Initial Weight Loss, Anthropometric Parameters, and Proinflammatory Transcript Levels in Patients with Class I Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Weight Loss Intervention
2.4. Anthropometric Measurements
2.5. Measurements of Biochemical Parameters
2.6. Genotyping of the FTO rs9930506 Polymorphism
2.7. Adipose Tissue Biopsy
2.8. Determination of the Gene Expression of IL-6, TNF-α, and NF-κB in the Patients’ Blood and Subcutaneous Adipose Tissue
2.9. Statistical Analyses
3. Results
3.1. The Effects of the FTO rs9930506 Polymorphism on Body Weight and Composition and Biochemical and Proinflammatory Parameters (at Baseline and throughout the Intervention)
3.2. Relation between the Effectiveness of Weight Loss Program and Changes in Clinical Parameters
3.3. The Effects of a Dietary Intervention on White Blood Cells (WBCs) and Subcutaneous Adipose Tissue (AT) Proinflammatory Gene Expression
3.4. Predictors of Successful Weight Loss and Improvement in Metabolic Measurements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.R.; Tan, P.Y.; Amini, F. Effect of FTO rs9930506 on obesity and interaction of the gene variants with dietary protein and vitamin E on C-reactive protein levels in multi-ethnic Malaysian adults. J. Hum. Nutr. Diet. 2018, 31, 758–772. [Google Scholar] [CrossRef]
- Doaei, S.; Mosavi Jarrahi, S.A.; Sanjari Moghadam, A.; Akbari, M.E.; Javadi Kooshesh, S.; Badeli, M.; Azizi Tabesh, G.; Abbas Torki, S.; Gholamalizadeh, M.; Zhu, Z.H.; et al. The effect of rs9930506 FTO gene polymorphism on obesity risk: A meta-analysis. Biomol. Concepts 2019, 10, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Sentinelli, F.; Incani, M.; Coccia, F.; Capoccia, D.; Cambuli, V.M.; Romeo, S.; Cossu, E.; Cavallo, M.G.; Leonetti, F.; Baroni, M.G. Association of FTO polymorphisms with early age of obesity in obese Italian subjects. Exp. Diabetes Res. 2012, 2012, 872176. [Google Scholar] [CrossRef]
- Wrzosek, M.; Zakrzewska, A.; Ruczko, L.; Jabłonowska-Lietz, B.; Nowicka, G. Association between rs9930506 polymorphism of the fat mass & obesity-associated (FTO) gene & onset of obesity in Polish adults. Indian J. Med. Res. 2016, 143, 281–287. [Google Scholar] [CrossRef]
- Scuteri, A.; Sanna, S.; Chen, W.M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef] [PubMed]
- Franczak, A.; Kolačkov, K.; Jawiarczyk-Przybyłowska, A.; Bolanowski, M. Association between FTO gene polymorphisms and HDL cholesterol concentration may cause higher risk of cardiovascular disease in patients with acromegaly. Pituitary 2018, 21, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. N. Am. 2018, 102, 183–197. [Google Scholar] [CrossRef]
- Van Baak, M.A.; Mariman, E.C.M. Mechanisms of weight regain after weight loss—The role of adipose tissue. Nat. Rev. Endocrinol. 2019, 15, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.; Holst, C.; Astrup, A.; Handjieva-Darlenska, T.; Jebb, S.A.; Kafatos, A.; Kunesova, M.; Larsen, T.M.; Martinez, J.A.; Pfeiffer, A.F.; et al. Caloric restriction induces changes in insulin and body weight measurements that are inversely associated with subsequent weight regain. PLoS ONE 2012, 7, e42858. [Google Scholar] [CrossRef]
- Kong, L.C.; Wuillemin, P.H.; Bastard, J.P.; Sokolovska, N.; Gougis, S.; Fellahi, S.; Darakhshan, F.; Bonnefont-Rousselot, D.; Bittar, R.; Doré, J.; et al. Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. Am. J. Clin. Nutr. 2013, 98, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Bouwman, F.G.; van Baak, M.A.; Roumans, N.J.T.; Vink, R.G.; Mariman, E.C.M. Plasma Levels of Triglycerides and IL-6 Are Associated With Weight Regain and Fat Mass Expansion. J. Clin. Endocrinol. Metab. 2022, 107, 1920–1929. [Google Scholar] [CrossRef]
- Shih, L.Y.; Liou, T.H.; Chao, J.C.; Kau, H.N.; Wu, Y.J.; Shieh, M.J.; Yeh, C.Y.; Han, B.C. Leptin, superoxide dismutase, and weight loss: Initial leptin predicts weight loss. Obesity 2006, 14, 2184–2192. [Google Scholar] [CrossRef]
- Erez, G.; Tirosh, A.; Rudich, A.; Meiner, V.; Schwarzfuchs, D.; Sharon, N.; Shpitzen, S.; Blüher, M.; Stumvoll, M.; Thiery, J.; et al. Phenotypic and genetic variation in leptin as determinants of weight regain. Int. J. Obes. 2011, 35, 785–792. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef]
- Rossmeislová, L.; Malisová, L.; Kracmerová, J.; Tencerová, M.; Kovácová, Z.; Koc, M.; Siklová-Vítková, M.; Viquerie, N.; Langin, D.; Stich, V. Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes 2013, 62, 1990–1995. [Google Scholar] [CrossRef]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Díaz-López, A.; Ruiz-Canela, M.; Basora, J.; Fitó, M.; Corella, D.; Serra-Majem, L.; Wärnberg, J.; Romaguera, D.; Estruch, R.; et al. Effect of a Lifestyle Intervention Program With Energy-Restricted Mediterranean Diet and Exercise on Weight Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2019, 42, 777–788. [Google Scholar] [CrossRef]
- The Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Dolinková, M.; Dostálová, I.; Lacinová, Z.; Michalský, D.; Haluzíková, D.; Mráz, M.; Kasalický, M.; Haluzík, M. The endocrine profile of subcutaneous and visceral adipose tissue of obese patients. Mol. Cell Endocrinol. 2008, 291, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef]
- Rodríguez, A.; Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Frühbeck, G. Revisiting the adipocyte: A model for integration of cytokine signaling in the regulation of energy metabolism. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E691–E714. [Google Scholar] [CrossRef]
- Bianchi, V.E. Weight loss is a critical factor to reduce inflammation. Clin. Nutr. ESPEN 2018, 28, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Fraterrigo, G.; Yoshino, J.; Luecking, C.; Kirbach, K.; Kelly, S.C.; de Las Fuentes, L.; He, S.; Okunade, A.L.; Patterson, B.W.; et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016, 23, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hong, F.; Lebaka, V.R.; Mohammed, A.; Ji, L.; Zhang, Y.; Korivi, M. Calorie Restriction With Exercise Intervention Improves Inflammatory Response in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 2021, 12, 754731. [Google Scholar] [CrossRef]
- Lakhdar, N.; Denguezli, M.; Zaouali, M.; Zbidi, A.; Tabka, Z.; Bouassida, A. Diet and diet combined with chronic aerobic exercise decreases body fat mass and alters plasma and adipose tissue inflammatory markers in obese women. Inflammation 2013, 36, 1239–1247. [Google Scholar] [CrossRef]
- Sheu, W.H.; Chang, T.M.; Lee, W.J.; Ou, H.C.; Wu, C.M.; Tseng, L.N.; Lang, H.F.; Wu, C.S.; Wan, C.J.; Lee, I.T. Effect of weight loss on proinflammatory state of mononuclear cells in obese women. Obesity 2008, 16, 1033–1038. [Google Scholar] [CrossRef]
- Strączkowski, M.; Nikołajuk, A.; Majewski, R.; Filarski, R.; Stefanowicz, M.; Matulewicz, N.; Karczewska-Kupczewska, M. The effect of moderate weight loss, with or without (1, 3)(1, 6)-β-glucan addition, on subcutaneous adipose tissue inflammatory gene expression in young subjects with uncomplicated obesity. Endocrine 2018, 61, 275–284. [Google Scholar] [CrossRef] [PubMed]
- De Mello, V.D.; Kolehmainen, M.; Pulkkinen, L.; Schwab, U.; Mager, U.; Laaksonen, D.E.; Niskanen, L.; Gylling, H.; Atalay, M.; Rauramaa, R.; et al. Downregulation of genes involved in NFkappaB activation in peripheral blood mononuclear cells after weight loss is associated with the improvement of insulin sensitivity in individuals with the metabolic syndrome: The GENOBIN study. Diabetologia 2008, 51, 2060–2067. [Google Scholar] [CrossRef]
- De Mello, V.D.; Kolehmainen, M.; Schwab, U.; Mager, U.; Laaksonen, D.E.; Pulkkinen, L.; Niskanen, L.; Gylling, H.; Atalay, M.; Rauramaa, R.; et al. Effect of weight loss on cytokine messenger RNA expression in peripheral blood mononuclear cells of obese subjects with the metabolic syndrome. Metabolism 2008, 57, 192–199. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults—The Evidence Report. Obes. Res. 1998, 6 (Suppl. S2), 51s–209s. [Google Scholar]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization; United Nations University. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation, Rome, Italy, 17–24 October 2001; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Wajszczyk, B.; Chwojnowska, Z.; Nasiadko, D.; Rybaczuk, M.; Charzewska, J. (Eds.) Computer Software “Diet 5.0” for Planning and Ongoing Evaluation of Feeding Individual. National Food and Nutrition Institute: Warsaw, Poland, 2010. [Google Scholar]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Food Composition Tables; PZWL: Warsaw, Poland, 2005. [Google Scholar]
- Raynor, H.A.; Champagne, C.M. Position of the Academy of Nutrition and Dietetics: Interventions for the Treatment of Overweight and Obesity in Adults. J. Acad. Nutr. Diet. 2016, 116, 129–147. [Google Scholar] [CrossRef]
- Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, 253p. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Kolaczynski, J.W.; Morales, L.M.; Moore, J.H., Jr.; Considine, R.V.; Pietrzkowski, Z.; Noto, P.F.; Colberg, J.; Caro, J.F. A new technique for biopsy of human abdominal fat under local anaesthesia with Lidocaine. Int. J. Obes. Relat. Metab. Disord. 1994, 18, 161–166. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef]
- De Luis, D.A.; Aller, R.; Izaola, O.; Primo, D.; Romero, E. Association of the rs9939609 gene variant in FTO with insulin resistance, cardiovascular risk factor and serum adipokine levels in obese patients. Nutr. Hosp. 2016, 33, 573. [Google Scholar] [CrossRef]
- Magno, F.; Guaraná, H.C.; Fonseca, A.C.P.; Cabello, G.M.K.; Carneiro, J.R.I.; Pedrosa, A.P.; Ximenes, A.C.; Rosado, E.L. Influence of FTO rs9939609 polymorphism on appetite, ghrelin, leptin, IL6, TNFα levels, and food intake of women with morbid obesity. Diabetes Metab. Syndr. Obes. 2018, 11, 199–207. [Google Scholar] [CrossRef]
- Mehrdad, M.; Doaei, S.; Gholamalizadeh, M.; Fardaei, M.; Fararouei, M.; Eftekhari, M.H. Association of FTO rs9939609 polymorphism with serum leptin, insulin, adiponectin, and lipid profile in overweight adults. Adipocyte 2020, 9, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American association of clinical endocrinologists and American college of endocrinology Comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22 (Suppl. S3), 1–203. [Google Scholar] [CrossRef]
- Matulewicz, N.; Stefanowicz, M.; Nikolajuk, A.; Karczewska-Kupczewska, M. Markers of Adipogenesis, but Not Inflammation, in Adipose Tissue Are Independently Related to Insulin Sensitivity. J. Clin. Endocrinol. Metab. 2017, 102, 3040–3049. [Google Scholar] [CrossRef] [PubMed]
- Mraz, M.; Lacinova, Z.; Drapalova, J.; Haluzikova, D.; Horinek, A.; Matoulek, M.; Trachta, P.; Kavalkova, P.; Svacina, S.; Haluzik, M. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2011, 96, E606–E613. [Google Scholar] [CrossRef]
- Maculewicz, E.; Antkowiak, B.; Antkowiak, O.; Mastalerz, A.; Białek, A.; Cywińska, A.; Borecka, A.; Humińska-Lisowska, K.; Garbacz, A.; Lorenz, K.; et al. IL-6 Polymorphisms Are Not Related to Obesity Parameters in Physically Active Young Men. Genes 2021, 12, 1498. [Google Scholar] [CrossRef]
- Tam, C.S.; Covington, J.D.; Ravussin, E.; Redman, L.M. Little evidence of systemic and adipose tissue inflammation in overweight individuals(†). Front. Genet. 2012, 3, 58. [Google Scholar] [CrossRef]
- Kern, P.A.; Saghizadeh, M.; Ong, J.M.; Bosch, R.J.; Deem, R.; Simsolo, R.B. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Investig. 1995, 95, 2111–2119. [Google Scholar] [CrossRef]
- Campbell, K.L.; Foster-Schubert, K.E.; Makar, K.W.; Kratz, M.; Hagman, D.; Schur, E.A.; Habermann, N.; Horton, M.; Abbenhardt, C.; Kuan, L.Y.; et al. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev. Res. 2013, 6, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Moschen, A.R.; Molnar, C.; Geiger, S.; Graziadei, I.; Ebenbichler, C.F.; Weiss, H.; Kaser, S.; Kaser, A.; Tilg, H. Anti-inflammatory effects of excessive weight loss: Potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut 2010, 59, 1259–1264. [Google Scholar] [CrossRef]
- Ferraz-Bannitz, R.; Welendorf, C.R.; Coelho, P.O.; Salgado, W., Jr.; Nonino, C.B.; Beraldo, R.A.; Foss-Freitas, M.C. Bariatric surgery can acutely modulate ER-stress and inflammation on subcutaneous adipose tissue in non-diabetic patients with obesity. Diabetol. Metab. Syndr. 2021, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Casimiro, I.; Hanlon, E.C.; White, J.; De Leon, A.; Ross, R.; Moise, K.; Piron, M.; Brady, M.J. Reduction of IL-6 gene expression in human adipose tissue after sleeve gastrectomy surgery. Obes. Sci. Pract. 2020, 6, 215–224. [Google Scholar] [CrossRef]
- Blonde, L.; Umpierrez, G.E.; Reddy, S.S.; McGill, J.B.; Berga, S.L.; Bush, M.; Chandrasekaran, S.; DeFronzo, R.A.; Einhorn, D.; Galindo, R.J.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr. Pract. 2022, 28, 923–1049. [Google Scholar] [CrossRef]
- Cruz-García, E.M.; Frigolet, M.E.; Canizales-Quinteros, S.; Gutiérrez-Aguilar, R. Differential Gene Expression of Subcutaneous Adipose Tissue among Lean, Obese, and after RYGB (Different Timepoints): Systematic Review and Analysis. Nutrients 2022, 14, 4925. [Google Scholar] [CrossRef] [PubMed]
- Wrzosek, M.; Wiśniewska, K.; Sawicka, A.; Tałałaj, M.; Nowicka, G. Early Onset of Obesity and Adult Onset of Obesity as Factors Affecting Patient Characteristics Prior to Bariatric Surgery. Obes. Surg. 2018, 28, 3902–3909. [Google Scholar] [CrossRef]
- Whitney, A.R.; Diehn, M.; Popper, S.J.; Alizadeh, A.A.; Boldrick, J.C.; Relman, D.A.; Brown, P.O. Individuality and variation in gene expression patterns in human blood. Proc. Natl. Acad. Sci. USA 2003, 100, 1896–1901. [Google Scholar] [CrossRef]
- Devêvre, E.F.; Renovato-Martins, M.; Clément, K.; Sautès-Fridman, C.; Cremer, I.; Poitou, C. Profiling of the three circulating monocyte subpopulations in human obesity. J. Immunol. 2015, 194, 3917–3923. [Google Scholar] [CrossRef]
- Chopra, S.; Malhotra, A.; Ranjan, P.; Vikram, N.K.; Sarkar, S.; Siddhu, A.; Kumari, A.; Kaloiya, G.S.; Kumar, A. Predictors of successful weight loss outcomes amongst individuals with obesity undergoing lifestyle interventions: A systematic review. Obes. Rev. 2021, 22, e13148. [Google Scholar] [CrossRef]
- Bozkuş, Y.; Mousa, U.; Demir, C.C.; Anil, C.; Kut, A.; Turhan Iyidir, O.; Gulsoy Kirnap, N.; Fırat, S.; Nar, A.; Tutuncu, N.B. Abdominal bioelectric impedance for follow-up of dieters: A prospective study. Acta Endocrinol. 2019, 15, 145–152. [Google Scholar] [CrossRef]
- Søndergaard, E.; Espinosa De Ycaza, A.E.; Morgan-Bathke, M.; Jensen, M.D. How to Measure Adipose Tissue Insulin Sensitivity. J. Clin. Endocrinol. Metab. 2017, 102, 1193–1199. [Google Scholar] [CrossRef]
- Watts, N.B.; Spanheimer, R.G.; DiGirolamo, M.; Gebhart, S.S.; Musey, V.C.; Siddiq, Y.K.; Phillips, L.S. Prediction of glucose response to weight loss in patients with non-insulin-dependent diabetes mellitus. Arch. Intern. Med. 1990, 150, 803–806. [Google Scholar] [CrossRef]
- Elfhag, K.; Rössner, S. Initial weight loss is the best predictor for success in obesity treatment and sociodemographic liabilities increase risk for drop-out. Patient Educ. Couns. 2010, 79, 361–366. [Google Scholar] [CrossRef]
- Handjieva-Darlenska, T.; Holst, C.; Grau, K.; Blaak, E.; Martinez, J.A.; Oppert, J.M.; Taylor, M.A.; Sørensen, T.I.; Astrup, A. Clinical correlates of weight loss and attrition during a 10-week dietary intervention study: Results from the NUGENOB project. Obes. Facts 2012, 5, 928–936. [Google Scholar] [CrossRef]
- Handjieva-Darlenska, T.; Handjiev, S.; Larsen, T.M.; van Baak, M.A.; Jebb, S.; Papadaki, A.; Pfeiffer, A.F.; Martinez, J.A.; Kunesova, M.; Holst, C.; et al. Initial weight loss on an 800-kcal diet as a predictor of weight loss success after 8 weeks: The Diogenes study. Eur. J. Clin. Nutr. 2010, 64, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Svetkey, L.P.; Ard, J.D.; Stevens, V.J.; Loria, C.M.; Young, D.Y.; Hollis, J.F.; Appel, L.J.; Brantley, P.J.; Kennedy, B.M.; Kumanyika, S.K.; et al. Predictors of long-term weight loss in adults with modest initial weight loss, by sex and race. Obesity 2012, 20, 1820–1828. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, I.; Stampfer, M.J.; Schwarzfuchs, D.; Shai, I. Adherence and success in long-term weight loss diets: The dietary intervention randomized controlled trial (DIRECT). J. Am. Coll. Nutr. 2009, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene Symbol | Assay |
---|---|---|
Interleukin 6 | IL-6 | Hs00985639_m1 |
Tumor necrosis factor α | TNF-α | Hs01113624_g1 |
Nuclear factor kappa B subunit 1 | NF-κB | Hs00765730_m1 |
Eukaryotic 18S rRNA | 18S | Hs99999901_s1 |
FTO rs9930506 Polymorphism | |||||
---|---|---|---|---|---|
Total (n = 106) | GG (n = 32) | AG (n = 52) | AA (n = 22) | ANOVA/Kruskal–Wallis Tests p | |
Variables | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Age (years) | 38.7 ± 5.5 | 38.5 ± 5.2 | 39.0 ± 5.8 | 38.4 ± 5.5 | 0.860 |
Calorie intake (kcal) | 2125.6 ± 771.0 | 2284.2 ± 832.7 | 2036 ± 648.9 | 2079.1 ± 924.4 | 0.399 |
Weight (kg) | 94.13 ± 13.5 | 93.6 ± 12.3 | 94.6 ± 14.1 | 93.8 ± 14.3 | 0.932 |
BMI | 32.6 ± 2.3 | 32.0 ± 2.4 | 32.3 ± 2.4 | 32.5 ± 2.1 | 0.553 |
WC (cm) | 104.3 ± 9.3 | 103.7 ± 8.1 | 103.5 ± 10.1 | 107.4 ± 8.1 | 0.248 |
HC (cm) | 114.0 ± 6.7 | 112.4 ± 6.7 | 114.6 ± 6.4 | 114.9 ± 7.0 | 0.252 |
Fat (%) | 34.9 ± 4.9 | 34.1 ± 5.3 | 35.0 ± 4.8 | 35.7 ± 4.6 | 0.496 |
VFAT (scores) | 9.5 ± 3.1 | 9.3 ± 3.2 | 9.7 ± 3.3 | 9.2 ± 2.7 | 0.770 |
BAI | 33.8 ± 4.7 | 33.0 ± 5.6 | 34.2 ± 4.4 | 34.0 ± 4.2 | 0.519 |
WHtR | 0.61 ± 0.04 | 0.61 ± 0.04 | 0.61 ± 0.04 | 0.63 ± 0.04 | 0.103 |
Glucose (mg/dL) | 88.4 ± 7.3 | 87.8 ± 6.9 | 88.6 ± 8.1 | 88.8 ± 6.2 | 0.867 |
Insulin (µIU/mL) | 12.5 ± 6.3 | 11.0 ± 5.2 | 13.1 ± 7.5 | 13.3 ± 4.2 | 0.270 |
HOMA-IR | 2.8 ± 1.6 | 2.4 ± 1.1 | 2.9 ± 2.0 | 3.0 ± 1.1 | 0.238 |
Total cholesterol (mg/dL) | 195.2 ± 36.6 | 191.0 ± 38.0 | 198.8 ± 33.3 | 193.0 ± 42.6 | 0.610 |
Triglycerides (mg/dL) | 135.2 ± 65.6 | 126.1 ± 60.3 | 138.7 ± 73.5 | 140.2 ± 53.9 | 0.646 |
hs-CRP (g/L) | 2.8 ± 3.1 | 2.2 ± 1.8 | 2.6 ± 2.8 | 4.0 ± 4.8 | 0.211 |
Leptin | 20.7 ± 6.9 | 23.2 ± 9.7 | 19.6 ± 5.2 | 19.8 ± 5.2 | 0.130 |
Adiponectin | 6078.0 ± 2166.1 | 6412.2 ± 2553.5 | 5883.1 ± 2082.3 | 6011.7 ± 1901.3 | 0.756 |
FTO rs9930506 (A/G) | ||||
---|---|---|---|---|
Groups | Genotypes n (%) | |||
AA | AG | GG | ||
Studied groups | 22 (21%) | 52 (49%) | 32 (30%) | |
Controls | 74 (28%) | 148 (55%) | 46 (17%) | |
Co-dominant model OR (95% CI); p | 1.54 (1.10–2.16); 0.011 | |||
Groups | Genotypes n (%) | |||
GG | AA + AG | |||
Studied groups | 32 (30%) | 74 (70%) | ||
Controls | 46 (17%) | 222 (83%) | ||
Recessive model OR (CI); p | 2.09 (1.24–3.52); 0.006 | |||
Groups | Genotypes n (%) | |||
GG + AG | AA | |||
Studied groups | 84 (79%) | 22 (21%) | ||
Controls | 194 (72%) | 74 (28%) | ||
Dominant model OR (CI); p | 1.46 (0.85–2.50); 0.165 | |||
Groups | Alleles n (frequency) | |||
A | G | |||
Studied groups | 96 (0.45) | 116 (0.55) | ||
Controls | 296 (0.55) | 240 (0.45) | ||
Additive model OR (CI); p | 1.49 (1.08–1.42); 0.014 |
Variables | Group A (n = 40) Weight Loss ≥ 5% | Group B (n = 37) Weight Loss < 5% | p Value by Effect * | p Value by Sex ** | p Value by Effect and Sex *** |
---|---|---|---|---|---|
BW (kg) | |||||
∆2-1 (4-week) | −4.8 ± 2.3 ** | −2.1 ± 1.2 | <0.001 | 0.139 | 0.014 |
∆3-1 (12-week) | −8.3 ± 3.0 | −2.5 ± 1.9 | <0.001 | 0.031 | 0.188 |
BMI (kg/m2) | |||||
∆2-1 (4-week) | −1.7 ± 0.8 | −0.7 ± 0.4 | <0.0001 | 0.571 | 0.142 |
∆3-1 (12-week) | −2.9 ± 1.0 | −0.9 ± 0.7 | <0.0001 | 0.251 | 0.951 |
WC (cm) | |||||
∆2-1 (4-week) | −4.0 ± 2.3 | −2.4 ± 2.3 | 0.014 | 0.296 | 0.244 |
∆3-1 (12-week) | −7.9 ± 3.1 | −3.0 ± 3.6 | <0.0001 | 0.251 | 0.248 |
BAI | |||||
∆2-1 (4-week) | −1.3 ± 0.8 | −0.9 ± 0.8 | 0.103 | 0.098 | 0.585 |
∆3-1 (12-week) | −2.5 ± 1.2 | −1.4 ± 1.4 | <0.001 | 0.549 | 0.142 |
WHtR | |||||
∆2-1 (4-week) | −0.02 ± 0.01 | −0.01 ± 0.01 | 0.016 | 0.521 | 0.371 |
∆3-1 (12-week) | −0.05 ± 0.02 | −0.02 ± 0.02 | <0.001 | 0.280 | 0.928 |
FM (kg) | |||||
∆2-1 (4-week) | −2.9 ± 1.6 | −1.5 ± 1.4 | <0.001 | 0.635 | 0.241 |
∆3-1 (12-week) | −5.4 ± 2.7 | −1.6 ± 1.8 | <0.0001 | 0.092 | 0.578 |
VFAT | |||||
∆2-1 (4-week) | −0.9 ± 0.7 | −0.3 ± 0.6 | <0.001 | <0.001 | 0.001 |
∆3-1 (12-week) | −1.6 ± 1.0 | −0.5 ± 0.7 | <0.001 | <0.001 | 0.004 |
FFM (kg) | |||||
∆2-1 (4-week) | −2.0 ± 1.7 | −0.5 ± 1.5 | <0.001 | 0.118 | 0.040 |
∆3-1 (12-week) | −2.8 ± 1.7 | −0.7 ± 1.5 | <0.0001 | 0.097 | 0.149 |
∆ HOMA-IR | |||||
∆2-1 (4-week) | −0.9 ± 1.5 | −0.3 ± 1.1 | 0.136 | 0.234 | 0.330 |
∆3-1 (12-week) | −0.9 ± 1.6 | 0.2 ± 2.1 | 0.026 | 0.244 | 0.555 |
∆3-1 | ∆3-1 AT IL-6 | ∆3-1 AT TNF-α | ∆3-1 AT NF-κB |
---|---|---|---|
WBCs IL-6 | 0.16 | 0.15 | −0.42 |
WBCs TNF-α | 0.69 | 0.65 | 0.51 |
WBCs NF-κB | 0.89 *** | 0.35 | 0.75 * |
AT IL-6 | - | 0.65 * | 0.84 *** |
AT TNF-α | 0.65 * | - | 0.85 *** |
AT NF-κB | 0.84 *** | 0.85 *** | - |
∆3-1 | ∆3-1 BW (kg) | ∆3-1BMI (kg/m2) | ∆3-1 FM (%) | ∆3-1 FM (kg) | ∆3-1 VFAT (Scores) |
---|---|---|---|---|---|
WC (cm) | 0.72 *** | 0.72 *** | 0.62 *** | 0.72 *** | 0.67 *** |
HC (cm) | 0.54 *** | 0.58 *** | 0.51 *** | 0.57 *** | 0.47 *** |
WHR | 0.44 *** | 0.42 *** | 0.35 ** | 0.42 *** | 0.41 *** |
WHtR | 0.71 *** | 0.72 *** | 0.62 *** | 0.71 *** | 0.65 *** |
BAI | 0.63 *** | 0.67 *** | 0.53 *** | 0.60 *** | 0.46 *** |
Triglycerides (mmol/L) | 0.13 | 0.09 | 0.11 | 0.08 | 0.17 |
Total cholesterol (mg/dL) | 0.07 | 0.07 | 0.12 | 0.10 | 0.07 |
HDL cholesterol (mg/dL) | 0.18 | 0.20 | 0.14 | 0.18 | 0.04 |
LDL cholesterol (mg/dL) | 0.02 | 0.03 | 0.07 | 0.05 | 0.01 |
Glucose (mg/dL) | 0.26 * | 0.26 * | 0.27 * | 0.28 * | 0.26 * |
Insulin (mU/L) | 0.39 ** | 0.35 ** | 0.24 * | 0.32 ** | 0.31 ** |
HOMA-IR | 0.39 ** | 0.36 ** | 0.24 * | 0.34 ** | 0.33 ** |
CRP (mg/L) | −0.02 | −0.03 | −0.20 | −0.12 | 0.07 |
Adiponectin (ng/mL) | −0.25 | −0.20 | −0.17 | −0.19 | −0.26 |
Leptin (ng/mL) | −0.16 | −0.18 | −0.07 | −0.08 | −0.13 |
∆3-1 BW | ∆3-1 BW | ∆3-1 BW | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Model 1 | Model 2 | Model 3 | ||||||
β | 95% CI | R | β | 95% CI | R | β | 95% CI | R | |
∆2-1 BW | 0.81 | 0.65–0.96 | 0.000 | 0.80 | 0.38–1.21 | 0.000 | 0.70 | 0.22–1.18 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabłonowska-Lietz, B.; Nowicka, G.; Włodarczyk, M.; Rejowski, S.; Stasiowska, M.; Wrzosek, M. Initial Weight Loss, Anthropometric Parameters, and Proinflammatory Transcript Levels in Patients with Class I Obesity. Biomedicines 2023, 11, 2304. https://doi.org/10.3390/biomedicines11082304
Jabłonowska-Lietz B, Nowicka G, Włodarczyk M, Rejowski S, Stasiowska M, Wrzosek M. Initial Weight Loss, Anthropometric Parameters, and Proinflammatory Transcript Levels in Patients with Class I Obesity. Biomedicines. 2023; 11(8):2304. https://doi.org/10.3390/biomedicines11082304
Chicago/Turabian StyleJabłonowska-Lietz, Beata, Grażyna Nowicka, Marta Włodarczyk, Sławomir Rejowski, Maria Stasiowska, and Małgorzata Wrzosek. 2023. "Initial Weight Loss, Anthropometric Parameters, and Proinflammatory Transcript Levels in Patients with Class I Obesity" Biomedicines 11, no. 8: 2304. https://doi.org/10.3390/biomedicines11082304
APA StyleJabłonowska-Lietz, B., Nowicka, G., Włodarczyk, M., Rejowski, S., Stasiowska, M., & Wrzosek, M. (2023). Initial Weight Loss, Anthropometric Parameters, and Proinflammatory Transcript Levels in Patients with Class I Obesity. Biomedicines, 11(8), 2304. https://doi.org/10.3390/biomedicines11082304