Unraveling Lifelong Brain Morphometric Dynamics: A Protocol for Systematic Review and Meta-Analysis in Healthy Neurodevelopment and Ageing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment of Individual Studies
2.6. Data Analysis and Synthesis
3. Discussion
3.1. Establishing Descriptive Model for Brain Ageing
3.1.1. Period of Development
3.1.2. Period of Maturation
3.1.3. Period of Decline
3.2. Developing Reference Norms with Meta-Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MeSH | Medical Subject Headings |
ND | Neurodegenerative disease |
PRISMA-P | Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol |
References
- Lebel, C.; Beaulieu, C. Longitudinal development of human brain wiring continues from childhood into adulthood. J. Neurosci. 2011, 31, 10937–10947. [Google Scholar] [CrossRef] [PubMed]
- Fjell, A.M.; Walhovd, K.B.; Fennema-Notestine, C.; McEvoy, L.K.; Hagler, D.J.; Holland, D.; Brewer, J.B.; Dale, A.M. One-year brain atrophy evident in healthy aging. J. Neurosci. 2009, 29, 15223–15231. [Google Scholar] [CrossRef] [PubMed]
- Tamnes, C.K.; Walhovd, K.B.; Dale, A.M.; Østby, Y.; Grydeland, H.; Richardson, G.; Westlye, L.T.; Roddey, J.C.; Hagler, D.J., Jr.; Due-Tønnessen, P.; et al. Brain development and aging: Overlapping and unique patterns of change. Neuroimage 2013, 68, 63–74. [Google Scholar] [CrossRef]
- Statsenko, Y.; Meribout, S.; Habuza, T.; Almansoori, T.M.; Gorkom, K.N.V.; Gelovani, J.G.; Ljubisavljevic, M. Patterns of structure-function association in normal aging and in Alzheimer’s disease: Screening for mild cognitive impairment and dementia with ML regression and classification models. Front. Aging Neurosci. 2023, 14, 943566. [Google Scholar] [CrossRef]
- Matos, M.B.; Bara, T.S.; Cordeiro, M.L. Autism Spectrum Disorder Diagnoses: A Comparison of Countries with Different Income Levels. Clin. Epidemiol. 2022, 2022, 959–969. [Google Scholar] [CrossRef]
- Autism Rates by Country. 2021. Available online: http://worldpopulationreview.com/country-rankings/autism-rates-by-country (accessed on 4 October 2021).
- Roehr, S.; Pabst, A.; Luck, T.; Riedel-Heller, S.G. Is dementia incidence declining in high-income countries? A systematic review and meta-analysis. Clin. Epidemiol. 2018, 2018, 1233–1247. [Google Scholar] [CrossRef] [PubMed]
- Numbers of People with Dementia Worldwide. 2015. Available online: https://www.alzint.org (accessed on 4 October 2021).
- Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab. 2018, 27, 1176–1199. [Google Scholar] [CrossRef]
- Cioni, G.; Inguaggiato, E.; Sgandurra, G. Early intervention in neurodevelopmental disorders: Underlying neural mechanisms. Dev. Med. Child. Neurol. 2016, 58, 61–66. [Google Scholar] [CrossRef]
- Chung, W.K.; Berg, J.S.; Botkin, J.R.; Brenner, S.E.; Brosco, J.P.; Brothers, K.B.; Currier, R.J.; Gaviglio, A.; Kowtoniuk, W.E.; Olson, C.; et al. Newborn screening for neurodevelopmental diseases: Are we there yet? Am. J. Med. Genet. 2022, 190, 222–230. [Google Scholar] [CrossRef]
- Leidinger, P.; Backes, C.; Deutscher, S.; Schmitt, K.; Mueller, S.C.; Frese, K.; Haas, J.; Ruprecht, K.; Paul, F.; Stähler, C.; et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013, 14, R78. [Google Scholar] [CrossRef]
- Lovrecic, L.; Kastrin, A.; Kobal, J.; Pirtosek, Z.; Krainc, D.; Peterlin, B. Gene expression changes in blood as a putative biomarker for Huntington’s disease. J. Mov. Disord. 2009, 24, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, S.; Wu, Z.; Tang, B. Genetics of hereditary neurological disorders in children. Transl. Pediatr. 2014, 3, 108. [Google Scholar] [CrossRef]
- Venkata, S.K.R.G.; Pournami, F.; Prabhakar, J.; Nandakumar, A.; Jain, N. Disability prediction by early Hammersmith neonatal neurological examination: A diagnostic study. J. Child Neurol. 2020, 35, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.H.; Wang, Y.; Doorish, C.; Lewis, M.; Battista, V.; Mitsumoto, H.; Marder, K. A screening assessment of cognitive impairment in patients with ALS. Amyotroph. Lateral Scler. 2007, 8, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Mackin, R.S.; Ayalon, L.; Feliciano, L.; Areán, P.A. The sensitivity and specificity of cognitive screening instruments to detect cognitive impairment in older adults with severe psychiatric illness. J. Geriatr. Psychiatry Neurol. 2010, 23, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, S.; Mosci, K.; Cross, D.; Thientunyakit, T. Brain [F-18] FDG PET for clinical dementia workup: Differential diagnosis of Alzheimer’s disease and other types of dementing disorders. Semin. Nucl. Med. 2021, 51, 230–240. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Rabinovici, G.D.; Smith, R.; Cho, H.; Schöll, M.; Strandberg, O.; Palmqvist, S.; Mattsson, N.; Janelidze, S.; Santillo, A.; et al. Discriminative accuracy of [18F] flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. Jama 2018, 320, 1151–1162. [Google Scholar] [CrossRef]
- Tripathi, M.; Tripathi, M.; Damle, N.; Kushwaha, S.; Jaimini, A.; D’Souza, M.M.; Sharma, R.; Saw, S.; Mondal, A. Differential diagnosis of neurodegenerative dementias using metabolic phenotypes on F-18 FDG PET/CT. Neuroradiol. J. 2014, 27, 13–21. [Google Scholar] [CrossRef]
- Koikkalainen, J.; Rhodius-Meester, H.; Tolonen, A.; Barkhof, F.; Tijms, B.; Lemstra, A.W.; Tong, T.; Guerrero, R.; Schuh, A.; Ledig, C.; et al. Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage Clin. 2016, 11, 435–449. [Google Scholar] [CrossRef]
- Statsenko, Y.; Gorkom, K.; Ljubisabljevic, M.; Szolics, M.; Baylis, C.; Al Mansoori, T.M.; Das, K.M.; Soteriades, E.; Charykova, I.A.; Dotsenko, T.; et al. Psychological outcomes of age-related brain atrophy. Neuroradiology 2019, 61, 73. [Google Scholar]
- Habuza, T.; Zaki, N.; Mohamed, E.A.; Statsenko, Y. Deviation from model of normal aging in alzheimer’s disease: Application of deep learning to structural MRI data and cognitive tests. IEEE Access 2022, 10, 53234–53249. [Google Scholar] [CrossRef]
- Habuza, T.; Zaki, N.; Statsenko, Y.; Elyassami, S. MRI and cognitive tests-based screening tool for dementia. J. Neurol. Sci. 2021, 429, 118964. [Google Scholar] [CrossRef]
- Habuza, T.; Statsenko, Y.; Uzianbaeva, L.; Gorkom, K.; Zaki, N.; Belghali, M. Models of brain cognitive and morphological changes across the life: Machine learning-based approach. ESNR 2021. Neuroradiology 2021, 63, 42. [Google Scholar]
- Gorbach, T.; Pudas, S.; Lundquist, A.; Orädd, G.; Josefsson, M.; Salami, A.; de Luna, X.; Nyberg, L. Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiol. Aging 2017, 51, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Josefsson, M.; de Luna, X.; Pudas, S.; Nilsson, L.G.; Nyberg, L. Genetic and lifestyle predictors of 15-year longitudinal change in episodic memory. J. Am. Geriatr. Soc. 2012, 60, 2308–2312. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Gorkom, K.N.V.; Zaki, N.; Almansoor, T.M. Applying the inverse efficiency score to visual-motor task for studying speed/accuracy performance while aging. Front. Aging Neurosci. 2020, 12, 452. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, J.H.; Knickmeyer, R.C.; Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 2018, 19, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.; Hall, H.; Copnell, B. A guide to writing a qualitative systematic review protocol to enhance evidence-based practice in nursing and health care. Worldviews Evid.-Based Nurs. 2016, 13, 241–249. [Google Scholar] [CrossRef]
- Pigott, T.D.; Polanin, J.R. Methodological guidance paper: High-quality meta-analysis in a systematic review. Rev. Educ. Res. 2020, 90, 24–46. [Google Scholar] [CrossRef]
- Freesurfer Labels. 2013. Available online: https://www.slicer.org/wiki (accessed on 21 March 2022).
- Aromataris, E.; Stern, C.; Lockwood, C.; Barker, T.H.; Klugar, M.; Jadotte, Y.; Evans, C.; Ross-White, A.; Lizarondo, L.; Stephenson, M.; et al. JBI series paper 2: Tailored evidence synthesis approaches are required to answer diverse questions: A pragmatic evidence synthesis toolkit from JBI. J. Clin. Epidemiol. 2022, 150, 196–202. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Walhovd, K.B.; Fjell, A.M.; Reinvang, I.; Lundervold, A.; Dale, A.M.; Eilertsen, D.E.; Quinn, B.T.; Salat, D.; Makris, N.; Fischl, B. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol. Aging 2005, 26, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, J.H.; Shi, F.; Woolson, S.L.; Knickmeyer, R.C.; Short, S.J.; Lin, W.; Zhu, H.; Hamer, R.M.; Styner, M.; Shen, D. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 2012, 22, 2478–2485. [Google Scholar] [CrossRef]
- Raz, N.; Lindenberger, U.; Rodrigue, K.M.; Kennedy, K.M.; Head, D.; Williamson, A.; Dahle, C.; Gerstorf, D.; Acker, J.D. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb. Cortex 2005, 15, 1676–1689. [Google Scholar] [CrossRef]
- Fjell, A.M.; Westlye, L.T.; Grydeland, H.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Holland, D.; Dale, A.M.; Walhovd, K.B.; et al. Critical ages in the life course of the adult brain: Nonlinear subcortical aging. Neurobiol. Aging 2013, 34, 2239–2247. [Google Scholar] [CrossRef]
- Walhovd, K.B.; Westlye, L.T.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Agartz, I.; Salat, D.H.; Greve, D.N.; Fischl, B.; et al. Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol. Aging 2011, 32, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, A.; Matsui, M.; Tanaka, C.; Takahashi, T.; Noguchi, K.; Suzuki, M.; Nishijo, H. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE 2012, 7, e46970. [Google Scholar] [CrossRef]
- Scahill, R.I.; Frost, C.; Jenkins, R.; Whitwell, J.L.; Rossor, M.N.; Fox, N.C. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 2003, 60, 989–994. [Google Scholar] [CrossRef]
- Remer, J.; Croteau-Chonka, E.; Dean, D.C., III; D’arpino, S.; Dirks, H.; Whiley, D.; Deoni, S.C. Quantifying cortical development in typically developing toddlers and young children, 1–6 years of age. Neuroimage 2017, 153, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Storsve, A.B.; Fjell, A.M.; Tamnes, C.K.; Westlye, L.T.; Overbye, K.; Aasland, H.W.; Walhovd, K.B. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. J. Neurosci. 2014, 34, 8488–8498. [Google Scholar] [CrossRef]
- Takahashi, T.; Zhou, S.Y.; Nakamura, K.; Tanino, R.; Furuichi, A.; Kido, M.; Kawasaki, Y.; Noguchi, K.; Seto, H.; Kurachi, M.; et al. A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, Y.; Habuza, T.; Smetanina, D.; Simiyu, G.L.; Uzianbaeva, L.; Gorkom, K.N.V.; Zaki, N.; Charykova, I.; Al Koteesh, J.; Ljubisavljevic, M.; et al. Brain morphometry and cognitive performance in normal brain aging: Age- and sex-related structural and functional changes. Front. Aging Neurosci. 2022, 13, 713680. [Google Scholar] [CrossRef]
- Pini, L.; Pievani, M.; Bocchetta, M.; Altomare, D.; Bosco, P.; Cavedo, E.; Galluzzi, S.; Marizzoni, M.; Frisoni, G.B. Brain atrophy in Alzheimer’s disease and aging. Ageing Res. Rev. 2016, 30, 25–48. [Google Scholar] [CrossRef]
- Dieckmann, N.; Roediger, A.; Prell, T.; Schuster, S.; Herdick, M.; Mayer, T.E.; Witte, O.W.; Steinbach, R.; Grosskreutz, J. Cortical and subcortical grey matter atrophy in Amyotrophic Lateral Sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin. 2022, 36, 103162. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pu, F.; Fan, Y.; Niu, H.; Li, S.; Li, D. Age-related changes in brain structural covariance networks. Front. Hum. Neurosci. 2013, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.; Gavett, B.; Harvey, D.; Farias, S.T.; Olichney, J.; Beckett, L.; DeCarli, C.; Mungas, D. Brain volume change and cognitive trajectories in aging. Neuropsychology 2018, 32, 436. [Google Scholar] [CrossRef]
- Pangelinan, M.M.; Zhang, G.; VanMeter, J.W.; Clark, J.E.; Hatfield, B.D.; Haufler, A.J. Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neuroimage 2011, 54, 3093–3100. [Google Scholar] [CrossRef]
- Courchesne, E.; Pierce, K.; Schumann, C.M.; Redcay, E.; Buckwalter, J.A.; Kennedy, D.P.; Morgan, J. Mapping early brain development in autism. Neuron 2007, 56, 399–413. [Google Scholar] [CrossRef]
- Shen, M.D.; Piven, J. Brain and behavior development in autism from birth through infancy. Dialogues Clin. Neurosci. 2017, 19, 325–333. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Neidl-Van Gorkom, K.; Zaki, N.; Almansoori, T.M.; Al Zahmi, F.; Ljubisavljevic, M.R.; Belghali, M. Proportional Changes in Cognitive Subdomains During Normal Brain Aging. Front. Aging Neurosci. 2021, 13, 673469. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Charykova, I.; Gorkom, K.; Zaki, N.; Almansoori, T.; Ljubisavljevic, M.; Szolics, M.; Al Koteesh, J.; Ponomareva, A.; et al. AI models of age-associated changes in CNS composition identified by MRI. J. Neurol. Sci. 2021, 429, 118303. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Uzianbaeva, L.; Gorkom, K.; Belghali, M.; Charykova, I. Correlation between lifelong dynamics of psychophysiological performance and brain morphology. ESNR 2021. Neuroradiology 2021, 63, 41–42. [Google Scholar]
- Gorkom, K.; Statsenko, Y.; Habuza, T.; Uzianbaeva, L.; Belghali, M.; Charykova, I. Comparison of brain volumetric changes with functional outcomes in physiologic brain aging. ESNR 2021. Neuroradiology 2021, 63, 43–44. [Google Scholar]
- Uzianbaeva, L.; Statsenko, Y.; Habuza, T.; Gorkom, K.; Belghali, M.; Charykova, I. Effects of sex age-related changes in brain morphology. ESNR 2021. Neuroradiology 2021, 63, 42–43. [Google Scholar]
- Erten-Lyons, D.; Dodge, H.H.; Woltjer, R.; Silbert, L.C.; Howieson, D.B.; Kramer, P.; Kaye, J.A. Neuropathologic basis of age-associated brain atrophy. JAMA Neurol. 2013, 70, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.L.; Schrack, J.A.; Shardell, M.D.; Levine, M.; Moore, A.Z.; An, Y.; Elango, P.; Karikkineth, A.; Tanaka, T.; de Cabo, R.; et al. A roadmap to build a phenotypic metric of ageing: Insights from the Baltimore Longitudinal Study of Aging. J. Intern. Med. 2020, 287, 373–394. [Google Scholar] [CrossRef]
- Nagaraja, N.; Wang, W.E.; Duara, R.; DeKosky, S.T.; Vaillancourt, D. Mediation of Reduced Hippocampal Volume by Cerebral Amyloid Angiopathy in Pathologically Confirmed Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 93, 495–507. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, M.; Solfrizzi, V.; D’Urso, F.; Di Gioia, I.; Sardone, R.; Dibello, V.; Stallone, R.; Liguori, A.; Ciritella, C.; Daniele, A.; et al. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: An update on emerging drugs. Expert Opin. Emerg. Drugs 2020, 25, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Jessen, F.; Grimmer, T.; Levin, J.; Flöel, A.; Peters, O.; Froelich, L. Anti-amyloid antibody therapies in Alzheimer’s disease. Brain 2023, 146, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Wrigglesworth, J.; Ward, P.; Harding, I.H.; Nilaweera, D.; Wu, Z.; Woods, R.L.; Ryan, J. Factors associated with brain ageing-a systematic review. BMC Neurol. 2021, 21, 312. [Google Scholar] [CrossRef]
- de Melo Coelho, F.G.; Gobbi, S.; Andreatto, C.A.A.; Corazza, D.I.; Pedroso, R.V.; Santos-Galduróz, R.F. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 2013, 56, 10–15. [Google Scholar] [CrossRef]
- Colich, N.L.; Rosen, M.L.; Williams, E.S.; McLaughlin, K.A. Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychol. Bull. 2020, 146, 721. [Google Scholar] [CrossRef]
- Milte, C.M.; McNaughton, S.A. Dietary patterns and successful ageing: A systematic review. Eur. J. Nutr. 2016, 55, 423–450. [Google Scholar] [CrossRef]
- Sachdev, H.; Gera, T.; Nestel, P. Effect of iron supplementation on mental and motor development in children: Systematic review of randomised controlled trials. Public Health Nutr. 2005, 8, 117–132. [Google Scholar] [CrossRef]
- Cronin, P.; Kelly, A.M.; Altaee, D.; Foerster, B.; Petrou, M.; Dwamena, B.A. How to perform a systematic review and meta-analysis of diagnostic imaging studies. Acad. Radiol. 2018, 25, 573–593. [Google Scholar] [CrossRef]
- Grucza, R.A.; Sher, K.J.; Kerr, W.C.; Krauss, M.J.; Lui, C.K.; McDowell, Y.E.; Hartz, S.; Virdi, G.; Bierut, L.J. Trends in adult alcohol use and binge drinking in the early 21st-century United States: A meta-analysis of 6 National Survey Series. Alcohol. Clin. Exp. 2018, 42, 1939–1950. [Google Scholar] [CrossRef]
- Koh, D.; Nam, J.; Graubard, B.I.; Chen, Y.; Locke, S.J.; Friesen, M.C. Evaluating temporal trends from occupational lead exposure data reported in the published literature using meta-regression. Ann. Occup. Hyg. 2014, 58, 1111–1125. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Sadeh, N. Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry 2014, 19, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; De, A. Basics of aging theories and disease related aging-an overview. PharmaTutor 2017, 5, 16–23. [Google Scholar]
- Wadhwa, R.; Gupta, R.; Maurya, P.K. Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr. Pharm. Des. 2018, 24, 4711–4725. [Google Scholar] [CrossRef] [PubMed]
- Bersani, F.S.; Mellon, S.H.; Reus, V.I.; Wolkowitz, O.M. Accelerated aging in serious mental disorders. Curr. Opin. Psychiatry 2019, 32, 381. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef]
- Bethlehem, R.A.; Seidlitz, J.; White, S.R.; Vogel, J.W.; Anderson, K.M.; Adamson, C.; Adler, S.; Alexopoulos, G.S.; Anagnostou, E.; Areces-Gonzalez, A.; et al. Brain charts for the human lifespan. Nature 2022, 604, 525–533. [Google Scholar] [CrossRef]
- Habuza, T.; Navaz, A.N.; Hashim, F.; Alnajjar, F.; Zaki, N.; Serhani, M.A.; Statsenko, Y. AI applications in robotics, precision medicine, and medical image analysis: An overview and future trends. Inform. Med. Unlocked 2021, 24, 100596. [Google Scholar] [CrossRef]
- Bruno, M.A.; Walker, E.A.; Abujudeh, H.H. Understanding and confronting our mistakes: The epidemiology of error in radiology and strategies for error reduction. Radiographics 2015, 35, 1668–1676. [Google Scholar] [CrossRef]
- Wang, S.; Summers, R.M. Machine learning and radiology. Med. Image Anal. 2012, 16, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, C.; Castiglioni, I.; Cerasa, A. Radiomics approach in the neurodegenerative brain. Aging Clin. Exp. Res. 2021, 33, 1709–1711. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, Y.; Habuza, T.; Talako, T.; Kurbatova, T.; Simiyu, G.L.; Smetanina, D.; Sido, J.; Qandil, D.S.; Meribout, S.; Gelovani, J.G.; et al. Reliability of Machine Learning in Eliminating Data Redundancy of Radiomics and Reflecting Pathophysiology in COVID-19 Pneumonia: Impact of CT Reconstruction Kernels on Accuracy. IEEE Access 2022, 10, 120901–120921. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Charykova, I.; Gorkom, K.N.V.; Zaki, N.; Almansoori, T.M.; Baylis, G.; Ljubisavljevic, M.; Belghali, M. Predicting age from behavioral test performance for screening early onset of cognitive decline. Front. Aging Neurosci. 2021, 13, 661514. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Charykova, I.; Gorkom, K.; Zaki, N.; Almansoori, T.; Ljubisavljevic, M.; Szolics, M.; Al Koteesh, J.; Ponomareva, A.; et al. Predicting cognitive age for screening for neurodegeneration. J. Neurol. Sci. 2021, 429, 118994. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
for Literature | for Subjects | |
1. Original peer-reviewed studies 2. Studies of the longitudinal and cross-sectional design 3. Studies on absolute or proportional change in volume, thickness, and other dimensions of the brain structures 4. Female and male participants of any age starting from birth 5. Individuals free from mental disorders, brain pathologies, and injuries | 1. Grey literature 2. Editorial letters and protocol papers 3. Case studies and reviews 4. Studies performed on animals 5. Interventional studies (both therapeutic and surgical interventions) 6. Exposure of the participants to any factor that can potentially affect results. | Patients suffering from: 1. Mental and psychological disorders (F00–F99 in ICD-10) 2. Cerebrovascular diseases (I60–I69) 3. Organic pathology of the central nervous system (e.g., brain and meninges tumors: C71, D32–33) 4. Injury to the head (S00–S09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Statsenko, Y.; Habuza, T.; Smetanina, D.; Simiyu, G.L.; Meribout, S.; King, F.C.; Gelovani, J.G.; Das, K.M.; Gorkom, K.N.-V.; Zaręba, K.; et al. Unraveling Lifelong Brain Morphometric Dynamics: A Protocol for Systematic Review and Meta-Analysis in Healthy Neurodevelopment and Ageing. Biomedicines 2023, 11, 1999. https://doi.org/10.3390/biomedicines11071999
Statsenko Y, Habuza T, Smetanina D, Simiyu GL, Meribout S, King FC, Gelovani JG, Das KM, Gorkom KN-V, Zaręba K, et al. Unraveling Lifelong Brain Morphometric Dynamics: A Protocol for Systematic Review and Meta-Analysis in Healthy Neurodevelopment and Ageing. Biomedicines. 2023; 11(7):1999. https://doi.org/10.3390/biomedicines11071999
Chicago/Turabian StyleStatsenko, Yauhen, Tetiana Habuza, Darya Smetanina, Gillian Lylian Simiyu, Sarah Meribout, Fransina Christina King, Juri G. Gelovani, Karuna M. Das, Klaus N.-V. Gorkom, Kornelia Zaręba, and et al. 2023. "Unraveling Lifelong Brain Morphometric Dynamics: A Protocol for Systematic Review and Meta-Analysis in Healthy Neurodevelopment and Ageing" Biomedicines 11, no. 7: 1999. https://doi.org/10.3390/biomedicines11071999
APA StyleStatsenko, Y., Habuza, T., Smetanina, D., Simiyu, G. L., Meribout, S., King, F. C., Gelovani, J. G., Das, K. M., Gorkom, K. N. -V., Zaręba, K., Almansoori, T. M., Szólics, M., Ismail, F., & Ljubisavljevic, M. (2023). Unraveling Lifelong Brain Morphometric Dynamics: A Protocol for Systematic Review and Meta-Analysis in Healthy Neurodevelopment and Ageing. Biomedicines, 11(7), 1999. https://doi.org/10.3390/biomedicines11071999