, 62, 283–286. [Google Scholar] [CrossRef]
- Parrino, S.M.; Si, H.; Naseem, S.; Groudan, K.; Gardin, J.; Konopka, J.B. CAMP-Independent Signal Pathways Stimulate Hyphal Morphogenesis in Candida albicans. Mol. Microbiol. 2016, 103, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Zhang, Y.; Fan, S.; Nobile, C.J.; Guan, G.; Huang, G. Integration of the Tricarboxylic Acid (TCA) Cycle with CAMP Signaling and Sfl2 Pathways in the Regulation of CO2 Sensing and Hyphal Development in Candida albicans. PLoS Genet. 2017, 13, e1006949. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Hanumantha Rao, K.; Bhavesh, N.S.; Das, G.; Dwivedi, V.P.; Datta, A. N-Acetylglucosamine (GlcNAc)-Inducible Gene GIG2 Is a Novel Component of GlcNAc Metabolism in Candida albicans. Eukaryot. Cell 2014, 13, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Ene, I.V.; Cheng, S.-C.; Netea, M.G.; Brown, A.J.P. Growth of Candida Albicans Cells on the Physiologically Relevant Carbon Source Lactate Affects Their Recognition and Phagocytosis by Immune Cells. Infect. Immun. 2013, 81, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.P.; Budge, S.; Kaloriti, D.; Tillmann, A.; Jacobsen, M.D.; Yin, Z.; Ene, I.V.; Bohovych, I.; Sandai, D.; Kastora, S.; et al. Stress Adaptation in a Pathogenic Fungus. J. Exp. Biol. 2014, 217, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Konopka, J.B. N-Acetylglucosamine Functions in Cell Signaling. Scientifica 2012, 2012, 489208. [Google Scholar] [CrossRef] [Green Version]
- Min, K.; Naseem, S.; Konopka, J.B. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J. Fungi 2019, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Hanumantha Rao, K.; Paul, S.; Ghosh, S. N-Acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, Candida Albicans. J. Fungi 2021, 7, 65. [Google Scholar] [CrossRef]
- Gunasekera, A.; Alvarez, F.J.; Douglas, L.M.; Wang, H.X.; Rosebrock, A.P.; Konopka, J.B. Identification of GIG1, a GlcNAc-Induced Gene in Candida Albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin, Z. Eukaryot. Cell 2010, 9, 1476–1483. [Google Scholar] [CrossRef] [Green Version]
- Sudbery, P.E. Growth of Candida Albicans Hyphae. Nat. Rev. Microbiol. 2011, 9, 737–748. [Google Scholar] [CrossRef]
- Su, C.; Yu, J.; Lu, Y. Hyphal Development in Candida albicans from Different Cell States. Curr. Genet. 2018, 64, 1239–1243. [Google Scholar] [CrossRef]
- Naseem, S.; Gunasekera, A.; Araya, E.; Konopka, J.B. N-Acetylglucosamine (GlcNAc) Induction of Hyphal Morphogenesis and Transcriptional Responses in Candida Albicans Are Not Dependent on Its Metabolism. J. Biol. Chem. 2011, 286, 28671–28680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Yi, S.; Sahni, N.; Daniels, K.J.; Srikantha, T.; Soll, D.R. N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida Albicans. PLoS Pathog. 2010, 6, e1000806. [Google Scholar] [CrossRef]
- Ghosh, S.; Rao, K.H.; Sengupta, M.; Bhattacharya, S.K.; Datta, A. Two Gene Clusters Co-Ordinate for a Functional N-Acetylglucosamine Catabolic Pathway in Vibrio Cholerae. Mol. Microbiol. 2011, 80, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.N.; Ansari, S.; Kumar, A.; Ghosh, S.; Narula, A.; Datta, A. Magnaporthe Oryzae MoNdt80 Is a Transcriptional Regulator of GlcNAc Catabolic Pathway Involved in Pathogenesis. Microbiol. Res. 2020, 239, 126550. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Kumar, V.; Bhatt, D.N.; Irfan, M.; Datta, A. N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering 2022, 9, 64. [Google Scholar] [CrossRef]
- Williams, R.B.; Lorenz, M.C. Multiple Alternative Carbon Pathways Combine to Promote Candida Albicans Stress Resistance, Immune Interactions, and Virulence. mBio 2020, 11, e03070-19. [Google Scholar] [CrossRef] [Green Version]
- Laprade, D.; Brown, M.; McCarthy, M.; Ritch, J.; Austriaco, N. Filamentation Protects Candida albicans from Amphotericin B-Induced Programmed Cell Death via a Mechanism Involving the Yeast Metacaspase, MCA1. Microb. Cell 2016, 3, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Grela, E.; Zdybicka-Barabas, A.; Pawlikowska-Pawlega, B.; Cytrynska, M.; Wlodarczyk, M.; Grudzinski, W.; Luchowski, R.; Gruszecki, W.I. Modes of the Antibiotic Activity of Amphotericin B against Candida albicans. Sci. Rep. 2019, 9, 17029. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, C.; Fink, G.R. Guide to Yeast Genetics and Molecular and Cell Biology: Part A; Elsevier Academic Press: Amsterdam, The Netherlands, 2004; ISBN 9780121827786. [Google Scholar]
- Rao, K.H.; Ruhela, D.; Ghosh, S.; Abdin, M.Z.; Datta, A. N-acetylglucosamine kinase, HXK1 contributes to white–opaque morphological transition in Candida albicans. Biochem. Biophys. Res. Commun. 2014, 445, 138–144. [Google Scholar] [CrossRef]
- de Melo, I.S.; Faull, J.L. Scanning electron microscopy of conidia of Trichoderma stromaticum, a biocontrol agent of witches’ broom disease of cocoa. Braz. J. Microbiol. 2004, 35, 330–332. [Google Scholar] [CrossRef]
- Weidt, S.; Pesko, B.; Cojocariu, C.; Silcock, P.; Burchmore, R.; Burgess, K. Untargeted Metabolomics Using Orbitrap-Based GC-MS. Available online: https://www.pragolab.cz/files/aktuality/2016-01/AN-10457-GC-MS-Orbitrap-Untargeted-Metabolomics-AN10457-EN.pdf (accessed on 3 July 2023).
- Smirnov, A.; Qiu, Y.; Jia, W.; Walker, D.I.; Jones, D.P.; Du, X. ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography–Mass Spectrometry Metabolomics Data. Anal. Chem. 2019, 91, 9069–9077. [Google Scholar] [CrossRef]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Mohan Karuppayil, S. Terpenoids of Plant Origin Inhibit Morphogenesis, Adhesion, and Biofilm Formation ByCandida Albicans. Biofouling 2012, 29, 87–96. [Google Scholar] [CrossRef]
- Rzigalinski, B.A.; Carfagna, C.S.; Ehrich, M. Cerium Oxide Nanoparticles in Neuroprotection and Considerations for Efficacy and Safety. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 9, e1444. [Google Scholar] [CrossRef]
- Guevara-Olvera, L.; Calvo-Mendez, C.; Ruiz-Herrera, J. The Role of Polyamine Metabolism in Dimorphism of Yarrowia Lipolytica. J. Gen. Microbiol. 1993, 139, 485–493. [Google Scholar] [CrossRef] [Green Version]
Metabolites | Glucose | GlcNAc |
---|---|---|
Acetic acid | 75,523 | 66,024 |
Oxalic acid | 19,379 | 35,533 |
Formic acid | 139,232 | 0 |
Carbamic acid | 0 | 46,075 |
Carbonic acid | 0 | 24,857 |
Malonic acid | 225,082 | 183,445 |
Stearic acid | 217,183 | 105,159 |
Trichloroacetic acid | 177,869 | 77,711 |
Ascorbic acid | 114,099 | 0 |
Pthalic acid | 466,065 | 422,575 |
Erucic acid | 272,754 | 0 |
Oleic Acid | 336,842 | 0 |
Arachidic acid | 138,511 | 0 |
Linoleic acid | 183,765 | 0 |
Myristic acid | 212,820 | 0 |
6-Aminocaproic acid | 103,442 | 0 |
Heneicosane | 163,744 | 119,053 |
3,4-Anhydro-d-galactosan | 0 | 10,058 |
Ergosterol | 0 | 144,365 |
Sterols | 149,667 | |
Farnesol | 0 | 95,425 |
3,4-Dihydroxyphenylglycol | 2,158,059 | 0 |
Ethylparaben | 196,123 | 0 |
Alanine | 0 | 79,622 |
Carbon | AmpB | 100 µg/mL | 50 µg/mL | 25 µg/mL | 12 µg/mL | 6 µg/mL | 3 µg/mL | 1.5 µg/mL | 0.7 µg/mL | 0.3 µg/mL | 0.1 µg/mL | YNB+ DMSO (WC) * | YNB (WC) * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glucose | 0.4430 ± 0.203 | 0.3765 ± 0.175 | 0.7372 ± 0.564 | 0.7737 ± 0.598 | 0.6877 ± 0.237 | 0.859 ± 0.454 | 0.9010 ± 0.264 | 1.2517 ± 0.061 | 0.7246 ± 0.295 | 0.5367 ± 0.108 | 0.0264 ± 0.042 | 0.0330 ± 0.039 | |
GlcNAc | 0.0646 ± 0.007 | 0.1367 ± 0.008 | 0.1952 ± 0.116 | 0.2663 ± 0.125 | 0.7277 ± 0.060 | 0.4962 ± 0.111 | 0.4242 ± 0.022 | 0.4723 ± 0.012 | 0.9434 ± 0.161 | 0.5266 ± 0.087 | 0.0283 ± 0.044 | 0.0339 ± 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, S.; Sharma, S.; Singh, M.P.; Singh, S.K.; Vamanu, E.; Rao, K.H. Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans. Biomedicines 2023, 11, 1997. https://doi.org/10.3390/biomedicines11071997
Sahoo S, Sharma S, Singh MP, Singh SK, Vamanu E, Rao KH. Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans. Biomedicines. 2023; 11(7):1997. https://doi.org/10.3390/biomedicines11071997
Chicago/Turabian StyleSahoo, Somnath, Sarika Sharma, Mahendra P. Singh, Sandeep K. Singh, Emanuel Vamanu, and Kongara Hanumantha Rao. 2023. "Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans" Biomedicines 11, no. 7: 1997. https://doi.org/10.3390/biomedicines11071997
APA StyleSahoo, S., Sharma, S., Singh, M. P., Singh, S. K., Vamanu, E., & Rao, K. H. (2023). Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans. Biomedicines, 11(7), 1997. https://doi.org/10.3390/biomedicines11071997