Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Flow Cytometry
2.3. Inflammatory Measurement
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Innate Immune Phenotype Differentiated Patients with Obesity from Non-Obese Patients with Severe COVID-19
3.3. Patients with Obesity Showed a Substantial Number of Strong Correlations between Their Immunophenotype and Clinical Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sood, A.; Bedi, O. Histopathological and Molecular Links of COVID-19 with Novel Clinical Manifestations for the Management of Coronavirus-like Complications. Inflammopharmacology 2022, 30, 1219–1257. [Google Scholar] [CrossRef] [PubMed]
- Davitt, E.; Davitt, C.; Mazer, M.B.; Areti, S.S.; Hotchkiss, R.S.; Remy, K.E. COVID-19 Disease and Immune Dysregulation. Best Pract. Res. Clin. Haematol. 2022, 35, 101401. [Google Scholar] [CrossRef] [PubMed]
- Schultze, J.L.; Aschenbrenner, A.C. COVID-19 and the Human Innate Immune System. Cell 2021, 184, 1671–1692. [Google Scholar] [CrossRef] [PubMed]
- Purbey, P.K.; Roy, K.; Gupta, S.; Paul, M.K. Mechanistic Insight into the Protective and Pathogenic Immune-Responses against SARS-CoV-2. Mol. Immunol. 2023, 156, 111–126. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host. Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- Garduno, A.; Martinez, G.S.; Ostadgavahi, A.T.; Kelvin, D.; Cusack, R.; Martin-Loeches, I. Parallel Dysregulated Immune Response in Severe Forms of COVID-19 and Bacterial Sepsis via Single-Cell Transcriptome Sequencing. Biomedicines 2023, 11, 778. [Google Scholar] [CrossRef]
- Sabbatino, F.; Conti, V.; Franci, G.; Sellitto, C.; Manzo, V.; Pagliano, P.; De Bellis, E.; Masullo, A.; Salzano, F.A.; Caputo, A.; et al. PD-L1 Dysregulation in COVID-19 Patients. Front. Immunol. 2021, 12, 695242. [Google Scholar] [CrossRef]
- Zulu, M.Z.; Sureshchandra, S.; Pinski, A.N.; Doratt, B.; Shen, W.; Messaoudi, I. Obesity Correlates with Pronounced Aberrant Innate Immune Responses in Hospitalized Aged COVID-19 Patients. Front. Immunol. 2021, 12, 4121. [Google Scholar] [CrossRef]
- Khwatenge, C.N.; Pate, M.; Miller, L.C.; Sang, Y. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Front. Immunol. 2021, 12, 732913. [Google Scholar] [CrossRef]
- Grewal, T.; Buechler, C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023, 11, 1302. [Google Scholar] [CrossRef]
- Klang, E.; Kassim, G.; Soffer, S.; Freeman, R.; Levin, M.A.; Reich, D.L. Severe Obesity as an Independent Risk Factor for COVID--19 Mortality in Hospitalized Patients Younger than 50. Obesity 2020, 28, 1595–1599. [Google Scholar] [CrossRef]
- Zhao, X.; Gang, X.; He, G.; Li, Z.; Lv, Y.; Han, Q.; Wang, G. Obesity Increases the Severity and Mortality of Influenza and COVID-19: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 595109. [Google Scholar] [CrossRef]
- Dessie, Z.G.; Zewotir, T. Mortality-Related Risk Factors of COVID-19: A Systematic Review and Meta-Analysis of 42 Studies and 423,117 Patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population Risk Factors for Severe Disease and Mortality in COVID-19: A Global Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Pranata, R.; Lim, M.A.; Yonas, E.; Vania, R.; Lukito, A.A.; Siswanto, B.B.; Meyer, M. Body Mass Index and Outcome in Patients with COVID-19: A Dose–Response Meta-Analysis. Diabetes Metab. 2021, 47, 101178. [Google Scholar] [CrossRef]
- Zhou, H.; Ni, W.-J.; Huang, W.; Wang, Z.; Cai, M.; Sun, Y.-C. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front. Immunol. 2022, 13, 834942. [Google Scholar] [CrossRef]
- Martínez-Colón, G.J.; Ratnasiri, K.; Chen, H.; Jiang, S.; Zanley, E.; Rustagi, A.; Verma, R.; Chen, H.; Andrews, J.R.; Mertz, K.D.; et al. SARS-CoV-2 Infection Drives an Inflammatory Response in Human Adipose Tissue through Infection of Adipocytes and Macrophages. Sci. Transl. Med. 2022, 14, abm9151. [Google Scholar] [CrossRef]
- Pasquarelli-do-Nascimento, G.; Braz-de-Melo, H.A.; Faria, S.S.; de Oliveira Santos, I.; dKobinger, G.P.; Magalhães, K.G. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. Front. Endocrinol. 2020, 11, 530. [Google Scholar] [CrossRef]
- Saccon, T.D.; Mousovich-Neto, F.; Ludwig, R.G.; Carregari, V.C.; dos Anjos Souza, A.B.; dos Passos, A.S.C.; Martini, M.C.; Barbosa, P.P.; de Souza, G.F.; Muraro, S.P.; et al. SARS-CoV-2 Infects Adipose Tissue in a Fat Depot- and Viral Lineage-Dependent Manner. Nat. Commun. 2022, 13, 5722. [Google Scholar] [CrossRef]
- Favre, G.; Legueult, K.; Pradier, C.; Raffaelli, C.; Ichai, C.; Iannelli, A.; Redheuil, A.; Lucidarme, O.; Esnault, V. Visceral Fat Is Associated to the Severity of COVID-19. Metabolism 2021, 115, 154440. [Google Scholar] [CrossRef]
- Santos e Silva, J.C.; Vasconcelos, A.P.; Noma, I.H.Y.; Noronha, N.Y.; Aquino, R.; Giddaluru, J.; Durão, L.; Costa-Martins, A.G.; Schuch, V.; Moraes-Vieira, P.M.; et al. Gene Signatures of Autopsy Lungs from Obese Patients with COVID-19. Clin. Nutr. ESPEN 2021, 44, 475–478. [Google Scholar] [CrossRef] [PubMed]
- McKenna, E.; Wubben, R.; Isaza-Correa, J.M.; Melo, A.M.; Mhaonaigh, A.U.; Conlon, N.; O’Donnell, J.S.; Ní Cheallaigh, C.; Hurley, T.; Stevenson, N.J.; et al. Neutrophils in COVID-19: Not Innocent Bystanders. Front. Immunol. 2022, 13, 864387. [Google Scholar] [CrossRef] [PubMed]
- McLeish, K.R.; Shrestha, R.; Vashishta, A.; Rane, M.J.; Barati, M.T.; Brier, M.E.; Lau, M.G.; Hu, X.; Chen, O.; Wessel, C.R.; et al. Differential Functional Responses of Neutrophil Subsets in Severe COVID-19 Patients. Front. Immunol. 2022, 13, 879686. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells 2022, 11, 1883. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Altay, M.; Kaplan Efe, F.; Karadağ, İ.; Ünsal, O.; Bulur, O.; Eser, M.; Taner Ertuğrul, D. The Neutrophil-Lymphocyte Ratio and Its Relationship with Insulin Resistance in Obesity. Turk. J. Med. Sci. 2019, 49, 245–248. [Google Scholar] [CrossRef]
- Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020, 182, 1419–1440.e23. [Google Scholar] [CrossRef]
- O’Shea, D.; Hogan, A.E. Dysregulation of Natural Killer Cells in Obesity. Cancers 2019, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Herishanu, Y.; Rogowski, O.; Polliack, A.; Marilus, R. Leukocytosis in Obese Individuals: Possible Link in Patients with Unexplained Persistent Neutrophilia. Eur. J. Haematol. 2006, 76, 516–520. [Google Scholar] [CrossRef]
- Lumeng, C.N. Innate Immune Activation in Obesity. Mol. Aspects Med. 2013, 34, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-C.; Kim, M.-S.; Pae, M.; Yamamoto, Y.; Eberlé, D.; Shimada, T.; Kamei, N.; Park, H.-S.; Sasorith, S.; Woo, J.R.; et al. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity. Cell Metab. 2016, 23, 685–698. [Google Scholar] [CrossRef] [Green Version]
- de Sá Resende, A.; Matos de Oliveira, Y.L.; Rodrigues de Moura, T.; Martins-Filho, P.R. Potential Role of Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in SARS-CoV-2 Infection: First Insights. Excli J. 2021, 20, 722–723. [Google Scholar] [CrossRef]
- de Oliveira, Y.L.M.; de Sá Resende, A.; Martins-Filho, P.R.; de Moura, T.R. Role of Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in COVID-19 and Other Viral Pneumonias: A Systematic Review and Meta-Analysis of Clinical Studies. Inflammopharmacology 2022, 30, 1037–1045. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Absalón-Aguilar, A.; Nuñez-Aguirre, M.; Pérez-Fragoso, A.; Carrillo-Vázquez, D.A.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; Llorente, L.; Alcalá-Carmona, B.; Lira-Luna, J.; et al. Neutrophil Extracellular Traps Contribute to COVID-19 Hyperinflammation and Humoral Autoimmunity. Cells 2021, 10, 2545. [Google Scholar] [CrossRef]
- Brustolin, B.; Touly, N.; Maillefer, M.; Parisot, L.; Di Pillo, E.; Derive, M.; Gibot, S. Triggering Receptor Expressed on Myeloid Cells-1 Deletion in Mice Attenuates High-Fat Diet-Induced Obesity. Front. Endocrinol. 2023, 13, 983827. [Google Scholar] [CrossRef]
- Subramanian, S.; Pallati, P.K.; Sharma, P.; Agrawal, D.K.; Nandipati, K.C. Significant Association of TREM-1 with HMGB1, TLRs and RAGE in the Pathogenesis of Insulin Resistance in Obese Diabetic Populations. Am. J. Transl. Res. 2017, 9, 3224–3244. [Google Scholar]
- Tammaro, A.; Derive, M.; Gibot, S.; Leemans, J.C.; Florquin, S.; Dessing, M.C. TREM-1 and Its Potential Ligands in Non-Infectious Diseases: From Biology to Clinical Perspectives. Pharmacol. Ther. 2017, 177, 81–95. [Google Scholar] [CrossRef]
- van Paassen, J.; Vos, J.S.; Hoekstra, E.M.; Neumann, K.M.I.; Boot, P.C.; Arbous, S.M. Corticosteroid Use in COVID-19 Patients: A Systematic Review and Meta-Analysis on Clinical Outcomes. Crit. Care 2020, 24, 696. [Google Scholar] [CrossRef]
- Ma, S.; Xu, C.; Liu, S.; Sun, X.; Li, R.; Mao, M.; Feng, S.; Wang, X. Efficacy and Safety of Systematic Corticosteroids among Severe COVID-19 Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Signal Transduct. Target. Ther. 2021, 6, 83. [Google Scholar] [CrossRef]
- Prescott, H.C.; Rice, T.W. Corticosteroids in COVID-19 ARDS. JAMA 2020, 324, 1292. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Staats, J.; Divekar, A.; McCoy, J.P.; Maecker, H.T. Guidelines for Gating Flow Cytometry Data for Immunological Assays. In Immunophenotyping: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–104. [Google Scholar]
- Baqui, P.; Bica, I.; Marra, V.; Ercole, A.; van der Schaar, M. Ethnic and Regional Variations in Hospital Mortality from COVID-19 in Brazil: A Cross-Sectional Observational Study. Lancet Glob. Health 2020, 8, e1018–e1026. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, E.J.; de Nooijer, A.H.; Claassen, W.J.; Grondman, I.; Janssen, N.A.F.; Netea, M.G.; van de Veerdonk, F.L.; van der Hoeven, J.G.; Kox, M.; Pickkers, P. A Higher BMI Is Not Associated with a Different Immune Response and Disease Course in Critically Ill COVID-19 Patients. Int. J. Obes. 2021, 45, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Infection, Fever, and Exogenous and Endogenous Pyrogens: Some Concepts Have Changed. J. Endotoxin Res. 2004, 10, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Devêvre, E.F.; Renovato-Martins, M.; Clément, K.; Sautès-Fridman, C.; Cremer, I.; Poitou, C. Profiling of the Three Circulating Monocyte Subpopulations in Human Obesity. J. Immunol. 2015, 194, 3917–3923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bähr, I.; Spielmann, J.; Quandt, D.; Kielstein, H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front. Immunol. 2020, 11, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcon, P.C.; Damen, M.S.M.A.; Madan, R.; Deepe, G.S.; Spearman, P.; Way, S.S.; Divanovic, S. Adipocyte Inflammation and Pathogenesis of Viral Pneumonias: An Overlooked Contribution. Mucosal Immunol. 2021, 14, 1224–1234. [Google Scholar] [CrossRef]
- Qin, S.; Jiang, Y.; Wei, X.; Liu, X.; Guan, J.; Chen, Y.; Lu, H.; Qian, J.; Wang, Z.; Lin, X. Dynamic Changes in Monocytes Subsets in COVID-19 Patients. Hum. Immunol. 2021, 82, 170–176. [Google Scholar] [CrossRef]
- Laing, A.G.; Lorenc, A.; del Molino del Barrio, I.; Das, A.; Fish, M.; Monin, L.; Muñoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I.; et al. A Dynamic COVID-19 Immune Signature Includes Associations with Poor Prognosis. Nat. Med. 2020, 26, 1623–1635. [Google Scholar] [CrossRef]
- Wilk, A.J.; Rustagi, A.; Zhao, N.Q.; Roque, J.; Martínez-Colón, G.J.; McKechnie, J.L.; Ivison, G.T.; Ranganath, T.; Vergara, R.; Hollis, T.; et al. A Single-Cell Atlas of the Peripheral Immune Response in Patients with Severe COVID-19. Nat. Med. 2020, 26, 1070–1076. [Google Scholar] [CrossRef]
- Parackova, Z.; Zentsova, I.; Bloomfield, M.; Vrabcova, P.; Smetanova, J.; Klocperk, A.; Mesežnikov, G.; Casas Mendez, L.F.; Vymazal, T.; Sediva, A. Disharmonic Inflammatory Signatures in COVID-19: Augmented Neutrophils’ but Impaired Monocytes’ and Dendritic Cells’ Responsiveness. Cells 2020, 9, 2206. [Google Scholar] [CrossRef]
- Schönrich, G.; Raftery, M.J. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front. Cell. Infect. Microbiol. 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Bost, P.; De Sanctis, F.; Canè, S.; Ugel, S.; Donadello, K.; Castellucci, M.; Eyal, D.; Fiore, A.; Anselmi, C.; Barouni, R.M.; et al. Deciphering the State of Immune Silence in Fatal COVID-19 Patients. Nat. Commun. 2021, 12, 1428. [Google Scholar] [CrossRef]
- Agrati, C.; Sacchi, A.; Bordoni, V.; Cimini, E.; Notari, S.; Grassi, G.; Casetti, R.; Tartaglia, E.; Lalle, E.; D’Abramo, A.; et al. Expansion of Myeloid-Derived Suppressor Cells in Patients with Severe Coronavirus Disease (COVID-19). Cell Death Differ. 2020, 27, 3196–3207. [Google Scholar] [CrossRef]
- Piernas, C.; Patone, M.; Astbury, N.M.; Gao, M.; Sheikh, A.; Khunti, K.; Shankar-Hari, M.; Dixon, S.; Coupland, C.; Aveyard, P.; et al. Associations of BMI with COVID-19 Vaccine Uptake, Vaccine Effectiveness, and Risk of Severe COVID-19 Outcomes after Vaccination in England: A Population-Based Cohort Study. Lancet Diabetes Endocrinol. 2022, 10, 571–580. [Google Scholar] [CrossRef]
- Green, W.D.; Beck, M.A. Obesity Impairs the Adaptive Immune Response to Influenza Virus. Ann. Am. Thorac. Soc. 2017, 14, S406–S409. [Google Scholar] [CrossRef]
- Mazzoni, A.; Salvati, L.; Maggi, L.; Capone, M.; Vanni, A.; Spinicci, M.; Mencarini, J.; Caporale, R.; Peruzzi, B.; Antonelli, A.; et al. Impaired Immune Cell Cytotoxicity in Severe COVID-19 Is IL-6 Dependent. J. Clin. Investig. 2020, 130, 4694–4703. [Google Scholar] [CrossRef]
- Bergantini, L.; D’Alessandro, M.; Cameli, P.; Cavallaro, D.; Gangi, S.; Cekorja, B.; Sestini, P.; Bargagli, E. NK and T Cell Immunological Signatures in Hospitalized Patients with COVID-19. Cells 2021, 10, 3182. [Google Scholar] [CrossRef]
- de Nooijer, A.H.; Grondman, I.; Lambden, S.; Kooistra, E.J.; Janssen, N.A.F.; Kox, M.; Pickkers, P.; Joosten, L.A.B.; van de Veerdonk, F.L.; Derive, M.; et al. Increased STREM-1 Plasma Concentrations Are Associated with Poor Clinical Outcomes in Patients with COVID-19. Biosci. Rep. 2021, 41, 940. [Google Scholar] [CrossRef]
- Dragon-Durey, M.-A.; Chen, X.; Kirilovsky, A.; Ben Hamouda, N.; El Sissy, C.; Russick, J.; Charpentier, E.; Binois, Y.; Marliot, F.; Meylan, M.; et al. Differential Association between Inflammatory Cytokines and Multiorgan Dysfunction in COVID-19 Patients with Obesity. PLoS ONE 2021, 16, e0252026. [Google Scholar] [CrossRef]
- Morrissey, S.M.; Geller, A.E.; Hu, X.; Tieri, D.; Ding, C.; Klaes, C.K.; Cooke, E.A.; Woeste, M.R.; Martin, Z.C.; Chen, O.; et al. A Specific Low-Density Neutrophil Population Correlates with Hypercoagulation and Disease Severity in Hospitalized COVID-19 Patients. JCI Insight 2021, 6, 148435. [Google Scholar] [CrossRef]
- Guzmán-Ruiz, R.; Tercero-Alcázar, C.; López-Alcalá, J.; Sánchez-Ceinos, J.; Malagón, M.M.; Gordon, A. The Potential Role of the Adipokine HMGB1 in Obesity and Insulin Resistance. Novel Effects on Adipose Tissue Biology. Mol. Cell. Endocrinol. 2021, 536, 111417. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Huang, Y.; Quan, J.; Liu, J.; Wang, H.; Billiar, T.R.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. HMGB1 as a Potential Biomarker and Therapeutic Target for Severe COVID-19. Heliyon 2020, 6, e05672. [Google Scholar] [CrossRef] [PubMed]
- Pinski, A.N.; Steffen, T.L.; Zulu, M.Z.; George, S.L.; Dickson, A.; Tifrea, D.; Maroney, K.J.; Tedeschi, N.; Zhang, Y.; Scheuermann, R.H.; et al. Corticosteroid Treatment in COVID-19 Modulates Host Inflammatory Responses and Transcriptional Signatures of Immune Dysregulation. J. Leukoc. Biol. 2021, 110, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Rosin, N.L.; Arora, R.; Labit, E.; Jaffer, A.; Cao, L.; Farias, R.; Nguyen, A.P.; de Almeida, L.G.N.; Dufour, A.; et al. Dexamethasone Modulates Immature Neutrophils and Interferon Programming in Severe COVID-19. Nat. Med. 2022, 28, 201–211. [Google Scholar] [CrossRef]
- Lengton, R.; Iyer, A.M.; Valk, E.S.; Hoogeveen, E.K.; Meijer, O.C.; Voorn, B.; Rossum, E.F.C. Variation in Glucocorticoid Sensitivity and the Relation with Obesity. Obes. Rev. 2022, 23, e13401. [Google Scholar] [CrossRef]
- Wangberg, H.; Mortazavi, D.; Kitsen, J.; Sanni, A.; Leibel, S.; Geng, B. Dose-Dependent Association between Inhaled Corticosteroid Use and Risk of Obesity and Metabolic Syndrome in Asthma. Allergy Asthma Proc. 2022, 43, 446–453. [Google Scholar] [CrossRef]
- So, M.; Takahashi, M.; Miyamoto, Y.; Ishisaka, Y.; Iwagami, M.; Tsugawa, Y.; Egorova, N.N.; Kuno, T. The Effect of Obesity on In-Hospital Mortality among Patients with COVID-19 Receiving Corticosteroids. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102373. [Google Scholar] [CrossRef]
- Savas, M.; Wester, V.L.; Staufenbiel, S.M.; Koper, J.W.; van den Akker, E.L.T.; Visser, J.A.; van der Lely, A.J.; Penninx, B.W.J.H.; van Rossum, E.F.C. Systematic Evaluation of Corticosteroid Use in Obese and Non-Obese Individuals: A Multi-Cohort Study. Int. J. Med. Sci. 2017, 14, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Neidich, S.D.; Green, W.D.; Rebeles, J.; Karlsson, E.A.; Schultz-Cherry, S.; Noah, T.L.; Chakladar, S.; Hudgens, M.G.; Weir, S.S.; Beck, M.A. Increased Risk of Influenza among Vaccinated Adults Who Are Obese. Int. J. Obes. 2017, 41, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Kara, Z.; Akçin, R.; Demir, A.N.; Dinç, H.Ö.; Taşkın, H.E.; Kocazeybek, B.; Yumuk, V.D. Antibody Response to SARS-CoV-2 Vaccines in People with Severe Obesity. Obes. Surg. 2022, 32, 2987–2993. [Google Scholar] [CrossRef]
- Discacciati, M.G.; Siani, S.; Campa, A.; Nakaya, H.I. Why Should Obese Youth Be Prioritized in COVID-19 Vaccination Programs? A Nationwide Retrospective Study. Lancet Reg. Health-Am. 2022, 7, 100167. [Google Scholar] [CrossRef]
- Khan, S.; Chan, Y.T.; Revelo, X.S.; Winer, D.A. The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Front. Endocrinol. 2020, 11, 267. [Google Scholar] [CrossRef]
Variables | Obese (BMI ≥ 30; n = 9) | Non-Obese (BMI < 30; n = 18) | Normal Range |
---|---|---|---|
Characteristics | |||
Women, n (%) | 7.00 (77.78) | 9.00 (42.85) | - |
Age, years | 67.67 ± 11.08 * | 50.67 ± 20.62 | - |
BMI, kg/m2 | 34.56 ± 3.63 * | 23.64 ± 1.85 | 18.50–24.90 |
Medical history | |||
Hypertension, n (%) | 3.00 (33.33) | 6.00 (33.33) | - |
CVD, n (%) | 1.00 (11.11) | 1.00 (5.55) | - |
Type 2 DM, n (%) | 4.00 (44.44) | 3.00 (16.66) | - |
COPD, n (%) | 1.00 (11.11) | 1.00 (5.55) | - |
CLD, n (%) | 0.00 (0.00) | 1.00 (5.55) | - |
Laboratory data | |||
Erythrocytes, ×106/uL | 3.50 [3.17–3.66] | 3.19 [2.83–3.51] | 3.90–5.20 |
Hemoglobin, g/dL | 9.23 ± 1.06 | 8.88 ± 1.17 | 11.70–15.70 |
Hematocrit, % | 28.71 ± 4.97 | 26.24 ± 4.12 | 36.00–47.00 |
Platelets, x103/uL | 184.30 ± 117.20 | 218.60 ± 141.00 | 150.00–450.00 |
Total Leukocytes, ×103/uL | 13.79 [12.21–18.18] | 13.10 [9.65–25.13] | 4.00–11.00 |
Neutrophils, % | 85.30 ± 9.75 | 83.23 ± 10.17 | 40.00–70.00 |
Neutrophils count, ×103/uL | 11.80 [9.60–16.18] | 11.23 [7.45–22.99] | 1.60–8.00 |
Eosinophils, % | 1.80 [0.20–5.06] | 0.72 [0.18–2.97] | 1.00–5.00 |
Basophils, % | 0.50 [0.40–0.67] | 0.40 [0.28–0.66] | 0.00–1.00 |
Lymphocytes, % | 3.94 [2.67–9.57] | 6.64 [2.05–14.40] | 20.00–40.00 |
Lymphocytes count, ×103/uL | 0.55 [0.51–1.63] | 1.20 [0.32–1.77] | 0.90–4.00 |
Monocytes, % | 1.40 [1.30–3.80] * | 4.90 [2.08–6.86] | 2.00–12.00 |
N/L Ratio & | 23.39 [5.08–34.49] | 12.23 [5.34–45.51] | - |
Body temperature, celsius | 37.80 [37.40–38.00] * | 37.00 [37.00–37.20] | 36.00–36.90 |
PaO2/FiO2 & | 150.80 [119.40–193.40] | 178.90 [155.10–220.00] | 450.00–500.00 |
ALT, U/L | 30.25 ± 19.65 | 41.17 ± 18.27 | 7.00–55.00 |
AST, U/L | 30.25 ± 15.44 | 40.00 ± 17.12 | 8.00–48.00 |
Serum Urea, mg/dL | 94.00 [57.00–99.50] | 79.50 [38.50–120.30] | 10.00–45.00 |
Serum Creatinine, mg/dL | 0.71 [0.57–0.93] | 1.11 [0.65–1.95] | 0.60–1.20 |
Serum Sodium, mEq/L | 146.80 [132.10–149.00] | 136.10 [135.80–142.00] | 135.00–145.00 |
Serum Potassium, mEq/L | 4.10 [3.57–5.08] | 4.61 [3.58–4.95] | 3.50–5.50 |
Na/K Ratio & | 34.09 [26.12–41.73] | 30.93 [26.85–38.87] | - |
Total Bilirubin, mg/dL | 0.45 ± 0.29 | 0.41 ± 0.24 | 0.30–1.00 |
Pro-inflammatory markers | |||
CRP, mg/dL | 99.80 [66.78–130.80] | 108.50 [82.75–159.50] | <0.80 |
IL-6, pg/mL | 33.35 ± 10.32 | 52.98 ± 35.99 | 1.50–7.00 |
Clinical outcome | |||
Days under corticosteroid treatment | 15.00 [2.00–33.00] | 7.00 [4.25–22.50] | - |
In-hospital death, n (%) | 7.00 (77.78) | 7.00 (38.89) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resende, A.d.S.; de Oliveira, Y.L.M.; de Franca, M.N.F.; Magalhães, L.S.; Correa, C.B.; Fukutani, K.F.; Lipscomb, M.W.; de Moura, T.R. Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype. Biomedicines 2023, 11, 2116. https://doi.org/10.3390/biomedicines11082116
Resende AdS, de Oliveira YLM, de Franca MNF, Magalhães LS, Correa CB, Fukutani KF, Lipscomb MW, de Moura TR. Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype. Biomedicines. 2023; 11(8):2116. https://doi.org/10.3390/biomedicines11082116
Chicago/Turabian StyleResende, Ayane de Sá, Yrna Lorena Matos de Oliveira, Mariana Nobre Farias de Franca, Lucas Sousa Magalhães, Cristiane Bani Correa, Kiyoshi Ferreira Fukutani, Michael Wheeler Lipscomb, and Tatiana Rodrigues de Moura. 2023. "Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype" Biomedicines 11, no. 8: 2116. https://doi.org/10.3390/biomedicines11082116
APA StyleResende, A. d. S., de Oliveira, Y. L. M., de Franca, M. N. F., Magalhães, L. S., Correa, C. B., Fukutani, K. F., Lipscomb, M. W., & de Moura, T. R. (2023). Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype. Biomedicines, 11(8), 2116. https://doi.org/10.3390/biomedicines11082116