First Report of Rubber Collection Bowls & Plastic and Bamboo Water Containers as the Major Breeding Source of Ae. albopictus with the Indigenous Transmission of Dengue and Chikungunya in Rural Forested Malaria-Endemic Villages of Dhalai District, Tripura, India: The Importance of Molecular Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Diagnosis of Dengue, Chikungunya
2.3. Larval Survey
2.4. Adult Collection
2.5. Morphological Identification of Mosquito Species
2.6. Molecular Identification of Mosquito Species
2.7. Sequencing of ITS2 and COI Gene and Phylogenetic Analysis
2.8. Haplotype Network Analysis
2.9. Preparation of Ecological Maps with the Cases and Vectors
3. Results
3.1. Diagnosis of Dengue, Chikungunya
3.2. Larval Survey
3.3. Phylogenetic Analysis
3.4. Haplotype Network Analysis
3.5. Polymorphism and Population Genetics Analysis of COI Gene in Ae. albopictus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhowmick, I.P.; Pandey, A.; Subbarao, S.K.; Pebam, R.; Majumder, T.; Nath, A.; Nandi, D.; Basu, A.; Sarkar, A.; Majumder, S.; et al. Diagnosis of Indigenous Non-Malarial Vector-Borne Infections from Malaria Negative Samples from Community and Rural Hospital Surveillance in Dhalai District, Tripura, North-East India. Diagnostics 2022, 12, 362. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Khan, S.A.; Khan, A.M.; Sharma, C.K.; Mahanta, J. An updated checklist of species of Aedes and Verrallina of northeastern India. J. Am. Mosq. Control Assoc. 2010, 26, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Baidya, S.; Saikia, G.; Paul, D.; Karmakar, S.; Kalita, B. Distribution and breeding habitats of Aedes: Implications for risk of potential arboviral outbreaks in urban Tripura, India. Int. J. Infect. Dis. 2020, 101, 375. [Google Scholar] [CrossRef]
- Baidya, S.; Chander, M.P.; Karmakar, S.; Paul, B.; Kalita, B. Entomological survey for identification of Aedes larval breeding sites and their distribution in selected rural villages of West and South Tripura, India. Int. J. Curr. Microbiol. Appl. Sci. 2022, 11, 312–317. [Google Scholar] [CrossRef]
- Mosquito Taxonomic Inventory. 2016. Available online: http://mosquito-taxonomic-inventory.info (accessed on 3 July 2023).
- Huang, Y.M. Contributions to the mosquito fauna of Southeast Asia. XIV. The subgenus Stegomyia of Aedes in Southeast Asia —The scutellaris group of species. Contrib. Am. Ent. Inst. 1972, 9, 110. [Google Scholar]
- Barraud, P.J. A revision of the culicine mosquitoes of India, Part XXIII.The genus Aedes (sens. lat.) and the classification of the subgenus.Descriptions of the Indian species of Aedes (Aedimorphus), Aedes (Ochlerotatus), and Aedes (Banksinella), with notes on Aedes (Stegomyia) uariegatus. Ind. J. Med. Res. 1928, 15, 653–669. [Google Scholar]
- Reuben, R.; Tewari, S.C.; Hiriyan, J.; Akiyama, J. Illustrated Keys to Species of Culex (Culex) Associated with Japanese Encephalitis in Southeast Asia; American Mosquito Control Association, Inc.: Sacramento, CA, USA, 2019. [Google Scholar]
- Minard, G.; Van, V.T.; Tran, F.H.; Melaun, C.; Klimpel, S.; Koch, L.K.; Kim, K.L.H.; Thuy, T.H.T.; Ngoc, H.T.; Potier, P.; et al. Identification of sympatric cryptic species of Aedes albopictus subgroup in Vietnam: New perspectives in phylosymbiosis of insect vector. Parasit. Vectors 2017, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Song, Z.; Luo, L.; Wang, Q.; Zhou, G.; Yang, D.; Zhong, D. Molecular evidence for new sympatric cryptic species of Aedesalbopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup? Parasit. Vectors 2018, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- McLain, D.K.; Rai, K.S.; Fraser, M.J. Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedesalbopictus subgroup. Heredity 1987, 58, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Patsoula, E.; Samanidou-Voyadjoglou, A.; Spanakos, G.; Kremastinou, J.; Nasioulas, G.; Vakalis, N.C. Molecular and morphological characterization of Aedes albopictus in northwestern Greece and differentiation from Aedescretinus and Aedes aegypti. J. Med. Entomol. 2006, 43, 40–54. [Google Scholar] [CrossRef]
- Saccone, C.; De Giorgi, C.; Gissi, C.; Pesole, G.; Reyes, A. Evolutionary genomics in Metazoa: The mitochondrial DNA as a model system. Gene 1999, 238, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, N.; Weigt, L.A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. B Boil. Sci. 1998, 265, 2257–2263. [Google Scholar] [CrossRef]
- Das, M.; Das, M.K.; Dutta, P. Genetic characterization and molecular phylogeny of Aedes albopictus (Skuse) species from Sonitpur district of Assam, India based on COI and ITS1 genes. J. Vector Borne Dis. 2016, 53, 240–247. [Google Scholar] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; Somboon, P.; O’loughlin, S.; Zhang, S.; Harbach, R.; Linton, Y.-M.; Chen, B.; Nolan, K.; Duong, S.; Fong, M.-Y.; et al. Genetic diversity and molecular identification of mosquito species in the Anopheles maculatus group using the ITS2 region of rDNA. Infect. Genet. Evol. 2007, 7, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. Popart: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Sherry, S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Sumodan, P.K. Potential of Rubber Plantations as Breeding Source for Aedesalbopictus in Kerala, India. Dengue Bull. 2008, 27, 197–198. [Google Scholar]
- Bhat, M.A.; Krishnamoorthy, K. Entomological investigation and distribution of Aedes mosquitoes in Tirunelveli, Tamil Nadu, India. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 253–260. [Google Scholar]
- Singh, S.; Rahman, A. Contribution of Aedes aegypti breeding by different income group communities of Dehradun city, Uttarakhand, India. Biol. Forum. Int. J. 2013, 5, 96–99. [Google Scholar]
- Bhattacharyya, D.R.; Rajavel, A.R.; Mohapatra, P.K.; Jambulingam, P.; Mahanta, J.; Prakash, A. Faunal richness and the checklist of Indian mosquitoes (Diptera: Culicidae). Check List. 2014, 10, 1342–1358. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, C.; Guo, X.; Xing, D.; Dong, Y.; Wang, Z.; Zhang, Y.; Liu, M.; Zheng, Z.; Zhang, H.; et al. Identifying the Main Mosquito Species in China Based on DNA Barcoding. PLoS ONE 2012, 7, e47051. [Google Scholar] [CrossRef]
- Waldock, J.; Chandra, N.L.; Lelieveld, J.; Proestos, Y.; Michael, E.; Christophides, G.; Parham, P.E. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog. Glob Health 2013, 107, 224–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, S.; Marinho, R.; Duro, R.L.S.; Santos, G.L.; Hunter, J.; da Aparecida Rodrigues Teles, M.; Brustulin, R.; Milagres, F.A.D.P.; Sabino, E.C.; Diaz, R.S.; et al. Detection of coinfection with Chikungunya virus and Dengue virus serotype 2 in serum samples of patients in State of Tocantins, Brazil. J. Infect. Public Health 2020, 13, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Tewari, S.C.; Thenmozhi, V.; Katholi, C.R.; Manavalan, R.; Munirathinam, A.; Gajanana, A. Dengue vector prevalence and virus infection in a rural area in south India. Trop. Med. Int. Health 2004, 9, 499–507. [Google Scholar] [CrossRef]
- Chetry, S.; Patgiri, S.J.; Bhattacharyya, D.R.; Dutta, P.; Kumar, N.P. Incrimination of Aedes aegypti and Aedes albopictus as vectors of dengue virus serotypes 1, 2 and 3 from four states of Northeast India. Access Microbiol. 2020, 2, acmi000101. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, N.P.; Bhowmik, I.P.; Sarma, D.K.; Sharma, C.K.; Medhi, G.K.; Mohapatra, P.K. Role of Anopheles baimaii: Potential vector of epidemic outbreak in Tripura, North-east India. J. Glob Health Rep. 2019, 3, e2019036. [Google Scholar] [CrossRef]
- Bhowmick, I.P.; Nirmolia, T.; Pandey, A.; Subbarao, S.K.; Nath, A.; Senapati, S.; Tripathy, D.; Pebam, R.; Nag, S.; Roy, R.; et al. Dry Post Wintertime Mass Surveillance Unearths a Huge Burden of P. vivax, and Mixed Infection with P. vivax P. falciparum, a Threat to Malaria Elimination, in Dhalai, Tripura, India. Pathogens 2021, 10, 1259. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, I.P.; Chutia, D.; Chouhan, A.; Nishant, N.; Raju, P.L.N.; Narain, K.; Kaur, H.; Pebam, R.; Debnath, J.; Tripura, R.; et al. Validation of a Mobile Health Technology Platform (FeverTracker) for Malaria Surveillance in India: Development and Usability Study. JMIR Form. Res. 2021, 5, e28951. [Google Scholar] [CrossRef] [PubMed]
- Patgiri, S.J.; Gohain, G.G.; Goswami, S.K.; Bhattacharyya, D.R.; Das Debnath, S.H.; Panat, L.; Karajkhede, G.; Mohapatra, P.K.; Sarma, D.K.; Bhowmick, I.P.; et al. Development and On-Field Deployment of a Mobile-Based Application ‘MoSQuIT’ for Malaria Surveillance in International Border Districts of Northeast India—Challenges and Opportunities. Int. J. Environ. Res. Public Health 2022, 19, 2561. [Google Scholar] [CrossRef] [PubMed]
Place (Village) | Time of Survey | Containers Searched (No.s) | Container Type (Positive) for Aedes. | Water Condition | No. of Containers Positive for Aedes Species (Morphological and Molecular Identification) | Container Index for Aedes Species | Containers Positive for Mosquito Species Other than Aedes Species (Morphological Identification) |
---|---|---|---|---|---|---|---|
Tamarai | July 2021 | 8 | Bamboo stump | Coloured, clear | 2 Aedes albopictus | 22.2 | 3 Culex spp. * Culex |
May 2022 | 4 | Bamboo stump | Turbid, coloured | 1 Aedes albopictus | 1 Culex spp. * | ||
July 2022 | 4 | Bamboo stump | Coloured | 1 Aedes albopictus | 2 Culex spp. * | ||
August 2022 | 2 | Bamboo stump | Clear | 0 | 0 | ||
Satiram | July 2021 | 6 | Water drum | Clear | 1 Aedes albopictus | 38.1 | 3 Culex spp. * |
August 2021 | 2 | Well | Clear | 0 | 1 Culex spp. * | ||
April 2022 | 6 | Water drum and tyre | Clear | 3 Aedes albopictus | 2 Culex quinquefasciatus, Culex spp. *, 1 mixed with Culex spp. * and Aedes spp. * | ||
May 2022 | 5 | Cemented water tank and plastic water drum | Polluted, clear | 4 Aedes albopictus | 1 Culex spp. * | ||
July 2022 | 5 | Coal tar metal drum | Clear, Coloured | 4 Aedes albopictus | 1 Culex mixed with Aedes spp. * and Culex spp. * | ||
plastic drum | |||||||
Mixed breeding in tyre | |||||||
August 2022 | 18 | Metal coal tar | Clear | 4 Aedes albopictus | 0 | ||
drum and plastic (Sintex) water tank | |||||||
Tilak Kumar | June 2021 | 4 | Pond | Clear | 0 | 28.6 | 1 Culex spp. * |
July 2021 | 4 | Chips packet | Turbid | 1 Aedes albopictus | 0 | ||
April 2022 | 3 | Cemented water tank and pond | Turbid | 2 Aedes albopictus | 0 | ||
July 2022 | 3 | Small plastic container | Clear | 1 Aedes albopictus | 0 | ||
Ranasai | December 2021 | 12 | Plastic bucket | Clear | 3 Aedes albopictus | 50 | 1 Culex spp. * 1 Armigeres spp.* |
Plastic sheet | |||||||
February 2022 | 1 | Sintex water tank | Clear | 1 Aedes albopictus | 0 | ||
April 2022 | 10 | Rubber collection bowl | Clear | 3 Aedes albopictus (1 mix with Aedes iyengari) | 1 Culex quinquefasciatus | ||
May 2022 | 17 | Rubber collection bowl | Clear | 12 Aedes albopictus | 0 | ||
June 2022 | 16 | Rubber collection bowl | Clear | 4 Aedes albopictus (1 mixed with Aedes spp. *) | 0 | ||
July 2022 | 7 | Sintex water tank | Clear | 7 Aedes albopictus | 0 | ||
August 2022 | 3 | Plastic (Sintex) water tank, Colocasia axil | Clear | 3 Aedes albopictus | 0 | ||
Donkarai | July 2021 | 4 | Tree hole | Turbid | 0 | 42.1 | 6 Culex spp. * |
August 2021 | 3 | Tree hole | Turbid | 0 | 1 Culex spp. * | ||
November 2021 | 1 | Pond | Clear | 0 | 0 | ||
April 2022 | 1 | Tamarind root hole | Turbid | 1 Aedes albopictus | 0 | ||
May 2022 | 2 | Pond | Clear | 0 | 0 | ||
June 2022 | 1 | Stream pool | Clear | 0 | 0 | ||
July 2022 | 1 | Cemented water tank | Clear | 1 Aedes albopictus | 0 | ||
August 2022 | 6 | Plastic (Sintex) water tank, jackfruit tree trunk hole, and aluminium cooking vessel | Coloured, clear | 6 | 3 Armigeres spp. * | ||
Dhansingh | July 2021 | 2 | Pond | Coloured | 0 | 16.5 | 2 Culex spp. * |
October 2021 | 2 | Pond | Turbid | 0 | 0 | ||
December 202021 | 21 | Indigenously made bamboo tanks with polyethene sheets inside | Clean | 1 Aedes albopictus | 0 | ||
January 202022 | 33 | Plastic (Sintex) water tank | Clear | 1 Aedes albopictus | 3 Culex spp. * | ||
February 2022 | 1 | Pond | Turbid | 0 | 1 Culex spp. * | ||
March 2022 | 1 | Pond | Clear | 0 | 1 Culex spp. * | ||
April 2022 | 6 | Pond | Coloured, turbid | 6 Aedes albopictus | 2 Culex vishnui | ||
Groundwater pool | Clear | 1 Anopheles vagus | |||||
May 2022 | 8 | Tree hole | Clear | 1 Aedes albopictus | 1 Anopheles spp. *, 3 Culex spp. * | ||
Bamboo stump | |||||||
June 2022 | 3 | Bamboo stump | Clear | 2 Aedes albopictus | 0 | ||
tree hole | |||||||
July 2022 | 2 | Indigenously made bamboo tanks with polyethene sheets inside | Clear | 2 Aedes albopictus | 0 | ||
Forest Village | December 2021 | 13 | Tectona grandis leaf | Clear | 1 Aedes albopictus | 5.6 | 3 Culex spp. * |
February 2022 | 3 | Pond | Coloured | 0 | 1 Culex spp. * | ||
April 2022 | 2 | Bottle | Coloured | 0 | 1 Culex spp. * | ||
Tarjapara | April 2021 | 2 | Ground pool | Turbid | 0 | 70 | 1 Culex spp. * |
December 2021 | 4 | Plastic (Sintex) water tank | Clear | 3 Aedes albopictus | 0 | ||
July 2022 | 4 | Plastic (Sintex) water tank | Clear | 4 Aedes albopictus | 0 | ||
Ananta Maniya-1 | August 2021 | 4 | Well | Clear | 0 | 16.7 | 2 Culex spp. * |
June 2022 | 5 | Bamboo fence | Turbid | 2 Aedes albopictus | 3 Culex spp. * 2 Armigeres subalbatus | ||
July 2022 | 3 | Pond | Turbid | 1 Aedes spp. * | 1 Culex spp. * 1 Armigeres subalbatus | ||
Khajendra roja Para | Juyl 2022 | 6 | Plastic (Sintex) water tank | Clear | 1 Aedes albopictus | 16.7 | 0 |
Khusidhan | July 2021 | 4 | Pond | Turbid | 0 | 0 | 3 Culex spp. * |
October 2021 | 4 | Pond | Coloured | 0 | 1 Culex spp. * | ||
August 2022 | 2 | Pond | Clear | 0 | 2 Culex spp. * | ||
Bidhyapara | June 2022 | 2 | Pond | Coloured | 0 | 0 | 2 Culex spp. * |
Malda-1 | December 2021 | 4 | Plastic (Sintex) water tank and Discarded tyres | Coloured, Clear | 0 | 0 | 2 Culex spp. * |
Lakhindra | November 2021 | 6 | Stream pool | Clear | 0 | 0 | 4 Culex spp. * |
Sl. No | Container Type | Searched | Found Positive | Container Positivity % |
---|---|---|---|---|
1 | Bamboo stump | 13 | 6 | 46 |
2 | Pond | 47 | 6 | 13 |
3 | Indigenously made bamboo tanks with polyethene sheets inside | 3 | 3 | 100 |
4 | Pit | 2 | 1 | 50 |
5 | Plastic Water drum | 10 | 7 | 70 |
6 | Sintex water tank | 45 | 24 | 53 |
7 | Metal coal tar drum | 8 | 5 | 63 |
8 | Tyre | 4 | 2 | 50 |
9 | Cemented water tank | 9 | 3 | 33 |
10 | Tectona grandis leaf | 2 | 1 | 50 |
11 | Chips packet | 1 | 1 | 100 |
12 | Small plastic container | 3 | 2 | 67 |
13 | Plastic bucket | 6 | 2 | 33 |
14 | Rubber bowl | 40 | 18 | 45 |
15 | Tree trunk hole | 5 | 2 | 40 |
16 | Colocasia axil | 1 | 1 | 100 |
17 | Bamboo fence | 2 | 2 | 100 |
18 | Tamarind root hole | 1 | 1 | 100 |
19 | Jackfruit tree trunk | 1 | 1 | 100 |
20 | Metal utensil | 1 | 1 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.; Rajkonwar, J.; Nirmolia, T.; Jena, S.R.; Sarkar, U.; Bhattacharyya, D.R.; Borkakoty, B.; Pandey, A.; Subbarao, S.K.; Majumder, T.; et al. First Report of Rubber Collection Bowls & Plastic and Bamboo Water Containers as the Major Breeding Source of Ae. albopictus with the Indigenous Transmission of Dengue and Chikungunya in Rural Forested Malaria-Endemic Villages of Dhalai District, Tripura, India: The Importance of Molecular Identification. Biomedicines 2023, 11, 2186. https://doi.org/10.3390/biomedicines11082186
Biswas S, Rajkonwar J, Nirmolia T, Jena SR, Sarkar U, Bhattacharyya DR, Borkakoty B, Pandey A, Subbarao SK, Majumder T, et al. First Report of Rubber Collection Bowls & Plastic and Bamboo Water Containers as the Major Breeding Source of Ae. albopictus with the Indigenous Transmission of Dengue and Chikungunya in Rural Forested Malaria-Endemic Villages of Dhalai District, Tripura, India: The Importance of Molecular Identification. Biomedicines. 2023; 11(8):2186. https://doi.org/10.3390/biomedicines11082186
Chicago/Turabian StyleBiswas, Saurav, Jadab Rajkonwar, Tulika Nirmolia, Sasmita Rani Jena, Ujjal Sarkar, Dibya Ranjan Bhattacharyya, Biswajyoti Borkakoty, Apoorva Pandey, Sarala K. Subbarao, Tapan Majumder, and et al. 2023. "First Report of Rubber Collection Bowls & Plastic and Bamboo Water Containers as the Major Breeding Source of Ae. albopictus with the Indigenous Transmission of Dengue and Chikungunya in Rural Forested Malaria-Endemic Villages of Dhalai District, Tripura, India: The Importance of Molecular Identification" Biomedicines 11, no. 8: 2186. https://doi.org/10.3390/biomedicines11082186
APA StyleBiswas, S., Rajkonwar, J., Nirmolia, T., Jena, S. R., Sarkar, U., Bhattacharyya, D. R., Borkakoty, B., Pandey, A., Subbarao, S. K., Majumder, T., Pebam, R., Gogoi, P., Mahanta, K., Narain, K., & Bhowmick, I. P. (2023). First Report of Rubber Collection Bowls & Plastic and Bamboo Water Containers as the Major Breeding Source of Ae. albopictus with the Indigenous Transmission of Dengue and Chikungunya in Rural Forested Malaria-Endemic Villages of Dhalai District, Tripura, India: The Importance of Molecular Identification. Biomedicines, 11(8), 2186. https://doi.org/10.3390/biomedicines11082186