What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models
Abstract
:1. Introduction
2. Amino Acid Supplementation as a Therapeutic Strategy for DMD
3. Pre-Clinical Studies Evaluating Amino Acids and Derivatives in Mdx
4. Combining Amino Acid Supplements with DMD Standard of Care
5. Adverse Effects and Human Clinical Trials
6. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szabo, S.M.; Salhany, R.M.; Deighton, A.; Harwood, M.; Mah, J.; Gooch, K.L. The clinical course of Duchenne muscular dystrophy in the corticosteroid treatment era: A systematic literature review. Orphanet J. Rare Dis. 2021, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Artsma-Rus, A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Kourakis, S.; Timpani, C.A.; Campelj, D.G.; Hafner, P.; Gueven, N.; Fischer, D.; Rybalka, E. Standard of care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: Can we do better? Orphanet J. Rare Dis. 2021, 16, e117. [Google Scholar] [CrossRef] [PubMed]
- Cordova, G.; Negroni, E.; Cabello-Verrugio, C.; Mouly, V.; Trollet, C. Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. Front. Genet. 2018, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Grounds, M.D.; Radley, H.G.; Lynch, G.S.; Nagaraju, K.; De Luca, A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol. Dis. 2008, 31, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Samuels, E.; Mullins, L. Nutrition considerations in Duchenne muscular dystrophy. Nutr. Clin. Pract. 2015, 30, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Davidson, Z.E.; Rodden, G.; Mázala, D.A.G.; Moore, C.; Papillon, C.; Hasemann, A.J.; Truby, H.; Grange, R.W. Practical Nutrition Guidelines for Individuals with Duchenne Muscular Dystrophy. In Regenerative Medicine for Degenerative Muscle Diseases; Childers, M., Ed.; Stem Cell Biology and Regenerative Medicine; Humana Press: New York, NY, USA, 2016; pp. 225–279. ISBN 978-1-4939-3227-6. [Google Scholar]
- Buckner, J.L.; Bowden, S.A.; Mahan, J.D. Optimizing bone health in Duchenne muscular dystrophy. Int. J. Endocrinol. 2015, 2015, 928385. [Google Scholar] [CrossRef]
- Woodman, K.G.; Coles, C.A.; Lamandé, S.R.; White, J.D. Nutraceuticals and their potential to treat Duchenne muscular dystrophy: Separating the Credible from the Conjecture. Nutrients 2016, 8, 713. [Google Scholar] [CrossRef] [Green Version]
- Boccanegra, B.; Verhaart, I.E.C.; Cappellari, O.; Vroom, E.; De Luca, A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: Considerations for Standard of Care and emerging virus outbreaks. Pharmacol. Res. 2020, 158, 104917. [Google Scholar] [CrossRef]
- Riedijk, M.A.; van Beek, R.H.; Voortman, G.; de Bie, H.M.; Dassel, A.C.; van Goudoever, J.B. Cysteine: A conditionally essential amino acid in low-birth-weight preterm infants? Am. J. Clin. Nutr. 2007, 86, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Terrill, J.R.; Huchet, C.; Le Guiner, C.; Lafoux, A.; Caudal, D.; Tulangekar, A.; Bryson-Richardson, R.J.; Sztal, T.E.; Grounds, M.D.; Arthur, P.G. Muscle pathology in dystrophic rats and zebrafish is unresponsive to taurine treatment, compared to the mdx mouse model for Duchenne muscular dystrophy. Metabolites 2023, 13, 232. [Google Scholar] [CrossRef]
- Martins-Bach, A.B.; Bloise, A.C.; Vainzof, M.; Rabbani, S.R. Metabolic profile of dystrophic mdx mouse muscles analyzed with in vitro magnetic resonance spectroscopy (MRS). Magn. Reson. Imag. 2012, 30, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Panza, E.; Vellecco, V.; Iannotti, F.A.; Paris, D.; Manzo, O.L.; Smimmo, M.; Mitilini, N.; Boscaino, A.; de Dominicis, G.; Bucci, M.; et al. Duchenne’s muscular dystrophy involves a defective transsulfuration pathway activity. Redox Biol. 2021, 45, 102040. [Google Scholar] [CrossRef] [PubMed]
- Terrill, J.R.; Grounds, M.D.; Arthur, P.G. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. Int. J. Biochem. Cell Biol. 2015, 66, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2010, 2, 75–98. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Rapucci Moraes, L.H.; Constâncio Bollineli, R.; Sayuri Mizobuti, D.; Dos Reis Silveira, L.; Marques, M.J.; Minatel, E. Effect of N-acetylcysteine plus deferoxamine on oxidative stress and inflammation in dystrophic muscle cells. Redox Rep. 2015, 20, 109–115. [Google Scholar] [CrossRef]
- Medved, I.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; Gong, X.; McKenna, M.J. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J. Appl. Physiol. 2004, 97, 1477–1485. [Google Scholar] [CrossRef]
- Merckx, C.; De Paepe, B. The role of taurine in skeletal muscle functioning and its potential as a supportive treatment for Duchenne muscular dystrophy. Metabolites 2022, 12, 193. [Google Scholar] [CrossRef]
- Lee, E.C.; Maresh, C.M.; Kraemer, W.J.; Yamamoto, L.M.; Hatfield, D.L.; Bailey, B.L.; Armstrong, L.E.; Volek, J.S.; McDermott, B.P.; As Craig, S. Ergogenic effects of betaine supplementation on strength and power performance. J. Int. Soc. Sports Nutr. 2010, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Rashti, S.L.; Avery, D.; Faigenbaum, A.D. Effect of betaine supplementation on power performance and fatigue. J. Int. Soc. Sports Nutr. 2009, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, T.J.; Jaw, T.S.; Chuang, H.Y.; Jong, Y.J.; Liu, G.C.; Li, C.W. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy. J. Comput. Assist. Tomogr. 2009, 33, 150–154. [Google Scholar] [CrossRef]
- Graf, R.; Anzali, S.; Buenger, J.; Pfluecker, F.; Driller, H. The multifunctional role of ectoine as a natural cell protectant. Clin. Dermatol. 2008, 26, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Terrill, J.R.; Duong, M.N.; Turner, R.; Le Guiner, C.; Boyatzis, A.; Kettle, A.J.; Grounds, M.D.; Arthur, P.G. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden retriever muscular dystrophy dog model for Duchenne muscular dystrophy. Redox Biol. 2016, 9, 276–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrill, J.R.; Boyatzis, A.; Grounds, M.D.; Arthur, P.G. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int. J. Biochem. Cell Biol. 2013, 45, 2097–2108. [Google Scholar] [CrossRef]
- Stipanuk, M.H. Role of the liver in regulation of body cysteine and taurine levels: A brief review. Neurochem. Res. 2004, 29, 105–110. [Google Scholar] [CrossRef]
- Barbiera, A.; Sorrentino, S.; Lepore, E.; Carfì, A.; Sica, G.; Dobrowolny, G.; Scicchitano, B.M. Taurine attenuates catabolic processes related to the onset of sarcopenia. Int. J. Mol. Sci. 2020, 21, 8865. [Google Scholar] [CrossRef]
- Gupta, S.C.; Sundaram, C.; Reuter, S.; Aggarwal, B.B. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim. Biophys. Acta 2010, 1799, 775–787. [Google Scholar] [CrossRef] [Green Version]
- McGreevy, J.W.; Hakim, C.H.; McIntosh, M.A.; Duan, D. Animal models of Duchenne muscular dystrophy: From basic mechanisms to gene therapy. Dis. Model. Mech. 2015, 8, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Putten, M.; Putker, K.; Overzier, M.; Adamzek, W.A.; Pasteuning-Vuhman, S.; Plomp, J.J.; Aartsma-Rus, A. Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy. FASEB J. 2019, 33, 8110–8124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, T.I.; Raucci, F.J.; Salloum, F.N. Cardiovascular disease in Duchenne muscular dystrophy: Overview and insight into novel therapeutic targets. JACC Basic. Transl. Sci. 2022, 7, 608–625. [Google Scholar] [CrossRef] [PubMed]
- Dubinin, M.V.; Talanov, E.Y.; Tenkov, K.S.; Starinets, V.S.; Mikheeva, I.B.; Belosludtsev, K.N. Transport of Ca2+ and Ca2+-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy. Biochim. Biophys. Acta 2020, 10, 2148250. [Google Scholar] [CrossRef]
- Horvath, D.M.; Murphy, R.M.; Mollica, J.P.; Hayes, A.; Goodman, G.A. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids 2016, 48, 2635–2645. [Google Scholar] [CrossRef] [PubMed]
- Barton, E.R.; Morris, L.; Kawana, M.; Bish, L.T.; Toursel, T. Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve 2005, 32, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Voisin, V.; Sébrié, C.; Matecki, S.; Yu, H.; Gillet, B.; Ramonatxo, M.; Israël, M.; De la Porte, S. L-arginine improves dystrophic phenotype in mdx mice. Neurobiol. Dis. 2005, 20, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Hnia, K.; Gayraud, J.; Hugon, G.; Ramonatxo, M.; De La Porte, S.; Matecki, S.; Mornet, D. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am. J. Pathol. 2008, 172, 1509–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, J.D.; Vargas, C.C.; Anderson, J.E. Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J. 2006, 20, 738–740. [Google Scholar] [CrossRef] [Green Version]
- Dudley, R.W.R.; Comtois, A.S.; St-Pierre, D.H.; Danialou, G. Early administration of L-arginine in mdx neonatal mice delays the onset of muscular dystrophy in tibialis anterior (TA) muscle. FASEB Bioadv. 2021, 3, 639–651. [Google Scholar] [CrossRef]
- Oh, J.; Kang, H.J.; Kim, H.J.; Lee, J.H.; Choi, K.G.; Park, K.D. The effect of L-carnitine supplementation on the dystrophic muscle and exercise tolerance of muscular dystrophy (mdx) mice. J. Korean Neurol. Assoc. 2005, 23, 519–523. [Google Scholar]
- Tulimiero, B.; Boccanegra, P.; Mantuano, S.; Cirmi, M.; De Bellis, O.; Cappellari, O.; De Luca, A. VP.86 Effect of a chronic treatment with L-citrulline on funtional, histological and molecular readouts of dystrophic mdx mouse model. Neuromuscul. Disord. 2022, 32 (Suppl. S1), S128. [Google Scholar] [CrossRef]
- Merckx, C.; Zschüntzsch, J.; Meyer, S.; Raedt, R.; Verschuere, H.; Schmidt, J.; De Paepe, B.; De Bleecker, J.L. Exploring the therapeutic potential of ectoine in Duchenne muscular dystrophy: Comparison with taurine, a supplement with known beneficial effects in the mdx mouse. Int. J. Mol. Sci. 2022, 23, 9567. [Google Scholar] [CrossRef]
- Mok, E.; Constantin, B.; Favreau, F.; Neveux, N.; Magaud, C.; Delwail, A.; Hankard, R. l-Glutamine administration reduces oxidized glutathione and MAP kinase signaling in dystrophic muscle of mdx mice. Pediatr. Res. 2008, 63, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Ham, D.J.; Gardner, A.; Kennedy, T.L.; Trieu, J.; Naim, T.; Chee, A.; Alves, F.M.; Caldow, M.K.; Lynch, G.S.; Koopman, R. Glycine administration attenuates progression of dystrophic pathology in prednisolone-treated dystrophin/utrophin null mice. Sci. Rep. 2019, 9, 12982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, N.P.; Pham, C.; Gervasio, O.L.; Allen, D.G. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J. Physiol. 2008, 586, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Terrill, J.R.; Radley-Crabb, H.G.; Grounds, M.D.; Arthur, P.G. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis. Neuromuscul. Disord. 2012, 22, 427–434. [Google Scholar] [CrossRef] [PubMed]
- de Senzi Moraes Pinto, R.; Ferretti, R.; Rapucci Moraes, L.H.; Santo Neto, H.; Marques, M.J.; Minatel, E. N-acetylcysteine treatment reduces TNF-α levels and myonecrosis in diaphragm muscle of mdx mice. Clin. Nutr. 2013, 32, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Pinniger, G.J.; Terrill, J.R.; Assan, E.B.; Grounds, M.D.; Arthur, P.G. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy. J. Physiol. 2017, 595, 7093–7107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, D.P.; Drummond, S.E.; Bolger, D.; Coiscaud, A.; Murphy, K.H.; Edge, D.; O’Halloran, K.D. N-acetylcysteine decreases fibrosis and increases force-generating capacity of mdx diaphragm. Antioxidants 2019, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Redwan, A.; Kiriaev, L.; Kueh, S.; Morley, J.W.; Peter Houweling, P.; Perry, B.D.; Head, S.I. Six weeks of N-acetylcysteine antioxidant in drinking water decreases pathological fiber branching in mdx mouse dystrophic fast-twitch skeletal muscle. Front. Physiol. 2023, 14, 1109587. [Google Scholar] [CrossRef]
- Terrill, J.R.; Pinniger, G.J.; Graves, J.A.; Grounds, M.D.; Arthur, P.G. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. J. Physiol. 2016, 594, 3095–3110. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Pierno, S.; Liantonio, A.; Cetrone, M.; Camerino, C.; Fraysse, B.; Mirabella, M.; Servidei, S.; Rüegg, U.T.; Conte Camerino, D. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J. Pharmacol. Exp. Ther. 2003, 304, 453–463. [Google Scholar] [CrossRef]
- Capogrosso, R.F.; Cozzoli, A.; Mantuano, P.; Camerino, G.M.; Massari, A.M.; Sblendorio, V.T.; De Bellis, M.; Tamma, R.; Giustino, A.; Nico, B.; et al. Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone. Pharmacol. Res. 2016, 106, 101–113. [Google Scholar] [CrossRef]
- Terrill, J.R.; Pinniger, G.J.; Nair, K.V.; Grounds, M.D.; Arthur, P.G. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction. PLoS ONE 2017, 12, e0187317. [Google Scholar] [CrossRef] [PubMed]
- Barker, R.G.; van der Poel, C.; Horvath, D.; Murphy, R.M. Taurine and methylprednisolone administration at close proximity to the onset of muscle degeneration is ineffective at attenuating force loss in the hind-limb of 28 days mdx mice. Sports 2018, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banfi, S.; D’Antona, G.; Ruocco, C.; Meregalli, M.; Belicchi, M.; Bella, P.; Erratico, S.; Donato, E.; Rossi, F.; Bifari, F.; et al. Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Sci. Rep. 2018, 8, 14659. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.A.; Allen, D.G. The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H1969–H1977. [Google Scholar] [CrossRef] [Green Version]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.P. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front. Cell Dev. Biol. 2021, 9, 656604. [Google Scholar] [CrossRef]
- Dirks, M.; Wall, B.; van Loon, L.V. Interventional strategies to combat muscle disuse atrophy in humans: Focus on neuromuscular electrical stimulation and dietary protein. J. Appl. Physiol. 2018, 125, 850–861. [Google Scholar] [CrossRef] [Green Version]
- Mantuano, P.; Boccanegra, B.; Bianchini, G.; Conte, E.; De Bellis, M.; Sanarica, F.; Camerino, G.M.; Pierno, S.; Cappellari, O.; Allegretti, M.; et al. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: Preclinical evaluation in a murine model of hind limb unloading. Pharmacol. Res. 2021, 171, 105798. [Google Scholar] [CrossRef] [PubMed]
- Matthews, E.; Brassington, R.; Kuntzer, T.; Jichi, F.; Manzur, A.Y. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 2016, 5, CD003725. [Google Scholar] [CrossRef] [Green Version]
- Ruocco, C.; Ragni, M.; Rossi, F.; Carullo, P.; Ghini, V.; Piscitelli, F.; Cutignano, A.; Manzo, E.; Ioris, R.M.; Bontems, F.; et al. Manipulation of dietary amino acids prevents and reverses obesity in mice through multiple mechanisms that modulate energy homeostasis. Diabetes 2020, 69, 2324–2339. [Google Scholar] [CrossRef] [PubMed]
- Okekunle, A.P.; Lee, H.; Provido, S.M.P.; Chung, G.H.; Hong, S.; Yu, S.H.; Lee, C.B.; Lee, J.E. Dietary branched-chain amino acids and odds of obesity among immigrant Filipino women: The Filipino women’s diet and health study (FiLWHEL). BMC Public Health 2022, 22, 654. [Google Scholar] [CrossRef] [PubMed]
- De Bandt, J.P.; Coumoul, X.; Barouki, R. Branched-chain amino acids and insulin resistance, from protein supply to diet-induced obesity. Nutrients 2023, 15, 68. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, L.; Huo, M.; Wu, Y.; Yu, M.; Lau, C.W.; Tian, D.; Gou, L.; Huang, Y.; Luo, J.Y.; et al. Branched-chain amino acid supplementation impairs insulin sensitivity and promotes lipogenesis during exercise in diet-induced obese mice. Obesity 2022, 30, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- Ooi, D.S.Q.; Ling, J.Q.R.; Sadananthan, S.A.; Velan, S.S.; Ong, F.Y.; Khoo, C.M.; Tai, E.S.; Henry, C.J.; Leow, M.K.S.; Khoo, E.Y.H.; et al. Branched-chain amino acid supplementation does not preserve lean mass or affect metabolic profile in adults with overweight or obesity in a randomized controlled weight loss intervention. J. Nutr. 2021, 151, 911–920. [Google Scholar] [CrossRef]
- Ammann, P.; Laib, A.; Bonjour, J.P.; Meyer, J.M.; Rüegsegger, P.; Rizzoli, R. Dietary essential amino acid supplements increase bone strength by influencing bone mass and bone microarchitecture in ovariectomized adult rats fed an isocaloric low-protein diet. J. Bone Min. Res. 2002, 17, 1264–1272. [Google Scholar] [CrossRef]
- Panahi, N.; Fahimfar, N.; Roshani, S.; Arjmand, B.; Gharibzadeh, S.; Shafiee, G.; Migliavacca, E.; Breuille, D.; Feige, J.N.; Grzywinski, Y.; et al. Association of amino acid metabolites with osteoporosis, a metabolomic approach: Bushehr elderly health program. Metabolomics 2022, 18, 63. [Google Scholar] [CrossRef]
- Su, Y.; Elshorbagy, A.; Turner, C.; Refsum, H.; Chan, R.; Kwok, T. Circulating amino acids are associated with bone mineral density decline and ten-year major osteoporotic fracture risk in older community-dwelling adults. Bone 2019, 129, 115082. [Google Scholar] [CrossRef]
- Lv, Z.; Shi, W.; Zhang, Q. Role of essential amino acids in age-induced bone loss. Int. J. Mol. Sci. 2022, 23, 11281. [Google Scholar] [CrossRef] [PubMed]
- Aartsma-Rus, A.; Straub, V.; Hemmings, R.; Haas, M.; Schlosser-Weber, G.; Stoyanova-Beninska, V.; Mercuri, E.; Muntoni, F.; Sepodes, B.; Vroom, E.; et al. Development of exon skipping therapies for Duchenne muscular dystrophy: A critical review and a perspective on the outstanding Issues. Nucleic Acid. Ther. 2017, 27, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Eteplirsen: First Global Approval. Drugs 2016, 76, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Golodirsen: First approval. Drugs 2020, 80, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Viltolarsen: First approval. Drugs 2020, 80, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Casimersen: First approval. Drugs 2021, 81, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Han, G.; Ning, H.; Song, J.; Ran, N.; Yi, X.; Seow, Y.; Yin, H.F. Glycine enhances satellite cell proliferation, cell transplantation, and oligonucleotide efficacy in dystrophic muscle. Mol. Ther. 2020, 28, 1339–1358. [Google Scholar] [CrossRef]
- Han, G.; Lin, C.; Yin, H.F. Use of glycine to augment exon skipping and cell therapies for Duchenne muscular dystrophy. Methods Mol. Biol. 2023, 2587, 165–182. [Google Scholar] [CrossRef]
- Elangkovan, N.; Dickson, G. Gene therapy for Duchenne muscular dystrophy. J. Neuromuscul. Dis. 2021, 8 (Suppl. S2), S303–S316. [Google Scholar] [CrossRef]
- Holeček, M. Side effects of amino acid supplements. Physiol. Res. 2022, 71, 29–45. [Google Scholar] [CrossRef]
- Calverley, P.; Rogliani, P.; Papi, A. Safety of N-acetylcysteine at high doses in chronic respiratory diseases: A review. Drug Saf. 2021, 44, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Swiderski, K.; Bindon, R.; Trieu, J.; Naim, T.; Schokman, S.; Swaminathan, M.; Leembruggen, A.J.L.; Hill-Yardin, E.L.; Koopman, R.; Bornstein, J.C.; et al. Spatiotemporal mapping reveals regional gastrointestinal dysfunction in mdx dystrophic mice ameliorated by oral L-arginine supplementation. J. Neurogastroenterol. Motil. 2020, 26, 133–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, E.; Eléouet-Da Violante, C.; Daubrosse, C.; Gottrand, F.; Rigal, O.; Fontan, J.E.; Cuisset, J.M.; Guilhot, J.; Hankard, R. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am. J. Clin. Nutr. 2006, 83, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Mok, E.; Letellier, G.; Cuisset, J.M.; Denjean, A.; Gottrand, F.; Alberti, C.; Hankard, R. Lack of functional benefit with glutamine versus placebo in Duchenne muscular dystrophy: A randomized crossover trial. PLoS ONE 2009, 4, e5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, B.; Sharma, U.; Balasubramanian, K.; Kalaivani, M.; Kalra, V.; Jagannathan, N.R. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Magn. Reson. Imaging 2010, 28, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Escolar, D.M.; Buyse, G.; Henricson, E.; Leshner, R.; Florence, J.; Mayhew, J.; Tesi-Rocha, C.; Gorni, K.; Pasquali, L.; Patel, K.M.; et al. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann. Neurol. 2005, 58, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Hafner, P.; Bonati, U.; Klein, A.; Rubino, D.; Gocheva, V.; Schmidt, S.; Schroeder, J.; Bernert, G.; Laugel, V.; Steinlin, M.; et al. Effect of combination L-Citrulline and metformin treatment on motor function in patients with Duchenne muscular dystrophy: A randomized clinical trial. JAMA Netw. Open 2019, 2, e1914171. [Google Scholar] [CrossRef] [Green Version]
- Todd, J.J.; Lawal, T.A.; Witherspoon, J.W.; Chrismer, I.C.; Razaqyar, M.S.; Punjabi, M.; Elliott, J.S.; Tounkara, F.; Kuo, A.; Shelton, M.O.; et al. Randomized controlled trial of N-acetylcysteine therapy for RYR1-related myopathies. Neurology 2020, 94, e1434–e1444. [Google Scholar] [CrossRef]
- Moludi, J.; Qaisar, S.A.; Kadhim, M.M.; Ahmadi, Y.; Davari, M. Protective and therapeutic effectiveness of taurine supplementation plus low calorie diet on metabolic parameters and endothelial markers in patients with diabetes mellitus: A randomized, clinical trial. Nutr. Metab. 2022, 19, 49. [Google Scholar] [CrossRef]
- Ohsawa, Y.; Hagiwara, H.; Nishimatsu, S.I.; Hirakawa, A.; Kamimura, N.; Ohtsubo, H.; Fukai, Y.; Murakami, T.; Koga, Y.; Goto, Y.I.; et al. Taurine supplementation for prevention of stroke-like episodes in MELAS: A multicentre, open-label, 52-week phase III trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Vidot, H.; Cvejic, E.; Carey, S.; Strasser, S.I.; McCaughan, G.W.; Allman-Farinelli, M.; Shackel, N.A. Randomised clinical trial: Oral taurine supplementation versus placebo reduces muscle cramps in patients with chronic liver disease. Aliment. Pharmacol. Ther. 2018, 48, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, J.A.; VanDusseldorp, T.A.; Doyle, J.A.; Otis, J.S. Taurine in sports and exercise. J. Int. Soc. Sports Nutr. 2021, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Akalp, K.; Vatansever, Ş.; Sönmez, G.T. Effects of acute taurine consumption on single bout of muscular endurance resistance exercise performance and recovery in resistance trained young male adults. Biomed. Hum. Kinet. 2023, 15, 74–82. [Google Scholar] [CrossRef]
- Waldron, M.; Patterson, S.D.; Tallent, J.; Jeffries, O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: A meta-analysis. Sports Med. 2018, 48, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Gollapalli, K.; Mangiola, S.; Schranner, D.; Aslam Yusuf, M.; Chamoli, M.; Shi, S.L.; Lopes Bastos, B.; Nair, T.; Riermeier, A.; et al. Taurine deficiency as a driver of aging. Science 2023, 380, eabn9257. [Google Scholar] [CrossRef]
- Miyatake, S.; Shimizu-Motohashi, Y.; Takeda, S.; Aoki, Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: Focus on skeletal muscle-releasing factors. Drug Des. Devel Ther. 2016, 10, 2745–2758. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Yao, C.; Liu, Y.; Feng, G.; Dong, X.; Gao, B.; Qian, S. Antioxidants for treatment of duchenne muscular dystrophy: A systematic review and meta-analysis. Eur. Neurol. 2022, 85, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Muraine, L.; Bensalah, M.; Butler-Browne, G.; Bigot, A.; Trollet, C.; Mouly, V.; Negroni, E. Update on anti-fibrotic pharmacotherapies in skeletal muscle disease. Curr. Opin. Pharmacol. 2023, 68, 102332. [Google Scholar] [CrossRef]
Supplement | Mice | Administration and Dose | Muscle Outcome | Reference |
---|---|---|---|---|
β-Alanine | Male mdx untreated (n = 8) β-Ala-treated (n = 8); age 20 weeks. | 3% in drinking water for 4 weeks. | Increased resistance to fatigue after intermittent electrical stimulation for 1 min in EDL ex vivo. | [35] |
L-Arginine | Male mdx saline-treated (n = 7) Arg-treated (n = 7); age 8 weeks. | Intraperitoneal injection of 0.4 g/kg/day for 4 weeks. | Improved contractile properties of EDL. Increased utrophin and ϒ-sarcoglycan protein levels in EDL. | [36] |
Female mdx saline-treated (n = 8) Arg-treated (n = 8); age 16 weeks. | Intraperitoneal injection of 0.2 g/kg/5 days a week for 6 weeks. | Higher isometric twitch tension in DIA ex vivo. Reduced necrotic surface in TA, GAS, EDL, DIA. 3-fold increased utrophin protein levels in SOL, EDL, DIA, TA. | [37] | |
Male mdx untreated (n = 7) Arg-treated (n = 7); age 5 weeks. | Intraperitoneal injection of 0.20 g/kg/day for 2 weeks. | Decreased non-muscle areas and enhanced muscle regeneration in DIA. Decreased levels of TNFα, IL-1β, IL-6, NFκB protein in DIA. | [38] | |
Mdx untreated (n = 8) Arg-treated (n = 8); age 4 weeks. | 0.375% in drinking water + 1.2 mg/kg/day deflazacort for 3 weeks. | Increased distance running capacity immediately after and 3 months after treatment. Attenuated exercise-induced damage and regeneration of QUA. | [39] | |
Mdx saline-treated (n = 6) Arg-treated (n = 6); age 1 week. | Intraperitoneal injection of 0.8 g/kg/day for 6 weeks. | Reduced magnitude of contraction-induced force drop in TA in vivo. Lower level of central nucleation of muscle fibers in TA. | [40] | |
L-Carnitine | Mdx untreated (n = 5) Carnitine-treated (n = 5) age 3 weeks. | Oral 0.75 g/kg/day for 6 weeks. | Higher exercise tolerance and lower blood CK after 30 min horizontal treadmill exercise. Less severe QUA sarcolemmal disruption after 30 min strenuous eccentric exercise. | [41] |
L-Citrulline | MDX age 4–5 weeks. | 2 g/kg/day for 8 weeks. | Improved increment of maximal forelimb strength. Increased specific isometric twitch and tetanic force in DIA ex vivo. Reduced inflammation and fibrosis in GAS and DIA. | [42] |
Ectoine | Male and female mdx untreated (n = 10) Ect-treated (n = 11); age 1 week. | 0.5% (1.1 g/kg/day) in drinking water for 5 weeks. | Decreased CCL2, TNFα, and IL1β expression in TA. Increased amount of healthy fibers in TA. | [43] |
Male and female mdx saline-treated (n = 8) Ect-treated (n = 9); age 1 week. | 0.075% in drinking water (0.2 g/kg/day) for 2 weeks, followed by intraperitoneal 0.2 g/kg/day for 2 weeks. | Increased amount of healthy fibers in TA. | [43] | |
L-Glutamine | Mdx saline-treated (n = 4) Gln-treated (n = 4); age 4 weeks. | Intraperitoneal injections of 0.5 g/kg/day for 3 days. | Decreased ERK1/2 activation and oxidative stress in QUAD | [44] |
L-Glycine | Male mdx and mdx:utrophin−/− controls treated with 1.9% Ala in drinking water (2 × n = 8) Gly-treated (2 × n = 8); age 4 weeks. | 1.9% (2.5 g/kg/day) for 8 weeks (mdx) or 14 weeks (mdx:utrophin−/−). | Reduced fibrosis in DIA. | [45] |
NAC | Male mdx untreated (n = 9) NAC-treated (n = 6); age 3 to 9 weeks. | 1% in drinking water for 6 weeks; Ex vivo perfusion of EDL with 20 mM NAC. | Fewer centrally located myonuclei, reduced ROS, decreased nuclear NFκB, and increased utrophin expression in EDL. Greater force value of EDL ex vivo. | [46] |
Male mdx untreated (n = 11) NAC-treated (n = 8); age 6 weeks. | 1% in drinking water for 6 weeks. | Prevention of exercise-induced (30 min horizontal treadmill) muscle fiber necrosis in QUA. | [47] | |
Male mdx untreated (n = 11) NAC-treated (n = 11), age 11 weeks. | 4% (2 g/kg/day) in drinking water for 1 week. | Reduced CK increase after exercise. Prevention of exercise-induced (30 min horizontal treadmill) muscle fiber necrosis in QUA. Decreased protein thiol oxidation in QUA. | [48] | |
Male mdx saline treated (n = 10) NAC-treated (n = 10); age 2 weeks. | Intraperitoneal injection of 0.15 g/kg/day for 2 weeks. | Reduced blood CK. Decreased sarcolemmal leakage and muscle fiber necrosis in DIA. Reduced TNFα levels in DIA. | [49] | |
Male mdx untreated (n = 8) NAC-treated (n = 8); age 6 weeks. | 2% in drinking water for 6 weeks. | Lower body weight, lower EDL muscle weight. Greater normalized forelimb grip strength. Unchanged ex vivo EDL muscle force. Activity of macrophages decreased in GAS muscle. Reduced protein thiol oxidation in EDL. | [50] | |
Male mdx untreated (n = 10) NAC-treated (n = 10); age 8 weeks. | 1% in drinking water for 2 weeks. | Improved force-generating capacity. Reduced immune cell infiltration and collagen deposition; reduced IL-1β and CXCL1 levels in DIA. | [51] | |
Male mdx untreated (n = 6) and NAC-treated (n = 6); age 3 weeks. | 2% in drinking water for 6 weeks. | Blunted growth and reduced EDL muscle weight. Unchanged maximum specific force of EDL ex vivo. Reduced abnormal fiber branching and splitting in EDL. | [27] | |
OTC | Mdx untreated (n = 6–8) OTC-treated (n = 6–8); age 6 to 12 weeks. | 0.5% in drinking water for 6 weeks. | Increased forelimb grip strength. Reduced protein oxidation in QUA. | [27] |
Male and female mdx untreated (n = 6) and OTC-treated (n = 8); age 2.5 weeks. | 0.8 g/kg/day for 3.5 weeks. | Improved normalized forelimb grip strength. Increased maximum specific force of EDL muscle ex vivo. Decreased CSA of EDL. | [52] | |
Taurine | Male mdx untreated (n = 5) Tau-treated (n = 5); age 3–4 weeks. | Male mdx untreated (n = 5) and Tau-treated (n = 5); age 3–4 weeks. Subjected to chronic exercise on a treadmill. | Ameliorated negative threshold voltage values of EDL fibers. | [53] |
Male mdx untreated (n = 8) Tau-treated (n = 8); age 20 weeks. | 3% Tau in drinking water for 4 weeks. | Decreased body mass and EDL muscle mass. Increased recovery force production and increased resistance to fatigue after intermittent electrical stimulation for 1 min in EDL ex vivo. | [35] | |
Male and female mdx untreated (n = 6) and Tau-treated (n = 8); age 2.5 weeks. | 4 g/kg/day for 3.5 weeks. | Decreased CSA of EDL. Three-fold decreased protein thiol oxidation in EDL. | [27] | |
Male mdx vehicle (n = 19) and Tau-treated (n = 9); age 4–5 weeks. | 1 g/kg/5 day a week in drinking water for 4 weeks. | Improved muscle force after exercise. Reduced percentages of damaged area and NFκB-positive myonuclei in GAS. Reduced ROS production in TA. | [54] | |
Male and female mdx untreated (n = 10) and Tau-treated (n = 8); age 1 week. | 8% (16 g/kg/day) in drinking water for 5 weeks. | A 12% reduced tibia length and 25% reduced CSA of EDL. Some 20% reduced protein thiol oxidation in EDL. | [55] | |
Male mdx untreated (n = 14) and Tau-treated (n = 10) prior to conception. | 2.5% in drinking water evaluated at 4 and 10 weeks of age. | A 50% reduction in non-contractile tissue in TA muscle at 4 weeks, but no change at 10 weeks. | [56] | |
Male and female mdx untreated (n = 10) and Tau-treated (n = 11); age 1 week. | 2.5% (4.6 g/kg/day) in drinking water for 5 weeks. | Decreased CCL2 and SPP1 expression in TA. | [43] | |
Branched-chain | Male and female mdx untreated (n = 10) and BCAA-treated (n = 10) mdx; age 12 weeks. | 1.5 g/kg/day in drinking water for 2 weeks. | A 20% increased endurance time on the treadmill. Higher numbers of slow fibers in TA and VM. | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Paepe, B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines 2023, 11, 2033. https://doi.org/10.3390/biomedicines11072033
De Paepe B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines. 2023; 11(7):2033. https://doi.org/10.3390/biomedicines11072033
Chicago/Turabian StyleDe Paepe, Boel. 2023. "What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models" Biomedicines 11, no. 7: 2033. https://doi.org/10.3390/biomedicines11072033
APA StyleDe Paepe, B. (2023). What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines, 11(7), 2033. https://doi.org/10.3390/biomedicines11072033