Functional Recovery after the Application of Amniotic Tissues and Methylene Blue during Radical Prostatectomy—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
- The assessment of urine leakage according to the number of used pads.
- The assessment of potency according to the ability to maintain an erection sufficient for sexual intercourse. Treatment of erectile dysfunction with, for example, PDE-5 inhibitors or SKAT was recorded.
- The time of catheter removal, using a cystogram on the 5th–7th postoperative day, and testing of the anastomosis for tightness (instillation of 200 mL iodized contrast medium). If there was evidence of contrast medium leakage, the catheter was left in place. The catheter removal was reported as n = x days postoperatively.
- The PSA course and additional oncological treatment (radiotherapy, hormonotherapy).
- The assessment of complications, according to the Clavien–Dindo classification.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellison, J.S.; He, C.; Wood, D.P. Stratification of postprostatectomy urinary function using expanded prostate cancer index composite. Urology 2013, 81, 56–60. [Google Scholar] [CrossRef]
- Ficarra, V.; Novara, G.; Rosen, R.C.; Artibani, W.; Carroll, P.R.; Costello, A.; Menon, M.; Montorsi, F.; Patel, V.R.; Stolzenburg, J.-U.; et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 405–417. [Google Scholar] [CrossRef]
- Capogrosso, P.; Salonia, A.; Briganti, A.; Montorsi, F. Postprostatectomy Erectile Dysfunction: A Review. World J. Men’s Health 2016, 34, 73–88. [Google Scholar] [CrossRef]
- Ilic, D.; Evans, S.M.; Allan, C.A.; Jung, J.H.; Murphy, D.; Frydenberg, M. Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer. Cochrane Database Syst. Rev. 2017, 9, CD009625. [Google Scholar] [CrossRef]
- Haney, C.M.; Kowalewski, K.-F.; Westhoff, N.; Holze, S.; Checcuci, E.; Neuberger, M.; Haapiainen, H.; Egen, L.; Antti, K.; Porpiglia, F.; et al. Robot-assisted versus Conventional Laparoscopic Radical Prostatectomy: A Systematic Review and Meta-analysis of Randomised Controlled Trials. Eur. Urol. Focus 2023, in press. [CrossRef]
- Lane, J.M.; Bora, F.W., Jr.; Pleasure, D. Neuroma scar formation in rats following peripheral nerve transection. J. Bone Jt. Surg. 1978, 60, 197–203. [Google Scholar] [CrossRef]
- Menon, M.; Kaul, S.; Bhandari, A.; Shrivastava, A.; Tewari, A.; Hemal, A. Potency following robotic radical prostatectomy: A questionnaire based analysis of outcomes after conventional nerve sparing and prostatic fascia sparing techniques. J. Urol. 2005, 174, 2291–2296. [Google Scholar] [CrossRef]
- Barski, D.; Gerullis, H.; Ecke, T.; Boros, M.; Brune, J.; Beutner, U.; Tsaur, I.; Ramon, A.; Otto, T. Application of Dried Human Amnion Graft to Improve Post-Prostatectomy Incontinence and Potency: A Randomized Exploration Study Protocol. Adv. Ther. 2020, 37, 592–602. [Google Scholar] [CrossRef]
- Ogaya-Pinies, G.; Palayapalam-Ganapathi, H.; Rogers, T.; Hernandez-Cardona, E.; Rocco, B.; Coelho, R.F.; Jenson, C.; Patel, V.R. Can dehydrated human amnion/chorion membrane accelerate the return to potency after a nerve-sparing robotic-assisted radical prostatectomy? Propensity score-matched analysis. J. Robot. Surg. 2018, 12, 235–243. [Google Scholar] [CrossRef]
- Evans, G.R. Peripheral nerve injury: A review and approach to tissue engineered constructs. Anat. Rec. 2001, 263, 396–404. [Google Scholar] [CrossRef]
- Wang, K.-K.; Costas, P.D.; Bryan, D.J.; Jones, D.S.; Seckel, B.R. Inside-out vein graft promotes improved nerve regeneration in rats. Microsurgery 1993, 14, 608–618. [Google Scholar] [CrossRef]
- Kim, I.G.; Piao, S.; Lee, J.Y.; Hong, S.H.; Hwang, T.-K.; Kim, S.W.; Kim, C.S.; Ra, J.C.; Noh, I.; di Summa, P.G.; et al. Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury. Tissue Eng. Part A 2013, 19, 14–23. [Google Scholar] [CrossRef]
- Jeong, H.H.; Piao, S.; Ha, J.N.; Kim, I.G.; Oh, S.H.; Lee, J.H.; Cho, H.J.; Hong, S.H.; Kim, S.W.; Lee, J.Y. Combined therapeutic effect of udenafil and adipose-derived stem cell (ADSC)/brain-derived neurotrophic factor (BDNF)-membrane system in a rat model of cavernous nerve injury. Urology 2013, 81, 1108.e7–1108.e14. [Google Scholar] [CrossRef]
- Joung, J.Y.; Ha, Y.-S.; Singer, E.A.; Ercolani, M.C.; Favaretto, R.L.; Lee, D.-H.; Kim, W.-J.; Lee, K.H.; Kim, I.Y. Use of a hyaluronic acid-carboxymethylcellulose adhesion barrier on the neurovascular bundle and prostatic bed to facilitate earlier recovery of erectile function after robot-assisted prostatectomy: An initial experience. J. Endourol. 2013, 27, 1230–1235. [Google Scholar] [CrossRef]
- Barski, D.; Gerullis, H.; Ecke, T.; Varga, G.; Boros, M.; Pintelon, I.; Timmermans, J.-P.; Winter, A.; Bagner, J.-W.; Otto, T. Repair of a vesico-vaginal fistula with amniotic membrane—Step 1 of the IDEAL recommendations of surgical innovation. Cent. Eur. J. Urol. 2015, 68, 459–461. [Google Scholar]
- Barski, D.; Gerullis, H.; Ecke, T.; Yang, J.; Varga, G.; Boros, M.; Pintelon, I.; Timmermans, J.-P.; Otto, T. Bladder Reconstruction with Human Amniotic Membrane in a Xenograft Rat Model: A Preclinical Study. Int. J. Med. Sci. 2017, 14, 310–318. [Google Scholar] [CrossRef]
- Barski, D.; Gerullis, H.; Ecke, T.; Varga, G.; Boros, M.; Pintelon, I.; Timmermans, J.-P.; Otto, T. Human Amniotic Membrane Is Not Suitable for the Grafting of Colon Lesions and Prevention of Adhesions in a Xenograft Rat Model. Surg. Innov. 2017, 24, 313–320. [Google Scholar] [CrossRef]
- Lemke, A.; Ferguson, J.; Gross, K.; Penzenstadler, C.; Bradl, M.; Mayer, R.L.; Gerner, C.; Redl, H.; Wolbank, S. Transplantation of human amnion prevents recurring adhesions and ameliorates fibrosis in a rat model of sciatic nerve scarring. Acta Biomater. 2018, 66, 335–349. [Google Scholar] [CrossRef]
- Modaresifar, K.; Azizian, S.; Zolghadr, M.; Moravvej, H.; Ahmadiani, A.; Niknejad, H. The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiology 2017, 74, 61–67. [Google Scholar] [CrossRef]
- Seif, C.; Martínez Portillo, F.J.; Osmonov, D.K.; Böhler, G.; van der Horst, C.; Leissner, J.; Hohenfellner, R.; Juenemann, K.P.; Braun, P.M. Methylene blue staining for nerve-sparing operative procedures: An animal model. Urology 2004, 63, 1205–1208. [Google Scholar] [CrossRef]
- Ehrlich, P. Zur biologischen Verwertung des Methylenblau. Zbl. Med. Wiss. 1885, 23, 113–117. [Google Scholar]
- Coers, C.D.; Woolf, A.L. The Innervation of Muscle: A Biopsy Study; Blackwell: Oxford, UK, 1959. [Google Scholar]
- de Farias, C.C.; Allemann, N.; Gomes, J.Á. Randomized Trial Comparing Amniotic Membrane Transplantation with Lamellar Corneal Graft for the Treatment of Corneal Thinning. Cornea 2016, 35, 438–444. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, L.; Yan, J. Amniotic membrane for treating skin graft donor sites: A systematic review and meta-analysis. Burns 2020, 46, 621–629. [Google Scholar] [CrossRef]
- Rohleder, N.H.; Loeffelbein, D.J.; Feistl, W.; Eddicks, M.; Wolff, K.-D.; Gulati, A.; Steinstraesser, L.; Kesting, M.R. Repair of oronasal fistulae by interposition of multilayered amniotic membrane allograft. Plast. Reconstr. Surg. 2013, 132, 172–181. [Google Scholar] [CrossRef]
- Dong, R.; Liu, C.; Tian, S.; Bai, J.; Yu, K.; Liu, L.; Tian, D. Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. PLoS ONE 2020, 15, e0244301, Corrected in PLoS ONE 2021, 16, e0253699. [Google Scholar] [CrossRef]
- Buentello-Volante, B.; Molina-Medinilla, M.; Aguayo-Flores, E.; Magaña-Guerrero, F.S.; Garfias, Y. Comparison of amniotic membrane transplantation and carpal tunnel syndrome release surgery (CTRS) and CTRS alone: Clinical outcomes at 1-year follow-up. J. Tissue Eng. Regen. Med. 2020, 14, 714–722. [Google Scholar] [CrossRef]
- Carling, T. Protection of laryngeal nerve palsy using amniotic membrane shield during thyroid surgery. Endocrine 2021, 74, 197–199. [Google Scholar] [CrossRef]
- Patel, V.R.; Samavedi, S.; Bates, A.S.; Kumar, A.; Coelho, R.; Rocco, B.; Palmer, K. Dehydrated Human Amnion/Chorion Membrane Allograft Nerve Wrap Around the Prostatic Neurovascular Bundle Accelerates Early Return to Continence and Potency Following Robot-assisted Radical Prostatectomy: Propensity Score–matched Analysis. Eur. Urol. 2015, 67, 977–980. [Google Scholar] [CrossRef]
- Razdan, S.; Bajpai, R.R.; Razdan, S.; Sanchez, M.A. A matched and controlled longitudinal cohort study of dehydrated human amniotic membrane allograft sheet used as a wrap around nerve bundles in robotic-assisted laparoscopic radical prostatectomy: A puissant adjunct for enhanced potency outcomes. J. Robot. Surg. 2019, 13, 475–481. [Google Scholar] [CrossRef]
- Ralis, H.M.; Beesley, R.A.; Ralis, Z.A. Techniques in Neurohistology; Butterworth & Company: London, UK, 1973; pp. 143–144. [Google Scholar]
- Choi, H.J.; Han, M.; Jung, B.; Hong, Y.-R.; Shin, S.; Lim, S.; Lee, E.-H.; Kim, Y.K.; Park, J. Methylene Blue Delivery Mediated by Focused Ultrasound-Induced Blood–Brain Barrier Disruption Reduces Neural Damage and Amyloid-Beta Plaques by AQP-4 Upregulation. Biomedicines 2022, 10, 3191. [Google Scholar] [CrossRef]
- Gureev, A.P.; Sadovnikova, I.S.; Popov, V.N. Molecular Mechanisms of the Neuroprotective Effect of Methylene Blue. Biochemistry 2022, 87, 940–956. [Google Scholar] [CrossRef]
- Stelmashook, E.V.; Voronkov, D.N.; Stavrovskaya, A.V.; Novikova, S.V.; Yamshikova, N.G.; Olshanskij, A.S.; Guschina, A.S.; Shedenkova, M.O.; Genrikhs, E.E.; Isaev, N.K. Neuroprotective effects of methylene blue in streptozotocin-induced model of Alzheimer’s disease. Brain Res. 2023, 1805, 148290. [Google Scholar] [CrossRef]
- Martijn, C.; Wiklund, L. Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain. BMC Med. Genom. 2010, 3, 27. [Google Scholar] [CrossRef]
- Ram-Liebig, G.; Bednarz, J.; Stuerzebecher, B.; Fahlenkamp, D.; Barbagli, G.; Romano, G.; Balsmeyer, U.; Spiegeler, M.-E.; Liebig, S.; Knispel, H. Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Adv. Drug Deliv. Rev. 2015, 82–83, 181–191. [Google Scholar] [CrossRef]
- McCulloch, P.; Altman, D.G.; Campbell, W.B.; Flum, D.R.; Glasziou, P.; Marshall, J.C.; Nicholl, J. No surgical innovation without evaluation: The IDEAL recommendations. Lancet 2009, 374, 1105–1112. [Google Scholar] [CrossRef]
- McCulloch, P.; Cook, J.A.; Altman, D.G.; Heneghan, C.; Diener, M.K.; IDEAL Group. IDEAL framework for surgical innovation 1: The idea and development stages. BMJ 2013, 346, f3012. [Google Scholar] [CrossRef]
Patient Preoperative Characteristics | n = 14 |
---|---|
Age | 66 (56–74) |
Smoking | |
current | 4 (29%) |
former | 2 (14%) |
never | 8 (57%) |
Diabetes mellitus | 0 |
ASA score | 2 (1–3) |
PSA | 5.75 (4.5–10.8) |
D’Amico classification | |
low risk | 2 (14%) |
intermediate risk | 11 (79%) |
high risk | 1 (7%) |
Continence | 14 (100%) |
Erectile function sufficient for intercourse | |
no sexual activity | 2 (14%) |
≥50% | 12 (86%) |
Intra- and Postoperative Parameters | n = 14 |
---|---|
Follow up, months | 11 (±4.6) |
Operating time, min | 71 (56–85) |
Transfusion | 0 |
Nerve sparing | |
unilateral | 1 (7%) |
bilateral | 11 (79%) |
no | 2 (14%) |
Catheterization time, days | 8 (6–27) |
Hospital stay, days | 8 (7–14) |
Complications | |
obstructive voiding | 2 (14%) |
urgency | 1 (7%) |
recurrent urinary tract infections | 1 (7%) |
Continence | |
no pads | 11 (79%) |
one safety pad | 2 (14%) |
more than five pads | 1 (7%) |
Erectile function sufficient for intercourse | |
no sexual activity | 5 (36%) |
no intercourse possible | 4 (28%) |
50% (with pills, pump, or injection) | 5 (36%) |
Oncological outcome | |
Gleason score ≤ 6 | 1 (7%) |
Gleason score 7 | 12 (86%) |
Gleason score ≥ 8 | 1 (7%) |
extracapsular extension | 2 (14%) |
seminal vesicle invasion | 1 (7%) |
positive margins | 3 (21%) |
lymph node invasion | 1 (7%) |
adjuvant radiotherapy | 2 (14%) |
adjuvant hormone therapy | 1 (7%) |
Would you undergo the surgery again? | 14 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barski, D.; Tsaur, I.; Boros, M.; Brune, J.; Otto, T. Functional Recovery after the Application of Amniotic Tissues and Methylene Blue during Radical Prostatectomy—A Pilot Study. Biomedicines 2023, 11, 2260. https://doi.org/10.3390/biomedicines11082260
Barski D, Tsaur I, Boros M, Brune J, Otto T. Functional Recovery after the Application of Amniotic Tissues and Methylene Blue during Radical Prostatectomy—A Pilot Study. Biomedicines. 2023; 11(8):2260. https://doi.org/10.3390/biomedicines11082260
Chicago/Turabian StyleBarski, Dimitri, Igor Tsaur, Mihaly Boros, Jan Brune, and Thomas Otto. 2023. "Functional Recovery after the Application of Amniotic Tissues and Methylene Blue during Radical Prostatectomy—A Pilot Study" Biomedicines 11, no. 8: 2260. https://doi.org/10.3390/biomedicines11082260
APA StyleBarski, D., Tsaur, I., Boros, M., Brune, J., & Otto, T. (2023). Functional Recovery after the Application of Amniotic Tissues and Methylene Blue during Radical Prostatectomy—A Pilot Study. Biomedicines, 11(8), 2260. https://doi.org/10.3390/biomedicines11082260