Uncovering the Role of Epstein–Barr Virus Infection Markers for Remission in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Samples
2.3. EBV Serological Testing
2.4. EBV DNA Detection
2.5. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics of RA Patients
3.2. EBV Infection Status during the 6 Month Follow-Up
3.3. Clinical, Laboratory, and Therapeutical Characteristics and Their Changes during the 6 Month Follow-Up
3.4. Prediction of RA Remission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA J. Am. Med. Assoc. 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Kudaeva, F.M.; Speechley, M.R.; Pope, J.E. A Systematic Review of Viral Exposures as a Risk for Rheumatoid Arthritis. Semin. Arthritis Rheum. 2018, 48, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Leirisalo-Repo, M. Early Arthritis and Infection. Curr. Opin. Rheumatol. 2005, 17, 433–439. [Google Scholar] [CrossRef]
- Hjalgrim, H.; Friborg, J.; Melbye, M. The Epidemiology of EBV and Its Association with Malignant Disease. In Human. Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Cambridge University Press: Cambridge, UK, 2007; pp. 929–959. [Google Scholar]
- Sternbæk, L.; Draborg, A.H.; Østerlund, M.T.; Iversen, L.V.; Troelsen, L.; Theander, E.; Nielsen, C.T.; Jacobsen, S.; Houen, G. Increased Antibody Levels to Stage-Specific Epstein–Barr Virus Antigens in Systemic Autoimmune Diseases Reveal a Common Pathology. Scand. J. Clin. Lab. Investig. 2019, 79, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Thorley-Lawson, D. Epstein-Barr Virus Exploiting the Immune System. Nat. Rev. Immunol. 2001, 1, 75–82. [Google Scholar] [CrossRef]
- Gulley, M.L. Review Molecular Diagnosis of Epstein-Barr Virus-Related Diseases. J. Mol. Diagn. 2001, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lossius, A.; Johansen, J.N.; Torkildsen, Ø.; Vartdal, F.; Holmoy, T. Epstein-Barr Virus in Systemic Lupus Erythematosus, Rheumatoid Arthritis and Multiple Sclerosis-Association and Causation. Viruses 2012, 4, 3701–3730. [Google Scholar] [CrossRef] [PubMed]
- Croia, C.; Serafini, B.; Bombardieri, M.; Kelly, S.; Humby, F.; Severa, M.; Rizzo, F.; Coccia, E.M.; Migliorini, P.; Aloisi, F.; et al. Epstein-Barr Virus Persistence and Infection of Autoreactive Plasma Cells in Synovial Lymphoid Structures in Rheumatoid Arthritis. Ann. Rheum. Dis. 2013, 72, 1559–1568. [Google Scholar] [CrossRef]
- Toussirot, E.; Wendling, D.; Tiberghien, P.; Luka, J.; Roudier, J. Decreased T Cell Precursor Frequencies to Epstein-Barr Virus Glycoprotein Gp110 in Peripheral Blood Correlate with Disease Activity and Severity in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2000, 59, 533–538. [Google Scholar] [CrossRef]
- Toussirot, É.; Roudier, J. Epstein-Barr Virus in Autoimmune Diseases. Best. Pract. Res. Clin. Rheumatol. 2008, 22, 883–896. [Google Scholar] [CrossRef]
- Yang, L.; Hakoda, M.; Iwabuchi, K.; Takeda, T.; Koike, T.; Kamatani, N.; Takada, K. Rheumatoid Factors Induce Signaling from B Cells, Leading to Epstein-Barr Virus and B-Cell Activation. J. Virol. 2004, 78, 9918–9923. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.J.; Avenell, A.; Aucott, L.; Hanlon, P.; Vickers, M.A. Systematic Review and Meta-Analysis of the Sero-Epidemiological Association between Epstein-Barr Virus and Rheumatoid Arthritis. Arthritis Res. Ther. 2015, 17, 274. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, A.J.; Westergaard, M.C.W.; Draborg, A.H.; Holst, R.; Kyvik, K.O.; Jakobsen, M.A.; Junker, P.; Houen, G. Altered Antibody Response to Epstein-Barr Virus in Patients With Rheumatoid Arthritis and Healthy Subjects Predisposed to the Disease. A Twin Study. Front. Immunol. 2021, 12, 650713. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.H.; Draborg, A.H.; Sternbæk, L.; Troelsen, L.; Larsen, J.L.; Jacobsen, S.; Houen, G. EBNA1 IgM-Based Discrimination between Rheumatoid Arthritis Patients, Systemic Lupus Erythematosus Patients and Healthy Controls. Antibodies 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Balandraud, N.; Roudier, J. Epstein-Barr Virus and Rheumatoid Arthritis. Jt. Bone Spine 2018, 85, 165–170. [Google Scholar] [CrossRef]
- Banko, A.; Miljanovic, D.; Lazarevic, I.; Jeremic, I.; Despotovic, A.; Grk, M.; Cirkovic, A. New Evidence of Significant Association between EBV Presence and Lymphoproliferative Disorders Susceptibility in Patients with Rheumatoid Arthritis: A Systematic Review with Meta-Analysis. Viruses 2022, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Balandraud, N.; Guis, S.; Meynard, J.B.; Auger, I.; Roudier, J.; Roudier, C. Long-Term Treatment with Methotrexate or Tumor Necrosis Factor α Inhibitors Does Not Increase Epstein-Barr Virus Load in Patients with Rheumatoid Arthritis. Arthritis Care Res. 2007, 57, 762–767. [Google Scholar] [CrossRef]
- Fujieda, M.; Tsuruga, K.; Sato, T.; Kikuchi, H.; Tamaki, W.; Ishihara, M.; Yamamoto, M.; Oishi, T.; Tanaka, H.; Daibata, M. Monitoring of Epstein–Barr Virus Load and Killer T Cells in Patients with Juvenile Idiopathic Arthritis Treated with Methotrexate or Tocilizumab. Mod. Rheumatol. 2017, 27, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Banko, A.V.; Lazarevic, I.B.; Folic, M.M.; Djukic, V.B.; Cirkovic, A.M.; Karalic, D.Z.; Cupic, M.D.; Jovanovic, T.P. Characterization of the Variability of Epstein-Barr Virus Genes in Nasopharyngeal Biopsies: Potential Predictors for Carcinoma Progression. PLoS ONE 2016, 11, e0153498. [Google Scholar] [CrossRef]
- Lorenzetti, M.A.; Altcheh, J.; Moroni, S.; Moscatelli, G.; Chabay, P.A.; Preciado, M.V. EBNA1 Sequences in Argentinean Pediatric Acute and Latent Epstein-Barr Virus Infection Reflect Circulation of Novel South American Variants. J. Med. Virol. 2010, 82, 1730–1738. [Google Scholar] [CrossRef]
- Balandraud, N.; Texier, G.; Massy, E.; Muis-Pistor, O.; Martin, M.; Auger, I.; Guzian, M.C.; Guis, S.; Pham, T.; Roudier, J. Long Term Treatment with Abatacept or Tocilizumab Does Not Increase Epstein-Barr Virus Load in Patients with Rheumatoid Arthritis—A Three Years Retrospective Study. PLoS ONE 2017, 12, e0171623. [Google Scholar] [CrossRef] [PubMed]
- Miceli-Richard, C.; Gestermann, N.; Amiel, C.; Sellam, J.; Ittah, M.; Pavy, S.; Urrutia, A.; Girauld, I.; Carcelain, G.; Venet, A.; et al. Effect of Methotrexate and Anti-TNF on Epstein-Barr Virus T-Cell Response and Viral Load in Patients with Rheumatoid Arthritis or Spondylarthropathies. Arthritis Res. Ther. 2009, 11, R77. [Google Scholar] [CrossRef] [PubMed]
- Valleala, H.; Kauppi, M.J.; Kouri, V.P.; Korpela, M. Epstein-Barr Virus in Peripheral Blood Is Associated with Response to Rituximab Therapy in Rheumatoid Arthritis Patients. Clin. Rheumatol. 2015, 34, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.A.; Thompson, A.; Gandhi, K.K.; Hochberg, M.C.; Suissa, S. Incidence of Malignancy in Adult Patients with Rheumatoid Arthritis: A Meta-Analysis. Arthritis Res. Ther. 2015, 17, 212. [Google Scholar] [CrossRef]
- Tokuhira, M.; Saito, S.; Suzuki, K.; Higashi, M.; Momose, S.; Shimizu, T.; Mori, T.; Kimura, Y.; Amano, K.; Okamoto, S.; et al. Clinicopathological Features of Clinical Methotrexate-Related Lymphoproliferative Disorders. Leuk. Lymphoma 2019, 60, 2508–2515. [Google Scholar] [CrossRef]
- Fechtner, S.; Berens, H.; Bemis, E.; Johnson, R.L.; Guthridge, C.J.; Carlson, N.E.; Demoruelle, M.K.; Harley, J.B.; Edison, J.D.; Norris, J.A.; et al. Antibody Responses to Epstein-Barr Virus in the Preclinical Period of Rheumatoid Arthritis Suggest the Presence of Increased Viral Reactivation Cycles. Arthritis Rheumatol. 2022, 74, 597–603. [Google Scholar] [CrossRef]
- De Paschale, M. Serological Diagnosis of Epstein-Barr Virus Infection: Problems and Solutions. World J. Virol. 2012, 1, 31–43. [Google Scholar] [CrossRef]
- Erre, G.L.; Mameli, G.; Cossu, D.; Muzzeddu, B.; Piras, C.; Paccagnini, D.; Passiu, G.; Sechi, L.A. Increased Epstein-Barr Virus DNA Load and Antibodies against EBNA1 and EA in Sardinian Patients with Rheumatoid Arthritis. Viral Immunol. 2015, 28, 385–390. [Google Scholar] [CrossRef]
- Westergaard, M.W.; Draborg, A.H.; Troelsen, L.; Jacobsen, S.; Houen, G.; Pan, H.F. Isotypes of Epstein-Barr Virus Antibodies in Rheumatoid Arthritis: Association with Rheumatoid Factors and Citrulline-Dependent Antibodies. Biomed. Res. Int. 2015, 2015, 472174. [Google Scholar] [CrossRef]
- Alspaugh, M.A.; Jensen, F.C.; Rabin, H.; Tan, H.E.M. Induction of Nuclear Antigen Reactive with Antibody in Rheumatoid Arthritis *. J. Exp. Med. 1978, 147, 1018–1027. [Google Scholar] [CrossRef]
- Cornillet, M.; Verrouil, E.; Cantagrel, A.; Serre, G.; Nogueira, L. In ACPA-Positive RA Patients, Antibodies to EBNA35-58Cit, a Citrullinated Peptide from the Epstein–Barr Nuclear Antigen-1, Strongly Cross-React with the Peptide Β60-74Cit Which Bears the Immunodominant Epitope of Citrullinated Fibrin. Immunol. Res. 2015, 61, 117–125. [Google Scholar] [CrossRef]
- Jørgensen, K.T.; Wiik, A.; Pedersen, M.; Hedegaard, C.J.; Vestergaard, B.F.; Gislefoss, R.E.; Kvien, T.K.; Wohlfahrt, J.; Bendtzen, K.; Frisch, M. Cytokines, Autoantibodies and Viral Antibodies in Premorbid and Postdiagnostic Sera from Patients with Rheumatoid Arthritis: Case-Control Study Nested in a Cohort of Norwegian Blood Donors. Ann. Rheum. Dis. 2008, 67, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.L.; Chibnik, L.B.; Karlson, E.W.; Costenbader, K.H. Epstein-Barr Virus Serologic Abnormalities and Risk of Rheumatoid Arthritis among Women. Autoimmunity 2012, 45, 161–168. [Google Scholar] [CrossRef]
- Besson, C.; Amiel, C.; Le-Pendeven, C.; Brice, P.; Fermé, C.; Carde, P.; Hermine, O.; Raphael, M.; Abel, L.; Nicolas, J.C. Positive Correlation between Epstein-Barr Virus Viral Load and Anti-Viral Capsid Immunoglobulin G Titers Determined for Hodgkin’s Lymphoma Patients and Their Relatives. J. Clin. Microbiol. 2006, 44, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Balandraud, N.; Meynard, J.B.; Auger, I.; Sovran, H.; Mugnier, B.; Reviron, D.; Roudier, J.; Roudier, C. Epstein-Barr Virus Load in the Peripheral Blood of Patients with Rheumatoid Arthritis: Accurate Quantification Using Real-Time Polymerase Chain Reaction. Arthritis Rheum. 2003, 48, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Mckeown, E.; Pope, J.E.; Leaf, S. Epstein-Barr Virus (EBV) Prevalence and the Risk of Reactivation in Patients with Inflammatory Arthritis Using Anti-TNF Agents and in Those Who Are Biologic Naive. Open Rheumatol. J. 2009, 3, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, S.; Kusunoki, N.; Takamatsu, R.; Takahashi, H.; Tsuchiya, K.; Kawai, S.; Nanki, T. Epstein-Barr Virus Infection and Variants of Epstein-Barr Nuclear Antigen-1 in Synovial Tissues of Rheumatoid Arthritis. PLoS ONE 2018, 13, e0208957. [Google Scholar] [CrossRef]
- Blaschke, S.; Schwarz, G.; Moneke, D.; Binder, L.; Müller, G.; Reuss-Borst, M. Epstein-Barr Virus Infection in Peripheral Blood Mononuclear Cells, Synovial Fluid Cells, and Synovial Membranes of Patients with Rheumatoid Arthritis—PubMed. J. Rheumatol. 2000, 27, 866–873. [Google Scholar]
- Smatti, M.K.; Al-Sadeq, D.W.; Ali, N.H.; Pintus, G.; Abou-Saleh, H.; Nasrallah, G.K. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene among Healthy Population: An Update. Front. Oncol. 2018, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Kuusela, E.; Kouri, V.P.; Olkkonen, J.; Koivuniemi, R.; Äyräväinen, L.; Rajamäki, K.; Valleala, H.; Nordström, D.; Leirisalo-Repo, M.; Ainola, M.; et al. Serum Epstein-Barr Virus DNA, Detected by Droplet Digital PCR, Correlates with Disease Activity in Patients with Rheumatoid Arthritis Serum EBV DNA in RA Patients/E. Kuusela et Al. Clin. Exp. Rheumatol. 2018, 36, 778–784. [Google Scholar] [PubMed]
Characteristic | Total | Subgroups | p * | |
---|---|---|---|---|
n = 133 | RA-A n = 80 | RA-B n = 53 | ||
Age (years), mean ± sd | 58.86 ± 11.78 | 59.45 ± 12.73 | 57.96 ± 10.21 | 0.478 § |
Gender, n (%) | 0.769 € | |||
Male | 37 (27.8) | 23 (28.8) | 14 (26.4) | |
Female | 96 (72.2) | 57 (71.3) | 39 (73.6) | |
BMI, mean ± sd | 25.21 ± 4.32 | 25.34 ± 4.34 | 25.03 ± 4.34 | 0.684 § |
Educational level, n (%) | 0.058 € | |||
Primary | 25 (18.8) | 14 (17.5) | 11 (20.8) | |
Secondary | 78 (58.6) | 53 (66.3) | 25 (47.2) | |
Tertiary or higher | 30 (22.6) | 13 (16.3) | 17 (32.1) | |
Smoking status, n (%) | 0.002 € | |||
Smoker | 70 (52.6) | 51 (63.8) | 19 (35.8) | |
Non-smoker | 63 (47.4) | 29 (36.3) | 34 (64.2) | |
Smoking duration (years), med (min-max) | 30 (1–60) | 30 (2–60) | 30 (1–53) | 0.313 ¥ |
RA | ||||||
---|---|---|---|---|---|---|
Anti-EBV Abs | Seroprevalence | Titer | ||||
Time | Baseline | 6 Month Follow-Up | p * | Baseline | 6 Month Follow-Up | p * |
anti-EBNA-1 IgG | 95 (95.0) | 96 (96.0) | 1.000 | 149 (0–200) | 161 (0–200) | 0.310 |
anti-VCA IgG | 99 (99.0) | 99 (99.0) | 1.000 | 184 (0–200) | 189 (0–200) | 0.083 |
anti-VCA IgM | 17 (17.0) | 1 (1.0) | 0.004 | 0 (0–5.57) | 0 (0–2.55) | 0.006 |
anti-EA(D) IgG | 21 (21.0) | 31 (31.0) | 0.076 | 0 (0–200) | 0 (0–200) | 0.027 |
anti-EA(D) IgM | 17 (17.0) | 7 (7.0) | 0.031 | 0 (0–7.30) | 0 (0–3.51) | 0.006 |
RA-A | ||||||
anti-EBV Abs | Seroprevalence | Titer | ||||
Time | Baseline | 6 Month Follow-up | p * | Baseline | 6 Month Follow-up | p * |
anti-EBNA-1 IgG | 62 (96.9) | 62 (95.3) | 1.000 | 172.5 (0–200) | 173 (0–200) | 0.943 |
anti-VCA IgG | 63 (98.4) | 63 (98.4) | 1.000 | 194.5 (0–200) | 189 (0–200) | 0.624 |
anti-VCA IgM | 12 (18.8) | 3 (4.7) | 0.022 | 0 (0–4.45) | 0 (0–2.55) | 0.026 |
anti-EA(D) IgG | 14 (21.9) | 16 (25.0) | 0.804 | 0 (0–200) | 0 (0–200) | 0.527 |
anti-EA(D) IgM | 14 (21.9) | 5 (7.8) | 0.022 | 0 (0–2.83) | 0 (0–3.51) | 0.006 |
RA-B | ||||||
anti-EBV Abs | Seroprevalence | Titer | ||||
Time | Baseline | 6 Month Follow-up | p * | Baseline | 6 Month Follow-up | p * |
anti-EBNA-1 IgG | 33 (91.7) | 34 (94.4) | 1.000 | 124 (0–200) | 127.5 (0–200) | 0.112 |
anti-VCA IgG | 36 (100.0) | 36 (100.0) | NA | 160 (18–200) | 189 (90–200) | 0.006 |
anti-VCA IgM | 5 (13.9) | 1 (2.8) | 0.219 | 0 (0–5.57) | 0 (0–1.48) | 0.075 |
anti-EA(D) IgG | 7 (19.4) | 15 (41.7) | 0.021 | 0 (0–175) | 0 (0–195) | 0.006 |
anti-EA(D) IgM | 3 (8.3) | 2 (5.6) | 1.000 | 0 (0–7.30) | 0 (0–1.93) | 0.500 |
Characteristic | All RA Patients | p * | RA-A Patients | p * | RA-B Patients | p * | |||
---|---|---|---|---|---|---|---|---|---|
Baseline n = 133 | 6 Months after n = 100 | Baseline n = 80 | 6 Months after n = 64 | Baseline n = 53 | 6 Months after n = 36 | ||||
Disease Activity | |||||||||
Total number of painful joints, med (min-max) | 11 (0–33) | 3 (0–20) | <0.001 £ | 10 (0–33) | 2 (0–8) | <0.001 £ | 14 (0–31) | 5 (0–20) | <0.001 £ |
Total number of swollen joints, med (min-max) | 7 (0–32) | 1 (0–15) | <0.001 £ | 6 (0–32) | 2 (0–8) | <0.001 £ | 9 (0–30) | 1 (0–15) | <0.001 £ |
Total number of painful and swollen joints, med (min-max) | 19 (0–65) | 4 (0–35) | <0.001 £ | 16 (0–65) | 1 (0–10) | <0.001 £ | 24 (0–61) | 6.5 (0–35) | <0.001 £ |
Tenosynovitis, n (%) | 45 (33.8) | 18 (17.6) | <0.001 ¥ | 26 (43.3) | 10 (16.7) | 0.002 ¥ | 19 (45.2) | 8 (19.0) | <0.001 ¥ |
Fatigue, n (%) | 77 (57.9) | 43 (41.3) | <0.001 ¥ | 46 (73.0) | 26 (41.3) | 0.001 ¥ | 31 (75.6) | 17 (41.5) | <0.001 ¥ |
Morning stiffness, n (%) | 99 (74.4) | 66 (63.5) | <0.001 ¥ | 60 (95.2) | 43 (68.3) | <0.001 ¥ | 39 (95.1) | 23 (56.1) | <0.001 ¥ |
Morning stiffness duration (min), med (min-max) | 60 (5–480) | 30 (5–240) | <0.001 | 60 (5–320) | 30 (5–240) | <0.001 £ | 120 (15–480) | 30 (10–240) | 0.001 £ |
PtGA = VAS patient, med (min-max) | 60 (10–100) | 20 (0–70) | <0.001 £ | 60 (10–100) | 20 (0–70) | <0.001 £ | 70 (30–100) | 30 (0–70) | <0.001 £ |
PrGA = VAS physician, med (min-max) | 50 (10–90) | 10 (0–60) | <0.001 £ | 50 (10–90) | 10 (0–50) | <0.001 £ | 50 (10–90) | 10 (0–60) | <0.001 £ |
VAS pain, med (min-max) | 60 (10–100) | 10 (0–70) | <0.001 £ | 60 (10–100) | 10 (0–60) | <0.001 £ | 60 (30–90) | 10 (0–70) | <0.001 £ |
DAS8-ESR, med (min-max) | 5.46 (1.53–8.04) | 3.19 (0.90–7.70) | <0.001 £ | 5.12 (1.53–8.04) | 3.28 (0.90–5.76) | <0.001 £ | 5.63 (5.10–6.63) | 2.99 (1.19–7.70) | <0.001 £ |
DAS28-CRP, med (min-max) | 4.89 (2.01–7.80) | 2.70 (0.10–8.00) | <0.001 £ | 4.59 (2.01–7.80) | 2.77 (0.10–5.53) | <0.001 £ | 5.09 (2.13–6.46) | 2.50 (0.30–8.00) | <0.001 £ |
SDAI, med (min-max) | 16.0 (0.0–63.0) | 4.5 (0.0–31.6) | <0.001 £ | 12.30 (0–63) | 4.5 (0–31.6) | <0.001 £ | 22.80 (6–62) | 4.44 (0.00–27.10) | <0.001 £ |
CDAI, med (min-max) | 18 (1–40) | 4 (0–30) | <0.001 £ | 12.00 (1.0–26.0) | 3 (0–30) | <0.001 £ | 22 (7–40) | 6 (0–26) | <0.001 £ |
Inflammatory markers | |||||||||
NLR, med (min-max) | 2.57 (0.55–10.00) | 2.40 (0.09–7.17) | 0.002 £ | 2.61 (0.68–6.46) | 2.47 (1.00–6.98) | <0.001 £ | 2.38 (0.55–10.00) | 2.09 (0.09–7.17) | 0.002 £ |
ESR (mm/h), med (min-max) | 35.0 (6.0–120.0) | 15.5 (2.0–80.0) | <0.001 £ | 37.0 (6.0–100.0) | 15.0 (2.0–75.0) | <0.001 £ | 34.0 (10.0–120.0) | 16.0 (3.0–80.0) | <0.001 £ |
CRP (mg/L), med (min-max) | 15.0 (0.0–152.4) | 3.25 (0.0–631.0) | <0.001 £ | 12.80 (0.0–84.1) | 3.0 (0.1–63.1) | <0.001 £ | 19.3 (1.7–152.4) | 4.0 (0.0–36.9) | <0.001 £ |
Immunology parameters | |||||||||
ANA Abs titer, med (min-max) | 40.0 (0.0–640.0) | / | NA | 20.0 (0.0–640.0) | / | NA | 40 (0–640) | / | NA |
aCL IgG Abs positivity, n (%) | 43 (32.3) | / | NA | 23 (28.8) | / | NA | 20 (37.7) | / | NA |
aCL IgM Abs positivity, n (%) | 41 (30.8) | / | NA | 23 (28.8) | / | NA | 18 (34.0) | / | NA |
RF positivity (>20), n (%) | 124 (93.2) | / | NA | 74 (92.5) | / | NA | 50 (94.3) | / | NA |
ACPA Abs titer, med (min-max) | 320.0 (0.0–500.0) | / | NA | 284.5 (3.5–500.0) | / | NA | 350 (0–500) | / | NA |
Quality of life | |||||||||
RAID, med (min-max) | 5 (1–18) | 3 (0–11) | <0.001 £ | 5 (1–16) | 3 (0–11) | <0.001 £ | 5 (1–18) | 3 (0–7) | <0.001 £ |
RAQoL, med (min-max) | 12 (1–28) | 6 (0–28) | <0.001 £ | 10.25 (1.0–28.0) | 5.0 (0.0–27.0) | <0.001 £ | 13 (1–27) | 7 (0–28) | 0.010 £ |
HAQ, med (min-max) | 1.125 (0.125–2.625) | 0.650 (0.0–2.650) | <0.001 £ | 0.937 (0.125–2.125) | 0.500 (0.000–2.375) | <0.001 £ | 1.250 (0.280–2.625) | 0.750 (0.000–2.650) | <0.001 £ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banko, A.; Cirkovic, A.; Jeremic, I.; Basaric, M.; Grk, M.; Miskovic, R.; Lazarevic, I.; Miljanovic, D. Uncovering the Role of Epstein–Barr Virus Infection Markers for Remission in Rheumatoid Arthritis. Biomedicines 2023, 11, 2375. https://doi.org/10.3390/biomedicines11092375
Banko A, Cirkovic A, Jeremic I, Basaric M, Grk M, Miskovic R, Lazarevic I, Miljanovic D. Uncovering the Role of Epstein–Barr Virus Infection Markers for Remission in Rheumatoid Arthritis. Biomedicines. 2023; 11(9):2375. https://doi.org/10.3390/biomedicines11092375
Chicago/Turabian StyleBanko, Ana, Andja Cirkovic, Ivica Jeremic, Milica Basaric, Milka Grk, Rada Miskovic, Ivana Lazarevic, and Danijela Miljanovic. 2023. "Uncovering the Role of Epstein–Barr Virus Infection Markers for Remission in Rheumatoid Arthritis" Biomedicines 11, no. 9: 2375. https://doi.org/10.3390/biomedicines11092375
APA StyleBanko, A., Cirkovic, A., Jeremic, I., Basaric, M., Grk, M., Miskovic, R., Lazarevic, I., & Miljanovic, D. (2023). Uncovering the Role of Epstein–Barr Virus Infection Markers for Remission in Rheumatoid Arthritis. Biomedicines, 11(9), 2375. https://doi.org/10.3390/biomedicines11092375