Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery
Abstract
:1. Introduction
2. Characteristics of HFMs as TDD System
3. Materials for Forming HFMs
4. Evaluation Methods for HFMs
4.1. Appearance and Morphology
4.2. Swellability and Water Insolubility
4.3. Mechanical Strength
4.4. Skin Piercing and Transdermal Permeation Properties
4.5. In Vitro Release and Transdermal Behaviour
4.6. Biosafety and Stability
5. Application of HFMs in Disease Treatment
5.1. Anticancer
5.2. Treating Diabetes
5.3. Treating Rheumatoid Arthritis
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkilani, A.Z.; McCrudden, M.T.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Kuang, D.; Wang, S.; Zheng, Z.; Yadavalli, V.K.; Lu, S. Swellable silk fibroin microneedles for transdermal drug delivery. Int. J. Biol. Macromol. 2018, 106, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Groenink, W.H.; Verpoorten, H.; Luttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release 2007, 117, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Kanikkannan, N. Iontophoresis-based transdermal delivery systems. BioDrugs 2002, 16, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Denet, A.R.; Vanbever, R.; Preat, V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 2004, 56, 659–674. [Google Scholar] [CrossRef]
- Wenande, E.; Tam, J.; Bhayana, B.; Schlosser, S.K.; Ishak, E.; Farinelli, W.A.; Chlopik, A.; Hoang, M.P.; Pinkhasov, O.R.; Caravan, P.; et al. Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin. J. Control. Release 2018, 275, 242–253. [Google Scholar] [CrossRef]
- Svenskaya, Y.I.; Genina, E.A.; Parakhonskiy, B.V.; Lengert, E.V.; Talnikova, E.E.; Terentyuk, G.S.; Utz, S.R.; Gorin, D.A.; Tuchin, V.V.; Sukhorukov, G.B. A Simple Non-Invasive Approach toward Efficient Transdermal Drug Delivery Based on Biodegradable Particulate System. ACS Appl. Mater. Interfaces 2019, 11, 17270–17282. [Google Scholar] [CrossRef]
- Azagury, A.; Khoury, L.; Enden, G.; Kost, J. Ultrasound mediated transdermal drug delivery. Adv. Drug Deliv. Rev. 2014, 72, 127–143. [Google Scholar] [CrossRef]
- Polat, B.E.; Hart, D.; Langer, R.; Blankschtein, D. Ultrasound-mediated transdermal drug delivery: Mechanisms, scope, and emerging trends. J. Control. Release 2011, 152, 330–348. [Google Scholar] [CrossRef] [Green Version]
- Courtenay, A.J.; McCrudden, M.T.C.; McAvoy, K.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-Mediated Transdermal Delivery of Bevacizumab. Mol. Pharm. 2018, 15, 3545–3556. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, R.F.; McCrudden, M.T.C.; Alkilani, A.Z.; Larraneta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M.C.; Singh, T.R.R.; McCarthy, H.O.; Kett, V.L.; et al. Hydrogel-Forming Microneedles Prepared from “Super Swelling” Polymers Combined with Lyophilised Wafers for Transdermal Drug Delivery. PLoS ONE 2014, 9, e111547. [Google Scholar] [CrossRef]
- Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M.C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018, 285, 142–151. [Google Scholar] [CrossRef]
- Koutsonanos, D.G.; del Pilar Martin, M.; Zarnitsyn, V.G.; Sullivan, S.P.; Compans, R.W.; Prausnitz, M.R.; Skountzou, I. Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS ONE 2009, 4, e4773. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Lee, H.S.; Hwang, Y.H.; Kim, J.J.; Kang, K.Y.; Kim, S.J.; Kim, H.K.; Kim, J.D.; Jeong, D.H.; Paik, M.J.; et al. Enhanced anti-tumor immunotherapy by dissolving microneedle patch loaded ovalbumin. PLoS ONE 2019, 14, e0220382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes, A.J.; Ramoller, I.K.; McKenna, P.E.; Abbate, M.T.A.; Volpe-Zanutto, F.; Vora, L.K.; Kilbourne-Brook, M.; Jarrahian, C.; Moffatt, K.; Zhang, C.; et al. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv. Drug Deliv. Rev. 2021, 173, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Volpe-Zanutto, F.; Ferreira, L.T.; Permana, A.D.; Kirkby, M.; Paredes, A.J.; Vora, L.K.; Bonfanti, A.P.; Charlie-Silva, I.; Raposo, C.; Figueiredo, M.C.; et al. Artemether and lumefantrine dissolving microneedle patches with improved pharmacokinetic performance and antimalarial efficacy in mice infected with Plasmodium yoelii. J. Control. Release 2021, 333, 298–315. [Google Scholar] [CrossRef] [PubMed]
- Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm. 2021, 159, 44–76. [Google Scholar] [CrossRef]
- Donnelly, R.; Douroumis, D. Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv. Transl. Res. 2015, 5, 311–312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, J.; Kahkoska, A.R.; Wang, J.; Buse, J.B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019, 139, 51–70. [Google Scholar] [CrossRef]
- Rzhevskiy, A.S.; Singh, T.R.R.; Donnelly, R.F.; Anissimov, Y.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release 2018, 270, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Park, Y.S.; Moon, C.; David, A.E.; Chung, H.S.; Yang, V.C. Synthetic skin-permeable proteins enabling needleless immunization. Angew. Chem. Int. Ed. Engl. 2010, 49, 2724–2727. [Google Scholar] [CrossRef]
- Ye, Y.; Yu, J.; Wen, D.; Kahkoska, A.R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev. 2018, 127, 106–118. [Google Scholar] [CrossRef]
- McAlister, E.; Dutton, B.; Vora, L.K.; Zhao, L.; Ripolin, A.; Zahari, D.; Quinn, H.L.; Tekko, I.A.; Courtenay, A.J.; Kelly, S.A.; et al. Directly Compressed Tablets: A Novel Drug-Containing Reservoir Combined with Hydrogel-Forming Microneedle Arrays for Transdermal Drug Delivery. Adv. Healthc. Mater. 2021, 10, e2001256. [Google Scholar] [CrossRef]
- Li, M.; Vora, L.K.; Peng, K.; Donnelly, R.F. Trilayer microneedle array assisted transdermal and intradermal delivery of dexamethasone. Int. J. Pharm. 2022, 612, 121295. [Google Scholar] [CrossRef]
- Yadav, P.R.; Dobson, L.J.; Pattanayek, S.K.; Das, D.B. Swellable microneedles based transdermal drug delivery: Mathematical model development and numerical experiments. Chem. Eng. Sci. 2022, 247, 117005. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv. Funct. Mater. 2012, 22, 4879–4890. [Google Scholar] [CrossRef] [Green Version]
- Lutton, R.E.; Larraneta, E.; Kearney, M.C.; Boyd, P.; Woolfson, A.D.; Donnelly, R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015, 494, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Ita, K. Transdermal Delivery of Drugs with Microneedles-Potential and Challenges. Pharmaceutics 2015, 7, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, R.F.; Mooney, K.; Mccrudden, M.T.C.; Vicente-Perez, E.M.; Belaid, L.; Gonzalez-Vazquez, P.; Mcelnay, J.C.; Woolfson, A.D. Hydrogel-Forming Microneedles Increase in Volume During Swelling in Skin, but Skin Barrier Function Recovery is Unaffected. J. Pharm. Sci. 2014, 103, 1478–1486. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.J.; Allender, C.J.; Brain, K.R.; Morrissey, A.; Birchall, J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 2012, 158, 93–101. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef] [PubMed]
- Rajoli, R.K.R.; Flexner, C.; Chiong, J.; Owen, A.; Donnelly, R.F.; Larraneta, E.; Siccardi, M. Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK. Eur. J. Pharm. Biopharm. 2019, 144, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Eltayib, E.; Brady, A.J.; Caffarel-Salvador, E.; Gonzalez-Vazquez, P.; Zaid Alkilani, A.; McCarthy, H.O.; McElnay, J.C.; Donnelly, R.F. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. Eur. J. Pharm. Biopharm. 2016, 102, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Dimatteo, R.; Darling, N.J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018, 127, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.R.R.; McCarron, P.A.; Woolfson, A.D.; Donnelly, R.F. Investigation of swelling and network parameters of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels. Eur. Polym. J. 2009, 45, 1239–1249. [Google Scholar] [CrossRef]
- Tsou, T.L.; Tang, S.T.; Huang, Y.C.; Wu, J.R.; Young, J.J.; Wang, H.J. Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. J. Mater. Sci. Mater. Med. 2005, 16, 95–100. [Google Scholar] [CrossRef]
- Chew, S.W.T.; Shah, A.H.; Zheng, M.; Chang, H.; Wiraja, C.; Steele, T.W.J.; Xu, C. A self-adhesive microneedle patch with drug loading capability through swelling effect. Bioeng. Transl. Med. 2020, 5, e10157. [Google Scholar] [CrossRef] [Green Version]
- Tsioris, K.; Raja, W.K.; Pritchard, E.M.; Panilaitis, B.; Kaplan, D.L.; Omenetto, F.G. Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Adv. Funct. Mater. 2012, 22, 330–335. [Google Scholar] [CrossRef]
- Hardy, J.G.; Larraneta, E.; Donnelly, R.F.; McGoldrick, N.; Migalska, K.; McCrudden, M.T.; Irwin, N.J.; Donnelly, L.; McCoy, C.P. Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery. Mol. Pharm. 2016, 13, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Elim, D.; Fitri, A.M.N.; Mahfud, M.A.S.; Afika, N.; Sultan, N.A.F.; Hijrah; Asri, R.M.; Permana, A.D. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: An ex vivo proof of concept study. Colloids Surf. B Biointerfaces 2023, 222, 113018. [Google Scholar] [CrossRef]
- Yu, M.; Lu, Z.; Shi, Y.; Du, Y.T.; Chen, X.G.; Kong, M. Systematic comparisons of dissolving and swelling hyaluronic acid microneedles in transdermal drug delivery. Int. J. Biol. Macromol. 2021, 191, 783–791. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kim, B.S. Ex Vivo Transdermal Delivery of Nicotinamide Mononucleotide Using Polyvinyl Alcohol Microneedles. Polymers 2023, 15, 2031. [Google Scholar] [CrossRef]
- Ruan, S.; Zhang, Y.; Feng, N. Microneedle-mediated transdermal nanodelivery systems: A review. Biomater. Sci. 2021, 9, 8065–8089. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kim, B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022, 341, 132–146. [Google Scholar] [CrossRef]
- Romanyuk, A.V.; Zvezdin, V.N.; Samant, P.; Grenader, M.I.; Zemlyanova, M.; Prausnitz, M.R. Collection of analytes from microneedle patches. Anal. Chem. 2014, 86, 10520–10523. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Zheng, M.; Yu, X.; Than, A.; Seeni, R.Z.; Kang, R.; Tian, J.; Khanh, D.P.; Liu, L.; Chen, P.; et al. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Adv. Mater. 2017, 29, 1702243. [Google Scholar] [CrossRef]
- Caffarel-Salvador, E.; Brady, A.J.; Eltayib, E.; Meng, T.; Alonso-Vicente, A.; Gonzalez-Vazquez, P.; Torrisi, B.M.; Vicente-Perez, E.M.; Mooney, K.; Jones, D.S.; et al. Hydrogel-Forming Microneedle Arrays Allow Detection of Drugs and Glucose In Vivo: Potential for Use in Diagnosis and Therapeutic Drug Monitoring. PLoS ONE 2015, 10, e0145644. [Google Scholar] [CrossRef] [Green Version]
- Kearney, M.C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2016, 103, 43–50. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Niu, Y.; Li, Z.; Li, A.; Yang, H.; Xu, F.; Li, F. A Hydrogel Microneedle Patch for Point-of-Care Testing Based on Skin Interstitial Fluid. Adv. Healthc. Mater. 2020, 9, e1901201. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Y.; Zhang, L.; Chen, N.; Yuan, W.; Jin, T. A scalable fabrication process of polymer microneedles. Int. J. Nanomed. 2012, 7, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Kamoun, E.A.; Chen, X.; Eldin, M.S.M.; Kenawy, E.R.S. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem. 2015, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; O’Cearbhaill, E.D.; Sisk, G.C.; Park, K.M.; Cho, W.K.; Villiger, M.; Bouma, B.E.; Pomahac, B.; Karp, J.M. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 2013, 4, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbagh, F.; Kim, B.S. Microneedles for transdermal drug delivery using clay-based composites. Expert Opin. Drug Deliv. 2022, 19, 1099–1113. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, H.; Shi, Z.; Lin, L.; Li, Y.; Wang, M.; Pan, G.; Lei, Y.; Xue, L. Responsive hydrogel-based microneedle dressing for diabetic wound healing. J. Mater. Chem. B 2022, 10, 3501–3511. [Google Scholar] [CrossRef] [PubMed]
- Arsalan, A.; Raya, D.; Hala, D.; Haytam, K.; Aiman, A.A. Preparation and characterization of flexible furosemide-loaded biodegradable microneedles for intradermal drug delivery. Biomater. Sci. 2022, 10, 6486–6499. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Chen, H.; Mei, L.; Zeng, X. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian J. Pharm. Sci. 2022, 17, 70–86. [Google Scholar] [CrossRef]
- Courtenay, A.J.; McAlister, E.; McCrudden, M.T.C.; Vora, L.; Steiner, L.; Levin, G.; Levy-Nissenbaum, E.; Shterman, N.; Kearney, M.C.; McCarthy, H.O.; et al. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J. Control. Release 2020, 322, 177–186. [Google Scholar] [CrossRef]
- Yu, K.Y.; Yu, X.M.; Cao, S.S.; Wang, Y.X.; Zhai, Y.H.; Yang, F.D.; Yang, X.Y.; Lu, Y.; Wu, C.B.; Xu, Y.H. Layered dissolving microneedles as a need-based delivery system to simultaneously alleviate skin and joint lesions in psoriatic arthritis. Acta Pharm. Sin. B 2021, 11, 505–519. [Google Scholar] [CrossRef]
- Suksaeree, J.; Charoenchai, L.; Madaka, F.; Monton, C.; Sakunpak, A.; Charoonratana, T.; Pichayakorn, W. Zingiber cassumunar blended patches for skin application: Formulation, physicochemical properties, and in vitro studies. Asian J. Pharm. Sci. 2015, 10, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Aung, N.N.; Ngawhirunpat, T.; Rojanarata, T.; Patrojanasophon, P.; Pamornpathomkul, B.; Opanasopit, P. Fabrication, characterization and comparison of alpha-arbutin loaded dissolving and hydrogel forming microneedles. Int. J. Pharm. 2020, 586, 119508. [Google Scholar] [CrossRef]
- Bal, S.M.; Caussin, J.; Pavel, S.; Bouwstra, J.A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 2008, 35, 193–202. [Google Scholar] [CrossRef]
- Loizidou, E.Z.; Inoue, N.T.; Ashton-Barnett, J.; Barrow, D.A.; Allender, C.J. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur. J. Pharm. Biopharm. 2016, 107, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vora, L.K.; Courtenay, A.J.; Tekko, I.A.; Larraneta, E.; Donnelly, R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2020, 146, 290–298. [Google Scholar] [CrossRef]
- He, M.C.; Chen, B.Z.; Ashfaq, M.; Guo, X.D. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Deliv. Transl. Res. 2018, 8, 1034–1042. [Google Scholar] [CrossRef]
- Chen, B.Z.; Ashfaq, M.; Zhang, X.P.; Zhang, J.N.; Guo, X.D. In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery. J. Drug Target. 2018, 26, 720–729. [Google Scholar] [CrossRef]
- Lee, I.C.; He, J.S.; Tsai, M.T.; Lin, K.C. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. J. Mater. Chem. B 2015, 3, 276–285. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Morrow, D.I.; McCrudden, M.T.; Alkilani, A.Z.; Vicente-Perez, E.M.; O’Mahony, C.; Gonzalez-Vazquez, P.; McCarron, P.A.; Woolfson, A.D. Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. Photochem. Photobiol. 2014, 90, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Donadei, A.; Kraan, H.; Ophorst, O.; Flynn, O.; O’Mahony, C.; Soema, P.C.; Moore, A.C. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J. Control. Release 2019, 311–312, 96–103. [Google Scholar] [CrossRef]
- Kalluri, H.; Banga, A.K. Formation and closure of microchannels in skin following microporation. Pharm. Res. 2011, 28, 82–94. [Google Scholar] [CrossRef]
- Roy, R.K.; Thakur, M.; Dixit, V.K. Hair growth promoting activity of Eclipta alba in male albino rats. Arch. Dermatol. Res. 2008, 300, 357–364. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Sung, C.T.; Shen, F.M.; Huang, C.T.; Fang, J.Y. Squarticles as a Lipid Nanocarrier for Delivering Diphencyprone and Minoxidil to Hair Follicles and Human Dermal Papilla Cells. Aaps J. 2014, 16, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Chen, L.; Huang, X.; Shao, A. Preparation and Characterization of Minoxidil Loaded Nanostructured Lipid Carriers. AAPS PharmSciTech 2017, 18, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Yazdani-Arazi, S.N.; Ghanbarzadeh, S.; Adibkia, K.; Kouhsoltani, M.; Hamishehkar, H. Histological evaluation of follicular delivery of arginine via nanostructured lipid carriers: A novel potential approach for the treatment of alopecia. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1379–1387. [Google Scholar] [CrossRef]
- Zhang, L.W.; Yu, W.W.; Colvin, V.L.; Monteiro-Riviere, N.A. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol. Appl. Pharmacol. 2008, 228, 200–211. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, C.; Song, G.; Jin, X.; Xu, Z. In vivo skin penetration and metabolic path of quantum dots. Sci. China Life Sci. 2013, 56, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipe, P.; Silva, J.N.; Silva, R.; de Castro, J.L.C.; Gomes, M.M.; Alves, L.C.; Santus, R.; Pinheiro, T. Stratum Corneum Is an Effective Barrier to TiO2 and ZnO Nanoparticle Percutaneous Absorption. Skin Pharmacol. Phys. 2009, 22, 266–275. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, P.; Larraneta, E.; McCrudden, M.T.C.; Jarrahian, C.; Rein-Weston, A.; Quintanar-Solares, M.; Zehrung, D.; McCarthy, H.; Courtenay, A.J.; Donnelly, R.F. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J. Control. Release 2017, 265, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Shende, P.; Sardesai, M.; Gaud, R.S. Micro to nanoneedles: A trend of modernized transepidermal drug delivery system. Artif. Cells Nanomed. Biotechnol. 2018, 46, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Coulman, S.A.; Birchall, J.C.; Alex, A.; Pearton, M.; Hofer, B.; O’Mahony, C.; Drexler, W.; Povazay, B. In Vivo, In Situ Imaging of Microneedle Insertion into the Skin of Human Volunteers Using Optical Coherence Tomography. Pharm. Res. Dordr. 2011, 28, 66–81. [Google Scholar] [CrossRef]
- Arya, J.; Henry, S.; Kalluri, H.; McAllister, D.V.; Pewin, W.P.; Prausnitz, M.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials 2017, 128, 1–7. [Google Scholar] [CrossRef]
- ISO 10993-1; FDA Guidance. Use of International Standards. Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process. FDA: Silver Spring, MD, USA, 2020.
- Ananda, P.W.R.; Elim, D.; Zaman, H.S.; Muslimin, W.; Tunggeng, M.G.R.; Permana, A.D. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine. Int. J. Pharm. 2021, 609, 121204. [Google Scholar] [CrossRef]
- Vicente-Perez, E.M.; Larraneta, E.; McCrudden, M.T.C.; Kissenpfennig, A.; Hegarty, S.; McCarthy, H.O.; Donnelly, R.F. Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur. J. Pharm. Biopharm. 2017, 117, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Al-Kasasbeh, R.; Brady, A.J.; Courtenay, A.J.; Larraneta, E.; McCrudden, M.T.C.; O’Kane, D.; Liggett, S.; Donnelly, R.F. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 2020, 10, 690–705. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.Y.; Ye, L.; Dong, K.; Compans, R.W.; Yang, C.; Prausnitz, M.R. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches. Pharm. Res. 2016, 33, 868–878. [Google Scholar] [CrossRef]
- Chen, M.; Quan, G.; Wen, T.; Yang, P.; Qin, W.; Mai, H.; Sun, Y.; Lu, C.; Pan, X.; Wu, C. Cold to Hot: Binary Cooperative Microneedle Array-Amplified Photoimmunotherapy for Eliciting Antitumor Immunity and the Abscopal Effect. ACS Appl. Mater. Interfaces 2020, 12, 32259–32269. [Google Scholar] [CrossRef]
- Huang, S.; Liu, H.; Huang, S.; Fu, T.; Xue, W.; Guo, R. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr. Polym. 2020, 246, 116650. [Google Scholar] [CrossRef]
- Chen, S.; Matsumoto, H.; Moro-Oka, Y.; Tanaka, M.; Miyahara, Y.; Suganami, T.; Matsumoto, A. Smart Microneedle Fabricated with Silk Fibroin Combined Semi-interpenetrating Network Hydrogel for Glucose-Responsive Insulin Delivery. ACS Biomater. Sci. Eng. 2019, 5, 5781–5789. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Yu, J.; Kahkoska, A.R.; Zhang, X.; Wang, C.; Sun, W.; Corder, R.D.; Chen, Z.; Khan, S.A.; et al. Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano 2018, 12, 2466–2473. [Google Scholar] [CrossRef]
- Cao, J.; Su, J.; An, M.; Yang, Y.; Zhang, Y.; Zuo, J.; Zhang, N.; Zhao, Y. Novel DEK-Targeting Aptamer Delivered by a Hydrogel Microneedle Attenuates Collagen-Induced Arthritis. Mol. Pharm. 2021, 18, 305–316. [Google Scholar] [CrossRef]
Products Name | Applicant | De Novo or 510 (k) Number | Date Approved | Design of the Product | Use |
---|---|---|---|---|---|
DP4 Micro needling device | Equipmed USA LLC, Newport Beach, CA, USA | K221070 | 20 December 2022 | Powered MN device with 16 stainless steel microneedle plate adapts to the skin’s surface and has a maximal needle length of 3 mm. | Aesthetic use |
SkinPen Precision system | Crown Aesthetics, Dallas, TX, USA | K220506 | 7 March 2022 | The microneedling pen handpiece comes with a sterile needle cartridge and includes 14 total solids medical-grade stainless steel, maximum needle length of 1.5 mm. | Aesthetic use |
K202243 | 2 April 2021 | ||||
INTRAcel RF Microneedle System | Jeisys Medical Inc., Seoul, Republic of Korea | K183284 | 15 January 2020 | Fractional radio frequency combined with insulated microneedling | General and plastic surgery |
Exceed Microneedling device | MT. DERM GmbH, Berlin, Germany | K182407 | 19 July 2019 | Powered microneedling device with 6 stainless steel microneedle plate adapts to the skin’s surface and has a maximal needle length of 1.5 mm. | Aesthetic use |
K180778 | 7 September 2018 | ||||
SkinPen precision system | Bellus Medical, LLC, Lindon, UT, USA | DEN160029 | 1 March 2018 | Microneedling pen handpiece with a sterile needle cartridge | Aesthetic use |
MICRONJET 600 | NANOPASS TECHNOLOGIES LTD., Ness Ziona, Israel | K092746 | 3 February 2010 | Hollow microneedles that consist of a needle holder, a needle tube, a needle tube liner and a protective sleeve | Intradermal injection |
Number of Clinical Trials | Study Title | Conditions | Interventions | Study Phase | Status |
---|---|---|---|---|---|
00837512 | Insulin Delivery Using Microneedles in Type 1 Diabetes | Type 1 Diabetes Mellitus | Device: Microneedle; Device: Subcutaneous insulin catheter | Phase 2 Phase 3 | Completed |
03855397 | Pain and Safety of Microneedles in Oral Cavity | Oral Cavity Disease | Other: Microneedle Other: Hypodermic needle Other: Flat patch | Not Applicable | Completed |
04583852 | Evaluate the Efficacy and Safety of Brightening Micro-needle Patch on Facial Solar Lentigines | Solar Lentigines | Other: AIVÍA, Ultra-Brightening Spot Microneedle Patch Other: Placebo Micro-needle Patch | Not Applicable | Completed |
05108714 | Intradermal Lidocaine Via MicronJet600 Microneedle Device | Local Anaesthesia | Device: Intravenous cannulation after intradermal injection of lidocaine via MicronJet600 microneedle device (1) Device: Intravenous cannulation after intradermal injection of saline via MicronJet600 microneedle device Device: Intravenous cannulation after intradermal injection of lidocaine via MicronJet600 microneedle device (2) Procedure: Intravenous cannulation after without prior interventions | Not Applicable | Completed |
05267938 | Microneedle Pretreatment as a Strategy to Improve the Effectiveness of Topical Anesthetics Formulations | Oral Cavity Disease | Drug: Topical Anesthetic Drug: Local anesthetic | Phase 1 | Completed |
04989361 | Soluble Hyaluronic Acid Microneedle VS. Non-ablative Fractional Laser on Infraorbital Wrinkles | Wrinkle | Procedure: Soluble Hyaluronic Acid Microneedle Procedure: Nonfractional laser | Not Applicable | Recruiting |
05377905 | Microneedle Array Plus Doxorubicin in Cutaneous Squamous Cell Cancer (cSCC) | Cutaneous Squamous Cell Carcinoma Skin Cancers-Squamous Cell Carcinoma | Drug: Microneedle Array Doxorubicin (MNA-D) | Phase 1 Phase 2 | Not yet recruiting |
02966067 | A Split Mouth Trial to Compare Microneedles vs. Standard Needles in Dental Anaesthetic Delivery | Dental Pain Anesthesia, Loca | Device: Microneedle Device (Experimental) Device: 30-gauge Short Hypodermic Needle | Not Applicable | Completed |
03054480 | Fractional Micro-Needle Radiofrequency and I Botulinum Toxin A for Primary Axillary Hyperhidrosis | Primary Axillary Hyperhidrosis | Device: Fractional Micro-Needle Radiofrequency Drug: Botulinum toxin type A | Not Applicable | Completed |
03207763 | Microneedle Patch Study in Healthy Infants/Young Children | Vaccination Skin Absorption | Device: Microneedle Formulation 1 Device: Microneedle Formulation 2 | Not Applicable | Completed |
02682056 | Glucose Measurement Using Microneedle Patches | Diabetes | Device: Microneedle patch Device: Intravenous (IV) catheter Device: Lancet | Not Applicable | Completed |
04732195 | Pilocarpine Microneedles for Sweat Induction (PMN-SI) | Cystic Fibrosis | Device: Pilocarpine microneedle patch Device: Pilocarpine Iontophoresis | Not Applicable | Completed |
05694858 | Transdermal Microneedle Lignocaine Delivery Versus EMLA Patch for Topical Analgesia Before Venepuncture Procedure To Adults in Clinical Setting | Glaucoma Cataract | Combination Product: Lignocaine loaded maltose microneedle array patch Drug: EMLA 5% patch | Phase 1 Phase 2 | Not yet recruiting |
02995057 | Safety Demonstration of Microneedle Insertion | Allergic Reaction to Nickel | Device: Gold- or silver-coated, or uncoated nickel microneedles | Not Applicable | Completed |
04552015 | Microneedles for Diagnosis of LTBI | Latent Tuberculosis | Diagnostic Test: TST vs. PPD microneedle test | Not Applicable | Terminated |
03203174 | The Use of Microneedles With Topical Botulinum Toxin for Treatment of Palmar Hyperhidrosis | Hyperhidrosis | Device: Microneedle Device: Sham Microneedle Drug: Botulinum Toxin Type A Other: Saline | Phase 1 | Completed |
03332628 | Racial/Ethnic Differences in Microneedle Response | Healthy | Device: Microneedle patch | Not Applicable | Completed |
05078463 | Efficacy of Transdermal Microneedle Patch for Topical Anesthesia Enhancement in Paediatric Thalassemia Patients | Thalassemia in Children | Device: Microneedle Drug: 1 Finger Tip Unit (FTU) EMLA Cream (30-min application time) Drug: 1 Finger Tip Unit (FTU) EMLA (15-min application time) Drug: 0.5 Finger Tip Unit (FTU) EMLA (30-min application time) Device: Sham Patch | Phase 2 | Completed |
00539084 | A Study to Assess the Safety and Efficacy of a Microneedle Device for Local Anesthesia | Local Anesthesia Intradermal Injections | Device: MicronJet | Not Applicable | Completed |
02596750 | The Effect of Microneedle Pretreatment on Topical Anesthesia | Pain | Device: Microneedle Roller Device: Sham microneedle Roller | Not Applicable | Completed |
01812837 | The Use of Microneedles in Photodynamic Therapy | Actinic Keratosis | Device: Microneedle Drug: Aminolevulinic Acid Radiation: Blue light | Not Applicable | Completed |
05710068 | Effects of RF Microneedle on Photoaging Skin | Pigmentation Pigmentation Disorder | Device: RF Microneedle Drug: Combination cream | Not Applicable | Completed |
03629041 | A Study of the Use of Microneedle Patches to Deliver Topical Lidocaine in the Oral Cavity | Topical Anaesthesia | Device: Microneedle Patch Device: Patch with no microneedles | Phase 1 | Completed |
03795402 | Analysis of Non-Invasively Collected Microneedle Device Samples From Mild Plaque Psoriasis for Use in Transcriptomics Profiling | Psoriasis Vulgaris | Device: Microneedle Device | Not Applicable | Completed |
02594644 | The Use of Microneedles to Expedite Treatment Time in Photodynamic Therapy | Keratosis, Actinic | Device: Microneedle Roller Drug: Aminolevulinic Acid Radiation: Blue Light | Not Applicable | Completed |
03415373 | Clinical Evaluation of Healthy Subjects Receiving Intradermal Saline Using the Microneedle Adapter (Model UAR-2S) | Intradermal Injection | Device: Microneedle Adapter (Model UAR-2S) Device: Hypodermic needle + syringe | Not Applicable | Completed |
03607903 | Adalimumab Microneedles in Healthy Volunteers | Pain Injection Site | Biological: Adalimumab ID Biological: Adalimumab SC Other: Saline ID Other: Saline SC | Phase 1 Phase 2 | Completed |
04394689 | Measles and Rubella Vaccine Microneedle Patch Phase 1–2 Age De-escalation Trial | Measles Rubella Vaccination Healthy | Biological: Measles Rubella Vaccine (MRV-SC) Biological: MRVMNP Other: PLA-MNP Other: PLA-SC | Phase 1 Phase 2 | Completed |
03739398 | A Study on the Effectiveness and Safety Evaluation of Combination Therapy With 1927 nm Thulium Laser and Fractional Microneedle Radiofrequency Equipment for Improvement of Skin Aging | Wrinkle | Device: LUTRONIC GENUS laser (Fractional Microneedle Radiofrequency (FMR)) Device: LASEMED laser (The Thulium laser with 1927 nm wavelength) | Not Applicable | Completed |
02438423 | Inactivated Influenza Vaccine Delivered by Microneedle Patch or by Hypodermic Needle | Influenza | Biological: Inactivated influenza vaccine Other: Placebo | Phase 1 | Completed |
04928222 | Placebo Microneedles in Healthy Volunteers (Part I) and Efficacy/Safety of Doxorubicin Microneedles in Basal Cell Cancer Subjects (Part II) | Basal Cell Carcinoma | Combination Product: Doxorubicin containing MNA Drug: Placebo containing MNA | Phase 1 Phase 2 | Active, not recruiting |
02632110 | Microneedle Lesion Preparation Prior to Aminolevulinic Acid Photodynamic Therapy (ALAPDT) for AK on Face | Actinic Keratosis | Drug: ALA Drug: Topical Solution Vehicle Device: IBL 10 mW Procedure: Microneedle lesion preparation Device: IBL 20 mW | Phase 2 | Completed |
02745392 | Safety and Efficacy of ZPZolmitriptan Intracutaneous Microneedle Systems for the Acute Treatment of Migraine | Acute Migraine | Drug: ZPZolmitriptan Drug: Placebo | Phase 2 Phase 3 | Completed |
01789320 | Safety Study of Suprachoroidal Triamcinolone Acetonide Via Microneedle to Treat Uveitis | Uveitis Intermediate Uveitis Posterior Uveitis Panuveitis Noninfectious Uveitis | Drug: triamcinolone acetonide (Triesence®) | Phase 1 Phase 2 | Completed |
Compounds | Polymer | Characteristics | Ref. |
---|---|---|---|
Fluorescein, FITC-Dextran, Doxorubicin | Methacrylated hyaluronic acid | Methacrylated hyaluronic acid microneedles fully swelled within 1 min, with swelling ratio of ~2.74; >80% of fluorescein, FITC-Dextran, and >50% of doxorubicin were released from the microneedle patches within 30 min. | [37] |
HRP | Silk | The beta sheet content in the microneedle devices was increased from 14% to 15% and 21% as the water vapor annealing time increased from 0 h to 2 h and 8 h, and the HRP release reduced to 37% and 18%. | [38] |
FITC-dextran | Silk fibroin, urea, N-dimethylformamidee, glycine and 2-ethoxyethanol | The swelling-modified silk fibroin microneedles with different microscopic pore size attains 250–650% swelling ratio after PBS immersion; the swelling-modified silk fibroin microneedles display significantly enhanced transdermal drug release kinetics compared with the controlled silk fibroin films, with 2–10-times larger accumulative release ratio than the corresponding control groups during the entire release process in vitro. | [2] |
Light-responsive ibuprofen conjugates | Crosslinked 2-hydroxyethyl methacrylate | The crosslinked 2-hydroxyethyl methacrylate hydrogel shows maximum swelling degrees of around 50% after 24 h; the system allows the release of ibuprofen during prolonged periods of time (up to 160 h). | [39] |
Sildenafil citrate | Polyvinyl alcohol and polyvinylpyrrolidone crosslinked by tartaric acid | The hydrogel’s swelling percentage was 348.07–72,897% with different formulations. | [40] |
Doxorubicin | Methacrylated hyaluronic acid | The swelling ratio increased rapidly and reached a maximum of 337% at 10 min; the release profile of doxorubicin/SMNs dramatically turned into a slow rate after 90 min and less than 90% doxorubicin was released at the end of the detection point (12 h). The maximum doxorubicin concentration that appeared at 1 h was 0.58 ± 0.35 μg/mL for the doxorubicin/DMNs group, and was 1.28 ± 0.32 μg/mL for the doxorubicin/SMNs group at 2 h, respectively. The crosslinking network of SMNs significantly retarded the diffusion of small molecule drugs within the needle matrix, and extended the drug release duration, increasing the drug transdermal efficacy. | [41] |
Nicotinamide mononucleotide | Polyvinyl alcohol, carboxymethyl cellulose, DMSO | Formulations of microneedles containing 2.9% carboxymethyl cellulose have a higher swelling ratio (186%) in comparison with the 0% carboxymethyl cellulose composite (48%) and a higher nicotinamide mononucleotide release of 91.94 ± 4.03% at 18 h compared with the carboxymethyl cellulose-free polyvinyl alcohol matrix of 50.48 ± 3.73% at 18 h. | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Li, J.; Hong, Y.; Ruan, H.; Long, M.; Feng, N.; Zhang, Y. Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines 2023, 11, 2119. https://doi.org/10.3390/biomedicines11082119
Hou X, Li J, Hong Y, Ruan H, Long M, Feng N, Zhang Y. Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines. 2023; 11(8):2119. https://doi.org/10.3390/biomedicines11082119
Chicago/Turabian StyleHou, Xiaolin, Jiaqi Li, Yongyu Hong, Hang Ruan, Meng Long, Nianping Feng, and Yongtai Zhang. 2023. "Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery" Biomedicines 11, no. 8: 2119. https://doi.org/10.3390/biomedicines11082119
APA StyleHou, X., Li, J., Hong, Y., Ruan, H., Long, M., Feng, N., & Zhang, Y. (2023). Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines, 11(8), 2119. https://doi.org/10.3390/biomedicines11082119