Acoustic Voice Analysis as a Useful Tool to Discriminate Different ALS Phenotypes
Abstract
:1. Background
1.1. Vowel Space Area
1.2. Alternating Motion Rate (AMR) and Sequential Motion Rate (SMR)
2. Aim of the Study
3. Materials and Methods
3.1. Subjects and Inclusion/Exclusion Criteria
3.2. Clinical Evaluation
3.3. Voice Analysis and Phono-Articulatory Evaluation
3.4. Voice Analysis
3.5. Phono-Articulatory Evaluation
3.6. Statistical Analysis
4. Results
4.1. Study Population
4.2. Voice Parameter Differences between ALS Patients and HCs
4.3. Voice Parameters and Prevalent UMN or LMN Impairment
4.4. Voice Parameters and Site of Onset
4.5. Voice Parameters and Clinical Evaluations
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet 2011, 377, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J. Neurol. Sci. 1994, 124, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L.; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Hannaford, A.; Pavey, N.; van den Bos, M.; Geevasinga, N.; Menon, P.; Shefner, J.M.; Kiernan, M.C.; Vucic, S. Diagnostic Utility of Gold Coast Criteria in Amyotrophic Lateral Sclerosis. Ann. Neurol. 2021, 89, 979–986. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, M.; Dengler, R.; Eisen, A.; England, J.D.; Kaji, R.; Kimura, J.; Mills, K.; Mitsumoto, H.; Nodera, H.; Shefner, J.; et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 2008, 119, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Yunusova, Y.; Plowman, E.K.; Green, J.R.; Barnett, C.; Bede, P. Clinical Measures of Bulbar Dysfunction in ALS. Front. Neurol. 2019, 10, 106. [Google Scholar] [CrossRef]
- Hanson, E.; Yorkston, K.; Britton, D. Dysarthria in Amyotrophic Lateral Sclerosis: A systematic review of characteristics, speech treatment, and augmentative and alternative communication. J. Med. Speech-Lang. Pathol. 2011, 19, 12–30. [Google Scholar]
- Tomik, B.; Guiloff, R.J. Dysarthria in amyotrophic lateral sclerosis: A review. Amyotroph. Lateral Scler. 2010, 11, 4–15. [Google Scholar] [CrossRef]
- Darley, F.L.; Aronson, A.E.; Brown, J.R. Clusters of deviant speech dimensions in the dysarthrias. J. Speech Hear. Res. 1969, 12, 462–496. [Google Scholar] [CrossRef]
- Darley, F.L.; Aronson, A.E.; Brown, J.R. Differential diagnostic patterns of dysarthria. J. Speech Hear. Res. 1969, 12, 246–269. [Google Scholar] [CrossRef]
- Duffy, J.R. Motor Speech Disorders: Substrates, Differential Diagnosis, and Management, 4th ed.; Elsevier: St. Louis, MO, USA, 2020. [Google Scholar]
- Vizza, P.; Tradigo, G.; Mirarchi, D.; Bossio, R.B.; Lombardo, N.; Arabia, G.; Quattrone, A.; Veltri, P. Methodologies of speech analysis for neurodegenerative diseases evaluation. Int. J. Med. Inf. 2019, 122, 45–54. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, M.J.; ten Bosch, L.; Kuik, D.J.; Quené, H.; Langendijk, J.A.; Leemans, C.R.; Verdonck-de Leeuw, I.M. Objective acoustic-phonetic speech analysis in patients treated for oral or oropharyngeal cancer. Folia Phoniatr. Logop. 2009, 61, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Smiljanić, R.; Bradlow, A.R. Speaking and Hearing Clearly: Talker and Listener Factors in Speaking Style Changes. Lang. Linguist. Compass 2009, 3, 236–264. [Google Scholar] [CrossRef]
- Neel, A.T. Vowel space characteristics and vowel identification accuracy. J. Speech Lang. Hear. Res. 2008, 51, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, S.; Berisha, V.; Utianski, R.L.; Liss, J.M.; Spanias, A. Automatic assessment of vowel space area. J. Acoust. Soc. Am. 2013, 134, EL477–EL483. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-I.; Min, K.; Sohn, Y.H.; Cho, S.-R. Acoustic characteristics of vowel sounds in patients with Parkinson disease. NeuroRehabilitation 2013, 32, 649–654. [Google Scholar] [CrossRef]
- Sapir, S.; Spielman, J.L.; Ramig, L.O.; Story, B.H.; Fox, C. Effects of intensive voice treatment (the Lee Silverman Voice Treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: Acoustic and perceptual findings. J. Speech Lang. Hear. Res. 2007, 50, 899–912. [Google Scholar] [CrossRef]
- Kent, R.D.; Vorperian, H.K.; Kent, J.F.; Duffy, J.R. Voice dysfunction in dysarthria: Application of the Multi-Dimensional Voice ProgramTM. J. Commun. Disord. 2003, 36, 281–306. [Google Scholar] [CrossRef]
- Goberman, A.M.; Elmer, L.W. Acoustic analysis of clear versus conversational speech in individuals with Parkinson disease. J. Commun. Disord. 2005, 38, 215–230. [Google Scholar] [CrossRef]
- Liu, H.-M.; Tsao, F.-M.; Kuhl, P.K. The effect of reduced vowel working space on speech intelligibility in Mandarin-speaking young adults with cerebral palsy. J. Acoust. Soc. Am. 2005, 117, 3879–3889. [Google Scholar] [CrossRef]
- Lansford, K.L.; Liss, J.M. Vowel Acoustics in Dysarthria: Mapping to Perception. J. Speech Lang. Hear. Res. 2014, 57, 68–80. [Google Scholar] [CrossRef]
- Turner, G.S.; Tjaden, K.; Weismer, G. The influence of speaking rate on vowel space and speech intelligibility for individuals with amyotrophic lateral sclerosis. J. Speech Hear. Res. 1995, 38, 1001–1013. [Google Scholar] [CrossRef]
- Weismer, G.; Jeng, J.Y.; Laures, J.S.; Kent, R.D.; Kent, J.F. Acoustic and intelligibility characteristics of sentence production in neurogenic speech disorders. Folia Phoniatr. Logop. 2001, 53, 1–18. [Google Scholar] [CrossRef]
- Turner, G.S.; Tjaden, K. Acoustic differences between content and function words in amyotrophic lateral sclerosis. J. Speech Lang. Hear. Res. 2000, 43, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.A.; Goberman, A.M. Articulatory-acoustic vowel space: Application to clear speech in individuals with Parkinson’s disease. J. Commun. Disord. 2014, 51, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.E.; Cotton, S.; Perry, A. Alternating and sequential motion rates in older adults. Int. J. Lang. Commun. Disord. 2013, 48, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Sawada, N.; Ekuni, D.; Morita, M. Oral diadochokinesis is related to decline in swallowing function among community-dwelling Japanese elderly: A cross-sectional study. Aging Clin. Exp. Res. 2021, 33, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Nishio, M.; Niimi, S. Comparison of speaking rate, articulation rate and alternating motion rate in dysarthric speakers. Folia Phoniatr. Logop. 2006, 58, 114–131. [Google Scholar] [CrossRef]
- Ziegler, W.; Wessel, K. Speech timing in ataxic disorders: Sentence production and rapid repetitive articulation. Neurology 1996, 47, 208–214. [Google Scholar] [CrossRef]
- Ogar, J.; Willock, S.; Baldo, J.; Wilkins, D.; Ludy, C.; Dronkers, N. Clinical and anatomical correlates of apraxia of speech. Brain Lang. 2006, 97, 343–350. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Kent, R.D.; Duffy, J.R.; Thomas, J.E.; Weismer, G. Alternating motion rate as an index of speech motor disorder in traumatic brain injury. Clin. Linguist. Phon. 2004, 18, 57–84. [Google Scholar] [CrossRef]
- Dworkin, J.P.; Aronson, A.E. Tongue strength and alternate motion rates in normal and dysarthric subjects. J. Commun. Disord. 1986, 19, 115–132. [Google Scholar] [CrossRef]
- Tena, A.; Claria, F.; Solsona, F.; Meister, E.; Povedano, M. Detection of Bulbar Involvement in Patients With Amyotrophic Lateral Sclerosis by Machine Learning Voice Analysis: Diagnostic Decision Support Development Study. JMIR Med. Inform. 2021, 9, e21331. [Google Scholar] [CrossRef]
- Tena, A.; Clarià, F.; Solsona, F.; Povedano, M. Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features. Sensors 2022, 22, 1137. [Google Scholar] [CrossRef]
- Tena, A.; Clarià, F.; Solsona, F.; Povedano, M. Voiceprint and machine learning models for early detection of bulbar dysfunction in ALS. Comput. Methods Programs Biomed. 2023, 229, 107309. [Google Scholar] [CrossRef]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Quinn, C.; Edmundson, C.; Dahodwala, N.; Elman, L. Reliable and efficient scale to assess upper motor neuron disease burden in amyotrophic lateral sclerosis. Muscle Nerve 2020, 61, 508–511. [Google Scholar] [CrossRef]
- Distaso, E.; Milella, G.; Mezzapesa, D.M.; Introna, A.; D’Errico, E.; Fraddosio, A.; Zoccolella, S.; Dicuonzo, F.; Simone, I.L. Magnetic resonance metrics to evaluate the effect of therapy in amyotrophic lateral sclerosis: The experience with edaravone. J. Neurol. 2021, 268, 3307–3315. [Google Scholar] [CrossRef]
- O’Neil, K.H.; Purdy, M.; Falk, J.; Gallo, L. The Dysphagia Outcome and Severity Scale. Dysphagia 1999, 14, 139–145. [Google Scholar] [CrossRef]
- Fukada, J.; Kamakura, Y.; Kitaike, T.; Nojiri, M. Development of Dysphagia Risk Assessment Scale for Elderly Living at Home. Jpn. Soc. Nurs. Res. 2013, 25, 47–55. [Google Scholar]
- Cavallaro, G.; Pontrelli, M.; Sammali, M.; Nelson, E.; Quaranta, N.; Fiorella, M.L. Presbyphagia: The importance of an early diagnosis in the aging population. J. Gerontol. Geriatr. 2022, 70, 237–243. [Google Scholar] [CrossRef]
- Boersma, P.; Weenink, D. PRAAT: Doing Phonetics by Computer (Version 5.3.51); Phonetic Sciences, University of Amsterdam visiting: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Strong, M.J.; Abrahams, S.; Goldstein, L.H.; Woolley, S.; Mclaughlin, P.; Snowden, J.; Mioshi, E.; Roberts-South, A.; Benatar, M.; HortobáGyi, T.; et al. Amyotrophic lateral sclerosis—Frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Kühnlein, P.; Gdynia, H.-J.; Sperfeld, A.-D.; Lindner-Pfleghar, B.; Ludolph, A.C.; Prosiegel, M.; Riecker, A. Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat. Clin. Pract. Neurol. 2008, 4, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, T.; Ruottinen, H.; Puhto, R.; Helminen, M.; Palmio, J. Speech deterioration in amyotrophic lateral sclerosis (ALS) after manifestation of bulbar symptoms. Int. J. Lang. Commun. Disord. 2018, 53, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, R.; Bonfiglio, M. Acoustic analysis of voice in bulbar amyotrophic lateral sclerosis: A systematic review and meta-analysis of studies. Logoped. Phoniatr. Vocol. 2020, 45, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Mahesh, N.; Francis, N. Articulatory Working Space Area in Children with Cerebral Palsy. Int. J. Health Sci. Res. 2016, 6, 335–341. [Google Scholar]
- Rusz, J.; Cmejla, R.; Tykalova, T.; Ruzickova, H.; Klempir, J.; Majerova, V.; Picmausova, J.; Roth, J.; Ruzicka, E. Imprecise vowel articulation as a potential early marker of Parkinson’s disease: Effect of speaking task. J. Acoust. Soc. Am. 2013, 134, 2171–2181. [Google Scholar] [CrossRef]
- Sapir, S.; Ramig, L.O.; Spielman, J.L.; Fox, C. Formant centralization ratio: A proposal for a new acoustic measure of dysarthric speech. J. Speech Lang. Hear. Res. 2010, 53, 114–125. [Google Scholar] [CrossRef]
- Rong, P.; Green, J.R. Predicting Speech Intelligibility Based on Spatial Tongue-Jaw Coupling in Persons With Amyotrophic Lateral Sclerosis: The Impact of Tongue Weakness and Jaw Adaptation. J. Speech Lang. Hear. Res. 2019, 62, 3085–3103. [Google Scholar] [CrossRef]
- Eshghi, M.; Stipancic, K.L.; Mefferd, A.; Rong, P.; Berry, J.D.; Yunusova, Y.; Green, J.R. Assessing Oromotor Capacity in ALS: The Effect of a Fixed-Target Task on Lip Biomechanics. Front. Neurol. 2019, 10, 1288. [Google Scholar] [CrossRef]
- Rong, P.; Yunusova, Y.; Eshghi, M.; Rowe, H.P.; Green, J.R. A speech measure for early stratification of fast and slow progressors of bulbar amyotrophic lateral sclerosis: Lip movement jitter. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, M.; Yunusova, Y.; Connaghan, K.P.; Perry, B.J.; Maffei, M.F.; Berry, J.D.; Zinman, L.; Kalra, S.; Korngut, L.; Genge, A.; et al. Rate of speech decline in individuals with amyotrophic lateral sclerosis. Sci. Rep. 2022, 12, 15713. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.M.; Yunusova, Y.; Campbell, T.F.; Wang, J.; Berry, J.D.; Green, J.R. The diagnostic utility of patient-report and speech-language pathologists’ ratings for detecting the early onset of bulbar symptoms due to ALS. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Green, J.R.; Yunusova, Y.; Kuruvilla, M.S.; Wang, J.; Pattee, G.L.; Synhorst, L.; Zinman, L.; Berry, J.D. Bulbar and speech motor assessment in ALS: Challenges and future directions. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 494–500. [Google Scholar] [CrossRef]
- Makkonen, T.; Korpijaakko-Huuhka, A.-M.; Ruottinen, H.; Puhto, R.; Hollo, K.; Ylinen, A.; Palmio, J. Oral motor functions, speech and communication before a definitive diagnosis of amyotrophic lateral sclerosis. J. Commun. Disord. 2016, 61, 97–105. [Google Scholar] [CrossRef]
- Yunusova, Y.; Graham, N.L.; Shellikeri, S.; Phuong, K.; Kulkarni, M.; Rochon, E.; Tang-Wai, D.F.; Chow, T.W.; Black, S.E.; Zinman, L.H.; et al. Profiling Speech and Pausing in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). PLoS ONE 2016, 11, e0147573. [Google Scholar] [CrossRef]
- Pfohl, S.R.; Kim, R.B.; Coan, G.S.; Mitchell, C.S. Unraveling the Complexity of Amyotrophic Lateral Sclerosis Survival Prediction. Front. Neuroinformatics 2018, 12, 36. [Google Scholar] [CrossRef]
- Goldstein, L.H.; Abrahams, S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: Nature of impairment and implications for assessment. Lancet Neurol. 2013, 12, 368–380. [Google Scholar] [CrossRef]
- Neary, D.; Snowden, J.S.; Mann, D.M. Cognitive change in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). J. Neurol. Sci. 2000, 180, 15–20. [Google Scholar] [CrossRef]
- Ceslis, A.; Argall, R.; Henderson, R.D.; McCombe, P.A.; Robinson, G.A. The spectrum of language impairments in amyotrophic lateral sclerosis. Cortex 2020, 132, 349–360. [Google Scholar] [CrossRef]
Total ALS Patients = 36 | Median (IQR) or N. of Patients (%) | |
---|---|---|
Age (years) | 61 (56–71) | |
Sex | Female | 12 (33.3%) |
Male | 24 (66.7%) | |
Type of onset | Bulbar-onset | 8 (22.2%) |
Spinal-onset with bulbar symptoms | 21 (58.3%) | |
Spinal-onset without bulbar symptoms | 7 (19.4%) | |
Disease Duration (months) | 30 (10–82) | |
Prevalent UMN/LMN impairment | Prevalent UMN | 23 (63.9%) |
Prevalent LMN | 13 (36.1%) | |
ALSFRS-R | 34 (30–36) | |
ALSFRS-R bulbar sub score | 9 (8–11) | |
Penn UMN Scale | 13 (8–16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milella, G.; Sciancalepore, D.; Cavallaro, G.; Piccirilli, G.; Nanni, A.G.; Fraddosio, A.; D’Errico, E.; Paolicelli, D.; Fiorella, M.L.; Simone, I.L. Acoustic Voice Analysis as a Useful Tool to Discriminate Different ALS Phenotypes. Biomedicines 2023, 11, 2439. https://doi.org/10.3390/biomedicines11092439
Milella G, Sciancalepore D, Cavallaro G, Piccirilli G, Nanni AG, Fraddosio A, D’Errico E, Paolicelli D, Fiorella ML, Simone IL. Acoustic Voice Analysis as a Useful Tool to Discriminate Different ALS Phenotypes. Biomedicines. 2023; 11(9):2439. https://doi.org/10.3390/biomedicines11092439
Chicago/Turabian StyleMilella, Giammarco, Diletta Sciancalepore, Giada Cavallaro, Glauco Piccirilli, Alfredo Gabriele Nanni, Angela Fraddosio, Eustachio D’Errico, Damiano Paolicelli, Maria Luisa Fiorella, and Isabella Laura Simone. 2023. "Acoustic Voice Analysis as a Useful Tool to Discriminate Different ALS Phenotypes" Biomedicines 11, no. 9: 2439. https://doi.org/10.3390/biomedicines11092439
APA StyleMilella, G., Sciancalepore, D., Cavallaro, G., Piccirilli, G., Nanni, A. G., Fraddosio, A., D’Errico, E., Paolicelli, D., Fiorella, M. L., & Simone, I. L. (2023). Acoustic Voice Analysis as a Useful Tool to Discriminate Different ALS Phenotypes. Biomedicines, 11(9), 2439. https://doi.org/10.3390/biomedicines11092439