A Supervised Learning Regression Method for the Analysis of the Taste Functions of Healthy Controls and Patients with Chemosensory Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Procedure
2.3. Sensory Measurements
2.4. Supervised Learning
- The correlations between numerical parameters and those between each numerical feature and the target, which were a fundamental step to understand the data structure, were also considered to include a feature in the dataset (Figure 1).
- The choice of features that are used by the algorithm as predictive variables of the target: The set of parameters most suitable for our case study was selected as features by expert researchers in taste physiology and an ML engineering, based on their domain knowledge, from a database of the sensory, clinical, and demographic parameters [50]. In addition, since two features strongly correlated with each other have almost the same effect on the dependent variable, one of them was dropped to reduce the noise that could impact algorithm performance [51]. Specifically, the sum of the scores of the correct answer for the two concentrations of salty, sweet, sour, bitter, hot, and astringency; the sum of the scores of the correct answers for the two concentrations of salty, sweet, sour, and bitter; and the intensity ratings for the two concentrations of salty, sweet, sour, and bitter strongly correlated with each other. The first summated variable that included evaluations of all stimuli was selected, and the latter two were excluded.
- Handling of missing values: Every line of the subject that represents lacking information in some column was eliminated.
- Elimination of duplicate values: In fifty-eight subjects of the control group, all sensory measurements were repeated twice. The column relative to these repeated measures, and those of the overall taste status and total taste score calculated in these subjects (twenty-nine columns in total) were eliminated from the dataset.
- Converting the dataset content into a language that an algorithm can understand: This included the one hot encoding, which encodes categorical data into numerical data and the normalization of the numerical data, which consist of transforming a real range of numerical values in a range between 0 and 1.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welge-Lüssen, A.; Dörig, P.; Wolfensberger, M.; Krone, F.; Hummel, T. A study about the frequency of taste disorders. J. Neurol. 2011, 258, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Age-related deficits in taste and smell. Otolaryngol. Clin. N. Am. 2018, 51, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Mojet, J.; Christ-Hazelhof, E.; Heidema, J. Taste perception with age: Generic or specific losses in threshold sensitivity to the five basic tastes? Chem. Senses 2001, 26, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Mojet, J.; Heidema, J.; Christ-Hazelhof, E. Taste perception with age: Generic or specific losses in supra-threshold intensities of five taste qualities? Chem. Senses 2003, 28, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Heidt, J.M.; MacGillivray, M.R.; Dsouza, M.; Tracey, E.H.; Mirza, N.; Bigelow, D. Influences of age, tongue region, and chorda tympani nerve sectioning on signal detection measures of lingual taste sensitivity. Physiol. Behav. 2016, 155, 202–207. [Google Scholar] [CrossRef]
- Schiffman, S.S. Taste and smell losses in normal aging and disease. JAMA 1997, 278, 1357–1362. [Google Scholar] [CrossRef]
- Boesveldt, S.; Lindau, S.T.; McClintock, M.K.; Hummel, T.; Lundstrom, J.N. Gustatory and olfactory dysfunction in older adults: A national probability study. Rhinology 2011, 49, 324–330. [Google Scholar] [CrossRef]
- Chen, B.; Benzien, C.; Faria, V.; Ning, Y.; Cuevas, M.; Linke, J.; Croy, I.; Haehner, A.; Hummel, T. Symptoms of Depression in Patients with Chemosensory Disorders. ORL J. Otorhinolaryngol. Relat. Spec. 2021, 83, 135–143. [Google Scholar] [CrossRef]
- Croy, I.; Negoias, S.; Novakova, L.; Landis, B.N.; Hummel, T. Learning about the Functions of the Olfactory System from People without a Sense of Smell. PLoS ONE 2012, 7, e33365. [Google Scholar] [CrossRef]
- Walliczek-Dworschak, U.; Schops, F.; Feron, G.; Brignot, H.; Hahner, A.; Hummel, T. Differences in the Density of Fungiform Papillae and Composition of Saliva in Patients With Taste Disorders Compared to Healthy Controls. Chem. Senses 2017, 42, 699–708. [Google Scholar] [CrossRef]
- Deems, D.A.; Doty, R.L.; Settle, R.G.; Moore-Gillon, V.; Shaman, P.; Mester, A.F.; Kimmelman, C.P.; Brightman, V.J.; Snow, J.B., Jr. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 519–528. [Google Scholar] [CrossRef]
- Tepper, B.J.; Banni, S.; Melis, M.; Crnjar, R.; Tomassini Barbarossa, I. Genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP) and its association with physiological mechanisms controlling body mass index (BMI). Nutrients 2014, 6, 3363–3381. [Google Scholar] [CrossRef]
- Skrandies, W.; Zschieschang, R. Olfactory and gustatory functions and its relation to body weight. Physiol. Behav. 2015, 142, 1–4. [Google Scholar] [CrossRef]
- Park, D.C.; Yeo, J.H.; Ryu, I.Y.; Kim, S.H.; Jung, J.; Yeo, S.G. Differences in taste detection thresholds between normal-weight and obese young adults. Acta Oto-Laryngol. 2015, 135, 478–483. [Google Scholar] [CrossRef]
- Overberg, J.; Hummel, T.; Krude, H.; Wiegand, S. Differences in taste sensitivity between obese and non-obese children and adolescents. Arch. Dis. Child. 2012, 97, 1048–1052. [Google Scholar] [CrossRef]
- Pasquet, P.; Frelut, M.L.; Simmen, B.; Hladik, C.M.; Monneuse, M.O. Taste perception in massively obese and in non-obese adolescents. Int. J. Pediatr. Obes. 2007, 2, 242–248. [Google Scholar] [CrossRef]
- Kumari, B.G.; Kumar, Z.N. Evaluation of sweet taste sensitivity in type-II Diabetes Mellitus patients. Int. J. Clin. Med. Res. 2020, 6, 10–12. [Google Scholar] [CrossRef]
- Anderson, G.H. Sugars, sweetness, and food intake. Am. J. Clin. Nutr. 1995, 62, 195S–201S. [Google Scholar] [CrossRef]
- Simchen, U.; Koebnick, C.; Hoyer, S.; Issanchou, S.; Zunft, H.J. Odour and taste sensitivity is associated with body weight and extent of misreporting of body weight. Eur. J. Clin. Nutr. 2006, 60, 698–705. [Google Scholar] [CrossRef]
- Melis, M.; Pintus, S.; Mastinu, M.; Fantola, G.; Moroni, R.; Pepino, M.Y.; Barbarossa, I.T. Changes of Taste, Smell and Eating Behavior in Patients Undergoing Bariatric Surgery: Associations with PROP Phenotypes and Polymorphisms in the Odorant-Binding Protein OBPIIa and CD36 Receptor Genes. Nutrients 2021, 13, 250. [Google Scholar] [CrossRef]
- Dinehart, M.E.; Hayes, J.E.; Bartoshuk, L.M.; Lanier, S.L.; Duffy, V.B. Bitter taste markers explain variability in vegetable sweetness, bitterness, and intake. Physiol. Behav. 2006, 87, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Tepper, B.J. Nutritional implications of genetic taste variation: The role of PROP sensitivity and other taste phenotypes. Annu. Rev. Nutr. 2008, 28, 367–388. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.E.; Duffy, V.B. Revisiting sugar-fat mixtures: Sweetness and creaminess vary with phenotypic markers of oral sensation. Chem. Senses 2007, 32, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Duffy, V.B.; Davidson, A.C.; Kidd, J.R.; Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Reed, D.R.; Snyder, D.J.; Bartoshuk, L.M. Bitter Receptor Gene (TAS2R38), 6-n-Propylthiouracil (PROP) Bitterness and Alcohol Intake. Alcohol. Clin. Exp. Res. 2004, 28, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Yousaf, N.Y.; Mattes, M.Z.; Cabras, T.; Messana, I.; Crnjar, R.; Tomassini Barbarossa, I.; Tepper, B.J. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype. Physiol. Behav. 2017, 173, 163–173. [Google Scholar] [CrossRef]
- Yousaf, N.Y.; Melis, M.; Mastinu, M.; Contini, C.; Cabras, T.; Tomassini Barbarossa, I.; Tepper, B.J. Time Course of Salivary Protein Responses to Cranberry-Derived Polyphenol Exposure as a Function of PROP Taster Status. Nutrients 2020, 12, 2878. [Google Scholar] [CrossRef]
- Yousaf, N.Y.; Tepper, B.J. The Effects of Cranberry Polyphenol Extract (CPE) Supplementation on Astringency and Flavor Perception as a Function of PROP Taster Status and Other Individual Factors. Int. J. Environ. Res. Public Health 2022, 19, 11995. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Fast, K.; Karrer, T.A.; Marino, S.; Price, R.A.; Reed, D.A. PROP supertasters and the perception of sweetness and bitterness. Chem. Senses 1992, 17, 594. [Google Scholar]
- Bartoshuk, L.M.; Rifkin, B.; Marks, L.E.; Hooper, J.E. Bitterness of KCl and benzoate: Related to genetic status for sensitivity to PTC/PROP. Chem. Senses 1988, 13, 517–528. [Google Scholar] [CrossRef]
- Gent, J.; Bartoshuk, L. Sweetness of sucrose, neohesperidin dihydrochalcone, and saccharin is related to genetic ability to taste the bitter substance 6-n-propylthiouracil. Chem. Senses 1983, 7, 265–272. [Google Scholar] [CrossRef]
- Whissell-Buechy, D. Effects of age and sex on taste sensitivity to phenylthiocarbamide (PTC) in the Berkeley Guidance sample. Chem. Senses 1990, 15, 39–57. [Google Scholar] [CrossRef]
- Melis, M.; Errigo, A.; Crnjar, R.; Pes, G.M.; Tomassini Barbarossa, I. TAS2R38 bitter taste receptor and attainment of exceptional longevity. Sci. Rep. 2019, 9, 18047. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Cohen, N.A. Role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Cossu, G.; Melis, M.; Sarchioto, M.; Melis, M.; Melis, M.; Morelli, M.; Tomassini Barbarossa, I. 6-n-propylthiouracil taste disruption and TAS2R38 nontasting form in Parkinson’s disease. Mov. Disord. 2018, 33, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Tepper, B.J.; Koelliker, Y.; Zhao, L.; Ullrich, N.V.; Lanzara, C.; d’Adamo, P.; Ferrara, A.; Ulivi, S.; Esposito, L.; Gasparini, P. Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. Obesity 2008, 16, 2289–2295. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, J.C.; Cardinal, T.M.; Sitto, J.R.; Kannan, S. Ability to taste 6-n-propylthiouracil and BMI in low-income preschool-aged children. Obesity 2008, 16, 1522–1528. [Google Scholar] [CrossRef]
- Essick, G.K.; Chopra, A.; Guest, S.; McGlone, F. Lingual tactile acuity, taste perception, and the density and diameter of fungiform papillae in female subjects. Physiol. Behav. 2003, 80, 289–302. [Google Scholar] [CrossRef]
- Mastinu, M.; Pieniak, M.; Wolf, A.; Green, T.; Hähner, A.; Niv, M.Y.; Hummel, T. A Simple Taste Test for Clinical Assessment of Taste and Oral Somatosensory Function—The “Seven-iTT”. Life 2023, 13, 59. [Google Scholar] [CrossRef]
- Bangcuyo, R.G.; Simons, C.T. Lingual tactile sensitivity: Effect of age group, sex, and fungiform papillae density. Exp. Brain Res. 2017, 235, 2679–2688. [Google Scholar] [CrossRef]
- Bogdanov, V.; Reinhard, J.; McGlone, F.; Haehner, A.; Simons, C.T.; Hummel, T. Oral Somatosensory Sensitivity in Patients with Taste Disturbance. Laryngoscope 2021, 131, 2572–2577. [Google Scholar] [CrossRef]
- Matsumoto, S.; Osawa, K.; Hirose, Y.; Nakayama, M.; Wada, T.; Matsuda, M.; Akutsu, H.; Ii, R.; Koizumi, H.; Okano, Y.; et al. Objective evaluation of gustatory function after surgery for vestibular schwannoma: A pilot study. Auris Nasus Larynx 2022, 49, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Podlesek, D.; Chao, Y.T.; Weitkamp, F.; Schackert, G.; Hummel, T. Trigeminal Sensory Neuropathy Predicts Chemosensory Dysfunction after Skull Base Surgery. Oper. Neurosurg. 2022, 24, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Topp, C.W.; Østergaard, S.D.; Søndergaard, S.; Bech, P. The WHO-5 Well-Being Index: A systematic review of the literature. Psychother. Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Regional Office for, E. Wellbeing Measures in Primary Health Care/the DepCare Project: Report on a WHO Meeting: Stockholm, Sweden, 12–13 February 1998; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 1998. [Google Scholar]
- Landis, B.N.; Welge-Luessen, A.; Bramerson, A.; Bende, M.; Mueller, C.A.; Nordin, S.; Hummel, T. “Taste Strips”—A rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J. Neurol. 2009, 256, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Kallert, S.; Renner, B.; Stiassny, K.; Temmel, A.F.; Hummel, T.; Kobal, G. Quantitative assessment of gustatory function in a clinical context using impregnated “taste strips”. Rhinology 2003, 41, 2–6. [Google Scholar] [PubMed]
- Cecchini, M.P.; Knaapila, A.; Hoffmann, E.; Boschi, F.; Hummel, T.; Iannilli, E. A cross-cultural survey of umami familiarity in European countries. Food Qual. Prefer. 2019, 74, 172–178. [Google Scholar]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Yousef, M.; Kumar, A.; Bakir-Gungor, B. Application of Biological Domain Knowledge Based Feature Selection on Gene Expression Data. Entropy 2021, 23, 2. [Google Scholar] [CrossRef]
- Yu, L.; Liu, H. Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In Proceedings of the 20th International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; Volume 2, pp. 856–863. [Google Scholar]
- Czerwinska, U. Interpretability of Machine Learning Models. In Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications; Egger, R., Ed.; Springer: Cham, Switzerland, 2022; pp. 275–303. [Google Scholar]
- Melis, M.; Grzeschuchna, L.; Sollai, G.; Hummel, T.; Tomassini Barbarossa, I. Taste disorders are partly genetically determined: Role of the TAS2R38 gene, a pilot study. Laryngoscope 2019, 129, E307–E312. [Google Scholar] [CrossRef]
- Lee, R.J.; Xiong, G.; Kofonow, J.M.; Chen, B.; Lysenko, A.; Jiang, P.; Abraham, V.; Doghramji, L.; Adappa, N.D.; Palmer, J.N.; et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Investig. 2012, 122, 4145–4159. [Google Scholar] [CrossRef]
Features | Healthy Controls (n = 102) | Patients with Chemosensory Loss (n = 51) | p-Value |
---|---|---|---|
Numerical type | |||
astring_low_int | 2.24 ± 1.32 | 0.84 ± 1.10 * | <0.0001 |
bitter_low_int | 2.40 ± 1.49 | 1.06 ± 1.26 * | <0.0001 |
hot_low_int | 2.04 ± 1.30 | 0.84 ± 1.24 * | <0.0001 |
salty_low_int | 3.03 ± 1.07 | 1.92 ± 1.18 * | <0.0001 |
astring_high_int | 3.53 ± 1.09 | 2.43 ± 1.43 * | <0.0001 |
score_lowhigh_capsadstr1 | 9.37 ± 1.92 | 7.18 ± 2.47 * | <0.0001 |
sour_high_int | 3.90 ± 0.85 | 3.27 ± 1.05 * | 0.0001 |
sweet_low_int | 1.99 ± 1.18 | 1.22 ± 1.14 * | 0.0002 |
sweet_high_int | 3.58 ± 0.89 | 2.90 ± 1.38 * | 0.0003 |
sour low int | 1.37 ± 1.22 | 0.68 ± 0.97 * | 0.0006 |
bitter_high_int | 3.15 ± 1.43 | 2.57 ± 1.43 | 0.018 |
hot_high_int | 3.54 ± 1.16 | 3.04 ± 1.33 | 0.018 |
salty_high_int | 3.79 ± 0.89 | 3.45 ± 1.27 | 0.054 |
depression | 17.15 ± 3.62 | 14.14 ± 5.18 * | <0.0001 |
BMI (kg/m2) | 23.66 ± 4.02 | 25.61 ± 5.55 | 0.014 |
Age (y) | 36.70 ± 14.43 | 40.45 ± 12.62 | 0.116 |
Categorial type | |||
astring_low_taste_correct/non (n) | 78/24 | 15/36 # | <0.0001 |
astring_high_taste_correct/non (n) | 86/16 | 24/27 # | <0.0001 |
hot_low_taste_correct/non (n) | 77/25 | 18/33 # | <0.0001 |
salty_low_taste_correct/non (n) | 87/15 | 33/18 # | 0.0039 |
sour_high_taste_correct/non (n) | 93/9 | 36/15 # | 0.0014 |
bitter_low_taste_correct/non (n) | 63/39 | 22/29 # | 0.0221 |
sweet_high_taste_correct/non (n) | 100/2 | 46/5 # | 0.0415 |
sour_low_taste_correct/non (n) | 32/70 | 10/41 | 0.0877 |
sweet_low_taste_correct/non (n) | 72/30 | 32/19 | 0.2122 |
hot_high_taste_correct/non (n) | 97/5 | 46/5 | 0.2061 |
bitter_high_taste_correct/non (n) | 77/25 | 39/12 | 0.531 |
salty_high_taste_correct/non (n) | 90/12 | 45/6 | 0.596 |
Like_to_eat_spicy/non (n) | 66/36 | 23/28 # | 0.016 |
sex_f1_m2 (women/men; n) | 65/37 | 36/15 | 0.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naciri, L.C.; Mastinu, M.; Melis, M.; Green, T.; Wolf, A.; Hummel, T.; Tomassini Barbarossa, I. A Supervised Learning Regression Method for the Analysis of the Taste Functions of Healthy Controls and Patients with Chemosensory Loss. Biomedicines 2023, 11, 2133. https://doi.org/10.3390/biomedicines11082133
Naciri LC, Mastinu M, Melis M, Green T, Wolf A, Hummel T, Tomassini Barbarossa I. A Supervised Learning Regression Method for the Analysis of the Taste Functions of Healthy Controls and Patients with Chemosensory Loss. Biomedicines. 2023; 11(8):2133. https://doi.org/10.3390/biomedicines11082133
Chicago/Turabian StyleNaciri, Lala Chaimae, Mariano Mastinu, Melania Melis, Tomer Green, Anne Wolf, Thomas Hummel, and Iole Tomassini Barbarossa. 2023. "A Supervised Learning Regression Method for the Analysis of the Taste Functions of Healthy Controls and Patients with Chemosensory Loss" Biomedicines 11, no. 8: 2133. https://doi.org/10.3390/biomedicines11082133
APA StyleNaciri, L. C., Mastinu, M., Melis, M., Green, T., Wolf, A., Hummel, T., & Tomassini Barbarossa, I. (2023). A Supervised Learning Regression Method for the Analysis of the Taste Functions of Healthy Controls and Patients with Chemosensory Loss. Biomedicines, 11(8), 2133. https://doi.org/10.3390/biomedicines11082133