Antidiabetic Molecule Efficacy in Patients with Type 2 Diabetes Mellitus—A Real-Life Clinical Practice Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. BMI
4.2. Blood Pressure
4.3. Fasting Glycaemia
4.4. HbA1c
4.5. SGLT-2i, GLP-1 RAs and Metformin Comparison
4.6. Future Perspectives in Efficacy of Cardioprotective Molecules
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matheson, G.O.; Klügl, M.; Engebretsen, L.; Bendiksen, F.; Blair, S.N.; Börjesson, M.; Budget, R.; Derman, W.; Erdener, U.; Ioannidis, J.; et al. Prevention and management of non-communicable disease: The IOC consensus statement, Lausanne 2013. Sports Med. 2013, 43, 1075–1088. [Google Scholar] [CrossRef]
- Jakovljevic, M.; Cerda, A.A.; Liu, Y.; García, L.; Timofeyev, Y.; Krstic, K.; Fontanesi, J. Sustainability Challenge of Eastern Europe—Historical Legacy, Belt and Road Initiative, Population Aging and Migration. Sustainability 2021, 13, 11038. [Google Scholar] [CrossRef]
- Villén, N.; Guisado-Clavero, M.; Fernández-Bertolín, S.; Troncoso-Mariño, A.; Foguet-Boreu, Q.; Amado, E.; Pons-Vigués, M.; Roso-Llorach, A.; Violán, C. Multimorbidity patterns, polypharmacy and their association with liver and kidney abnormalities in people over 65 years of age: A longitudinal study. BMC Geriatr. 2020, 20, 206. [Google Scholar] [CrossRef]
- Papotti, B.; Marchi, C.; Adorni, M.P.; Potì, F. Drug-drug interactions in polypharmacy patients: The impact of renal impairment. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100020. [Google Scholar] [CrossRef]
- Diaconu, C.C.; Cozma, M.A.; Dobrică, E.C.; Gheorghe, G.; Jichitu, A.; Ionescu, V.A.; Nicolae, A.C.; Drăgoi, C.M.; Găman, M.A. Polypharmacy in the Management of Arterial Hypertension-Friend or Foe? Medicina 2021, 57, 1288. [Google Scholar] [CrossRef]
- Peron, E.P.; Ogbonna, K.C.; Donohoe, K.L. Antidiabetic medications and polypharmacy. Clin. Geriatr. Med. 2015, 31, 17–27. [Google Scholar] [CrossRef]
- Al-Musawe, L.; Martins, A.P.; Raposo, J.F.; Torre, C. The association between polypharmacy and adverse health consequences in elderly type 2 diabetes mellitus patients; a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2019, 155, 107804. [Google Scholar] [CrossRef] [PubMed]
- Herder, C.; Roden, M. A novel diabetes typology: Towards precision diabetology from pathogenesis to treatment. Diabetologia 2022, 65, 1770–1781. [Google Scholar] [CrossRef]
- Marx, N.; McGuire, D.K.; Perkovic, V.; Woerle, H.J.; Broedl, U.C.; von Eynatten, M.; George, J.T.; Rosenstock, J. Composite Primary End Points in Cardiovascular Outcomes Trials Involving Type 2 Diabetes Patients: Should Unstable Angina Be Included in the Primary End Point? Diabetes Care 2017, 40, 1144–1151. [Google Scholar] [CrossRef]
- Hupfeld, C.; Mudaliar, S. Navigating the “MACE” in Cardiovascular Outcomes Trials and decoding the relevance of Atherosclerotic Cardiovascular Disease benefits versus Heart Failure benefits. Diabetes Obes. Metab. 2019, 21, 1780–1789. [Google Scholar] [CrossRef]
- Blonde, L.; Khunti, K.; Harris, S.B.; Meizinger, C.; Skolnik, N.S. Interpretation and Impact of Real-World Clinical Data for the Practicing Clinician. Adv. Ther. 2018, 35, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Katkade, V.B.; Sanders, K.N.; Zou, K.H. Real world data: An opportunity to supplement existing evidence for the use of long-established medicines in health care decision making. J. Multidiscip. Healthc. 2018, 11, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Wilding, J.P.H.; Alam, U.; Barber, T.M.; Karalliedde, J.; Cuthbertson, D.J. The expanding role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection. Ann. Med. 2021, 53, 2072–2089. [Google Scholar] [CrossRef]
- Muscoli, S.; Barillà, F.; Tajmir, R.; Meloni, M.; Della Morte, D.; Bellia, A.; Di Daniele, N.; Lauro, D.; Andreadi, A. The New Role of SGLT2 Inhibitors in the Management of Heart Failure: Current Evidence and Future Perspective. Pharmaceutics 2022, 14, 1730. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, P.; Fu, L.; Sun, L.; Shen, W.; Wu, Q. Comparative Cardiovascular Outcomes of SGLT2 Inhibitors in Type 2 Diabetes Mellitus: A Network Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 802992. [Google Scholar] [CrossRef]
- Ni, L.; Yuan, C.; Chen, G.; Zhang, C.; Wu, X. SGLT2i: Beyond the glucose-lowering effect. Cardiovasc. Diabetol. 2020, 19, 98. [Google Scholar] [CrossRef] [PubMed]
- Caruso, I.; Cignarelli, A.; Sorice, G.P.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Cardiovascular and Renal Effectiveness of GLP-1 Receptor Agonists vs. Other Glucose-Lowering Drugs in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Real-World Studies. Metabolites 2022, 12, 183. [Google Scholar] [CrossRef]
- Sheahan, K.H.; Wahlberg, E.A.; Gilbert, M.P. An overview of GLP-1 agonists and recent cardiovascular outcomes trials. Postgrad. Med. J. 2020, 96, 156–161. [Google Scholar] [CrossRef]
- Andreasen, C.R.; Andersen, A.; Knop, F.K.; Vilsbøll, T. Understanding the place for GLP-1RA therapy: Translating guidelines for treatment of type 2 diabetes into everyday clinical practice and patient selection. Diabetes Obes. Metab. 2021, 23, 40–52. [Google Scholar] [CrossRef]
- Melo, M.; Gavina, C.; Silva-Nunes, J.; Andrade, L.; Carvalho, D. Heterogeneity amongst GLP-1 RA cardiovascular outcome trials results: Can definition of established cardiovascular disease be the missing link? Diabetol. Metab. Syndr. 2021, 13, 81. [Google Scholar] [CrossRef]
- Top, W.M.C.; Kooy, A.; Stehouwer, C.D.A. Metformin: A Narrative Review of Its Potential Benefits for Cardiovascular Disease, Cancer and Dementia. Pharmaceuticals 2022, 15, 312. [Google Scholar] [CrossRef] [PubMed]
- Jorsal, A.; Persson, F.; Bruun, J.M. Comments on the 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases. Eur. Heart J. 2020, 41, 328. [Google Scholar] [CrossRef] [PubMed]
- Harrington, J.L.; de Albuquerque Rocha, N.; Patel, K.V.; Verma, S.; McGuire, D.K. Should Metformin Remain First-Line Medical Therapy for Patients with Type 2 Diabetes Mellitus and Atherosclerotic Cardiovascular Disease? An Alternative Approach. Curr. Diabetes Rep. 2018, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Kheniser, K.G.; Kashyap, S.R.; Kasumov, T. A systematic review: The appraisal of the effects of metformin on lipoprotein modification and function. Obes. Sci. Pract. 2019, 5, 36–45. [Google Scholar] [CrossRef]
- Jenkins, A.J.; Welsh, P.; Petrie, J.R. Metformin, lipids and atherosclerosis prevention. Curr. Opin. Lipidol. 2018, 29, 346–353. [Google Scholar] [CrossRef]
- Petrie, J.R.; Rossing, P.R.; Campbell, I.W. Metformin and cardiorenal outcomes in diabetes: A reappraisal. Diabetes Obes. Metab. 2020, 22, 904–915. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Faggiano, F.; Maiorino, M.I.; Parrillo, M.; Pugliese, G.; Ruggeri, R.M.; Scarano, E.; Savastano, S.; Colao, A.; et al. Obesity in Prader-Willi syndrome: Physiopathological mechanisms, nutritional and pharmacological approaches. J. Endocrinol. Investig. 2021, 44, 2057–2070. [Google Scholar] [CrossRef]
- Ziyrek, M.; Kahraman, S.; Ozdemir, E.; Dogan, A. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Rev. Port. De Cardiol. 2019, 38, 419–423. [Google Scholar] [CrossRef]
- Greco, E.V.; Russo, G.; Giandalia, A.; Viazzi, F.; Pontremoli, R.; De Cosmo, S. GLP-1 Receptor Agonists and Kidney Protection. Medicina 2019, 55, 233. [Google Scholar] [CrossRef]
- Tofé, S.; Argüelles, I.; Mena, E.; Serra, G.; Codina, M.; Urgeles, J.R.; García, H.; Pereg, V. Real-world GLP-1 RA therapy in type 2 diabetes: A long-term effectiveness observational study. Endocrinol. Diabetes Metab. 2018, 2, e00051. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Khan, A.; Ross, H.M.; Parra, N.S.; Chen, S.L.; Chauhan, K.; Wang, M.; Yan, B.; Magagna, J.; Beiriger, J.; Shah, Y.; et al. Risk Prevention and Health Promotion for Non-Alcoholic Fatty Liver Diseases (NAFLD). Livers 2022, 2, 264–282. [Google Scholar] [CrossRef]
- Sawada, K.; Karashima, S.; Kometani, M.; Oka, R.; Takeda, Y.; Sawamura, T.; Fujimoto, A.; Demura, M.; Wakayama, A.; Usukura, M.; et al. Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr. J. 2018, 65, 461–467. [Google Scholar] [CrossRef]
- Rojano Toimil, A.; Ciudin, A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. J. Clin. Med. 2021, 10, 3955. [Google Scholar] [CrossRef]
- Hu, M.; Cai, X.; Yang, W.; Zhang, S.; Nie, L.; Ji, L. Effect of Hemoglobin A1c Reduction or Weight Reduction on Blood Pressure in Glucagon-Like Peptide-1 Receptor Agonist and Sodium-Glucose Cotransporter-2 Inhibitor Treatment in Type 2 Diabetes Mellitus: A Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e015323. [Google Scholar] [CrossRef]
- Benham, J.L.; Booth, J.E.; Sigal, R.J.; Daskalopoulou, S.S.; Leung, A.A.; Rabi, D.M. Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. Int. J. Cardiol. Heart Vasc. 2021, 33, 100725. [Google Scholar] [CrossRef]
- Palmiero, G.; Cesaro, A.; Vetrano, E.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Moscarella, E.; Gragnano, F.; Salvatore, T.; Rinaldi, L.; et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int. J. Mol. Sci. 2021, 22, 5863. [Google Scholar] [CrossRef]
- Malin, S.K.; Stewart, N.R. Metformin May Contribute to Inter-individual Variability for Glycemic Responses to Exercise. Front. Endocrinol. 2020, 11, 519. [Google Scholar] [CrossRef]
- Rosenstock, J.; Chuck, L.; González-Ortiz, M.; Merton, K.; Craig, J.; Capuano, G.; Qiu, R. Initial Combination Therapy With Canagliflozin Plus Metformin Versus Each Component as Monotherapy for Drug-Naïve Type 2 Diabetes. Diabetes Care 2016, 39, 353–362. [Google Scholar] [CrossRef]
- Brown, E.; Rajeev, S.P.; Cuthbertson, D.J.; Wilding, J.P.H. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes. Metab. 2019, 21, 9–18. [Google Scholar] [CrossRef]
- Singh, A.K.; Unnikrishnan, A.G.; Zargar, A.H.; Kumar, A.; Das, A.K.; Saboo, B.; Sinha, B.; Gangopadhyay, K.K.; Talwalkar, P.G.; Ghosal, S.; et al. Evidence-Based Consensus on Positioning of SGLT2i in Type 2 Diabetes Mellitus in Indians. Diabetes Ther. 2019, 10, 393–428. [Google Scholar] [CrossRef]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int. J. Environ. Res. Public Health 2019, 16, 2965. [Google Scholar] [CrossRef]
- Masson, W.; Lavalle-Cobo, A.; Nogueira, J.P. Effect of SGLT2-Inhibitors on Epicardial Adipose Tissue: A Meta-Analysis. Cells 2021, 10, 2150. [Google Scholar] [CrossRef]
- Milder, T.Y.; Stocker, S.L.; Abdel Shaheed, C.; McGrath-Cadell, L.; Samocha-Bonet, D.; Greenfield, J.R.; Day, R.O. Combination Therapy with an SGLT2 Inhibitor as Initial Treatment for Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 45. [Google Scholar] [CrossRef]
- Jingfan, Z.; Ling, L.; Cong, L.; Ping, L.; Yu, C. Efficacy and safety of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus with inadequate glycemic control on metformin: A meta-analysis. Arch. Endocrinol. Metab. 2019, 63, 478–486. [Google Scholar] [CrossRef]
- Khunti, K.; Charbonnel, B.; Cooper, A.; Gomes, M.B.; Ji, L.; Leigh, P.; Nicolucci, A.; Rathmann, W.; Shestakova, M.V.; Siddiqui, A.; et al. Associations between second-line glucose-lowering combination therapies with metformin and HbA1c, body weight, quality of life, hypoglycaemic events and glucose-lowering treatment intensification: The DISCOVER study. Diabetes Obes. Metab. 2021, 23, 1823–1833. [Google Scholar] [CrossRef]
- Huthmacher, J.A.; Meier, J.J.; Nauck, M.A. Efficacy and Safety of Short- and Long-Acting Glucagon-Like Peptide 1 Receptor Agonists on a Background of Basal Insulin in Type 2 Diabetes: A Meta-analysis. Diabetes Care 2020, 43, 2303–2312. [Google Scholar] [CrossRef]
- Patoulias, D.; Katsimardou, A.; Kalogirou, M.S.; Zografou, I.; Toumpourleka, M.; Imprialos, K.; Stavropoulos, K.; Stergiou, I.; Papadopoulos, C.; Doumas, M. Glucagon-like peptide-1 receptor agonists or sodium-glucose cotransporter-2 inhibitors as add-on therapy for patients with type 2 diabetes? A systematic review and meta-analysis of surrogate metabolic endpoints. Diabetes Metab. 2020, 46, 272–279. [Google Scholar] [CrossRef]
- Sachinidis, A.; Nikolic, D.; Stoian, A.P.; Papanas, N.; Tarar, O.; Rizvi, A.A.; Rizzo, M. Cardiovascular outcomes trials with incretin-based medications: A critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors. Metabolism 2020, 111, 154343. [Google Scholar] [CrossRef]
- Dardano, A.; Miccoli, R.; Bianchi, C.; Daniele, G.; Del Prato, S. Invited review. Series: Implications of the recent CVOTs in type 2 diabetes: Which patients for GLP-1RA or SGLT-2 inhibitor? Diabetes Res. Clin. Pract. 2020, 162, 108112. [Google Scholar] [CrossRef]
- Salmen, T.; Bobirca, F.-T.; Bica, I.-C.; Mihai, D.-A.; Pop, C.; Stoian, A.P. The Safety Profile of Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-like Peptide 1 Receptor Agonists in the Standard of Care Treatment of Type 2 Diabetes Mellitus. Life 2023, 13, 839. [Google Scholar] [CrossRef] [PubMed]
- Schernthaner, G.; Shehadeh, N.; Ametov, A.S.; Bazarova, A.V.; Ebrahimi, F.; Fasching, P.; Janež, A.; Kempler, P.; Konrāde, I.; Lalić, N.M.; et al. Worldwide inertia to the use of cardiorenal protective glucose-lowering drugs (SGLT2i and GLP-1 RA) in high-risk patients with type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 185. [Google Scholar] [CrossRef] [PubMed]
- Sasso, F.C.; Pafundi, P.C.; Simeon, V.; De Nicola, L.; Chiodini, P.; Galiero, R.; Rinaldi, L.; Nevola, R.; Salvatore, T.; Sardu, C.; et al. Efficacy and durability of multifactorial intervention on mortality and MACEs: A randomized clinical trial in type-2 diabetic kidney disease. Cardiovasc. Diabetol. 2021, 20, 145. [Google Scholar] [CrossRef] [PubMed]
- Sasso, F.C.; Simeon, V.; Galiero, R.; Caturano, A.; De Nicola, L.; Chiodini, P.; Rinaldi, L.; Salvatore, T.; Lettieri, M.; Nevola, R.; et al. The number of risk factors not at target is associated with cardiovascular risk in a type 2 diabetic population with albuminuria in primary cardiovascular prevention. Post-hoc analysis of the NID-2 trial. Cardiovasc. Diabetol. 2022, 21, 235. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Adults > 18 years old | Younger than 18 years old |
Duration of T2DM > 6 months | Type 1 DM or secondary DM |
Standard-of-care treatment for T2DM with maximum tolerated doses > 6 months prior to inclusion | Severe/acute heart failure, renal insufficiency or hepatic insufficiency |
At least two visits from V0M, V6M and V12M | |
Treatment with BB and/or CCB and/or ARB/ACEI and/or statin |
Metformin | SGLT-2i | GLP-1Ras | ||
---|---|---|---|---|
No of patients (% of total) | 167 (41.2%) | 119 (29.4%) | 119 (29.4%) | |
No of patients at V6M (% of group) | 148 (88.62%) | 109 (91.59%) | 106 (89.07%) | |
No of patients at V12M (% of group) | 155 (92.81%) | 112 (94.11%) | 101 (84.87%) | |
Insulin treatment (%) | 16 (9.58%) | 15 (12.6%) | 61 (51.26%) | p < 0.001, η2 = 0.24 |
Female (%) | 65 (38.9%) | 34 (71.4%) | 57 (47.9%) | p = 0.009, η2 = 0.023 |
Mean age (years) [mean ± SD] | 57 ± 10 | 56 ± 10 | 59 ± 9 | p = 0.185, η2 = 0.008 |
Urban settlement (%) | 113 (67.66%) | 98 (82.35%) | 88 (73.95%) | p < 0.001, η2 < 0.001 |
Active smoker (%) | 29 (17.36%) | 15 (12.6%) | 27 (22.68%) | p = 0.281, η2 = 0.006 |
Chronic kidney disease (%) | 14 (8.38%) | 15 (12.6%) | 20 (16.80%) | p = 0.097, η2 = 0.012 |
Heart failure (%) | 10 (5.98%) | 14 (11.76%) | 8 (6.72%) | p = 0.174, η2 = 0.009 |
BB (%) | 94 (56.28%) | 78 (65.54%) | 74 (62.18%) | p = 0.268, η2 = 0.007 |
CCB (%) | 43 (25.74%) | 28 (23.52%) | 28 (23.52%) | p = 0.818, η2 = 0.01 |
ACEI/ARB (%) | 104 (62.27%) | 84 (70.58%) | 94 (78.98%) | p = 0.01, η2 = 0.023 |
Statin (%) | 135 (80.83%) | 104 (87.39%) | 106 (89%) | p = 0.112, η2 = 0.011 |
Diuretics (%) | 73 (43.71%) | 36 (30.25%) | 43 (36.13%) | p = 0.181, η2 = 0.008 |
Metformin (n = 167) | SGLT-2i (n = 119) | GLP-1Ras (n = 119) | |||||
---|---|---|---|---|---|---|---|
BMI (kg/m2) [mean ± SD] | 31.8 ± 5.8 | p = 0.672 | 35.5 ± 6.5 | p = 0.209 | 32.1 ± 6.1 | p = 0.022 | p < 0.001, η2 = 0.067 |
Systolic BP (mmHg) [mean ± SD] | 133.4 ± 12.8 | p = 0.004 | 131.7 ± 13.4 | p = 0.009 | 131.4 ± 1 | p = 0.022 | p = 0.377, η2 = 0.05 |
Diastolic BP (mmHg) [mean ± SD] | 80.4 ± 8.7 | p < 0.001 | 79.7 ± 12.7 | p < 0.001 | 79.3 ± 8.8 | p < 0.001 | p = 0.63, η2 = 0.002 |
HR (beat per minute) [mean ± SD] | 78 ± 11 | p < 0.001 | 77 ± 12 | p = 0.009 | 73 ± 8 | p = 0.23 | p < 0.001, η2 = 0.041 |
Fasting glycaemia (mg/dL) [mean ± SD] | 155.4 ± 48.4 | p = 0.026 | 170.6 ± 66.1 | p = 0.006 | 155.7 ± 49.5 | p = 0.003 | p = 0.041, η2 = 0.016 |
HbA1c (%) [mean ± SD] | 7.4 ± 1.2 | p = 0.006 | 8.1 ± 1.5 | p = 0.068 | 7.4 ± 1.4 | p = 0.044 | p < 0.001, η2 = 0.05 |
Total-C (mg/dL) * | 172 (52) | p = 0.236 | 161 (61) | p = 0.595 | 168 (60) | p = 0.654 | p = 0.215, η2 = 0.008 |
HDL-C (mg/dL) [mean ± SD] | 46 ± 12 | p = 0.008 | 43 ± 16 | p < 0.001 | 44 ± 13 | p = 0.11 | p = 0.182, η2 = 0.008 |
LDL-C (mg/dL) * | 92 (41) | p = 0.232 | 98 (47) | p = 0.168 | 91 (53) | p = 0.403 | p = 0.816, η2 = 0.001 |
TG (mg/dL) * | 170 (103) | p = 0.004 | 172 (115) | p = 0.002 | 170 (82) | p < 0.001 | p = 0.419, η2 = 0.004 |
Metformin (n = 148) | SGLT-2i (n = 109) | GLP-1Ras (n = 106) | ||||
---|---|---|---|---|---|---|
BMI (kg/m2) [mean ± SD] | 31.3 ± 5.9 | p = 0.756 | 31.6 ± 5.5 | p = 0.96 | 31.5 ± 5.8 | p = 0.022 |
Systolic BP (mmHg) [mean ± SD] | 133.1 ± 12.8 | p = 0.004 | 133.1 ± 12.8 | p = 0.017 | 130.7 ± 16.1 | p = 0.08 |
Diastolic BP (mmHg) [mean ± SD] | 80.8 ± 9.9 | p < 0.001 | 81.6 ± 10.1 | p < 0.001 | 76.9 ± 9.7 | p < 0.001 |
HR (beat per minute) [mean ± SD] | 77 ± 9 | p = 0.009 | 76 ± 9 | p = 0.015 | 73 ± 8 | p = 0.782 |
Fasting glycaemia (mg/dL) [mean ± SD] | 136.8 ± 36.1 | p = 0.357 | 133.9 ± 35.3 | p = 0.282 | 135.4 ± 35.3 | p = 0.099 |
HbA1c (%) [mean ± SD] | 7.1 ± 1.2 | p = 0.002 | 7 ± 1.2 | p = 0.027 | 7.1 ± 1.3 | p = 0.02 |
Total-C (mg/dL) * | 170 (60) | p = 0.32 | 167 (61) | p = 0.23 | 164 (55) | p = 0.345 |
HDL-C (mg/dL) [mean ± SD] | 46 ± 11 | p = 0.029 | 47 ± 12 | p = 0.117 | 45 ± 11 | p = 0.855 |
LDL-C (mg/dL) * | 92 (52) | p = 0.425 | 88 (50) | p = 0.266 | 90 (50) | p = 0.081 |
TG (mg/dL) * | 156 (120) | p = 0.132 | 142 (123) | p = 0.171 | 154 (91) | p = 0.026 |
Metformin (n = 155) | SGLT-2i (n = 112) | GLP-1RAs (n = 101) | ||||
---|---|---|---|---|---|---|
BMI (kg/m2) [mean ± SD] | 31.0 ± 5.8 | p = 0.582 | 31.2 ± 5.4 | p = 0.78 | 31.3 ± 5.7 | p = 0.05 |
Systolic BP (mmHg) [mean ± SD] | 133.2 ± 13.0 | p = 0.005 | 132 ± 12.7 | p = 0.011 | 130 ± 13.6 | p = 0.029 |
Diastolic BP (mmHg) [mean ± SD] | 79.9 ± 10.7 | p < 0.001 | 80.3 ± 11.4 | p < 0.001 | 76.5 ± 10.3 | p < 0.001 |
HR (beat per minute) [mean ± SD] | 77 ± 9 | p = 0.063 | 77 ± 9 | p = 0.03 | 73 ± 9 | p = 0.327 |
Fasting glycaemia (mg/dL) [mean ± SD] | 142.9 ± 39.9 | p = 0.157 | 139.2 ± 36.8 | p = 0.262 | 146 ± 50.7 | p = 0.007 |
HbA1c (%) [mean ± SD] | 7.1 ± 1.1 | p = 0.01 | 7 ± 1 | p = 0.073 | 7.1 ± 1 | p = 0.023 |
Total-C (mg/dL) * | 173 (57) | p = 0.035 | 165 (58) | p = 0.053 | 166 (62) | p = 0.508 |
HDL-C (mg/dL) [mean ± SD] | 47 ± 12 | p = 0.019 | 48 ± 12 | p = 0.096 | 45 ± 13 | p = 0.212 |
LDL-C (mg/dL) * | 92 (43) | p = 0.064 | 87 (39) | p = 0.091 | 91 (50) | p = 0.504 |
TG (mg/dL) * | 162 (103) | p = 0.017 | 140 (100) | p = 0.095 | 152 (85) | p = 0.017 |
Metformin | SGLT-2i | GLP-1 RAs | ||||
---|---|---|---|---|---|---|
Mean Difference | Mean Difference | Mean Difference | ||||
V6M compared to V0M | ||||||
BMI (kg/m2) | 0.5 ± 0.09 | p < 0.001 | 3.9 ± 0.78 | p < 0.001 | 0.6 ± 0.1 | p < 0.001 |
Diastolic BP (mmHg) | 0.4 ± 0.8 | p = 0.380 | 1.9 ± 1.3 | p = 0.151 | 2.4 ± 0.8 | p = 0.013 |
Fasting glycaemia (mg/dL) | 18.6 ± 3.8 | p < 0.001 | 36.7 ± 7.4 | p < 0.001 | 20.3 ± 4.6 | p < 0.001 |
HbA1c (%) | 0.3 ± 0.1 | p = 0.018 | 1.1 ± 0.2 | p < 0.001 | 0.3 ± 0.1 | p = 0.01 |
HDL-cholesterol (mg/dL) | 0 ± 0.6 | p = 0.765 | 4 ± 2 | p < 0.001 | 0 ± 0.8 | p = 0.895 |
Triglycerides (mg/dL) | 4 ± 8.3 | p = 0.38 | 30 ± 12.5 | p = 0.023 | 2 ± 12.2 | p = 0.258 |
V12M compared to V0M | ||||||
BMI (kg/m2) | 0.3 ± 0.1 | p < 0.001 | 4.3 ± 0.75 | p < 0.001 | 0.8 ± 0.1 | p < 0.001 |
Diastolic BP (mmHg) | 0.9 ± 0.9 | p = 0.728 | 0.6 ± 1.3 | p = 0.314 | 2.8 ± 1.1 | p = 0.008 |
Fasting glycaemia (mg/dL) | 6.1 ± 4 | p = 0.018 | 31.4 ± 7.2 | p = 0.001 | 9.7 ± 5.2 | p = 0.05 |
HbA1c (%) | 0 ± 0.08 | p = 0.195 | 1.1 ± 0.1 | p < 0.001 | 0.3 ± 0.1 | p = 0.075 |
HDL-cholesterol (mg/dL) | 1 ± 0.7 | p = 0.056 | 5 ± 2 | p < 0.001 | 1 ± 0.6 | p = 0.283 |
Triglycerides (mg/dL) | 8 ± 8.1 | p = 0.906 | 32 ± 7.2 | p = 0.019 | 28 ± 12.9 | p = 0.099 |
V12M compared to V6M | ||||||
BMI (kg/m2) | 0.8 ± 0.08 | p = 0.04 | 4.3 ± 0.09 | p = 0.086 | 0.2 ± 0.09 | p = 0.083 |
Diastolic BP (mmHg) | 0.5 ± 1 | p = 0.67 | 1.3 ± 1.3 | p = 0.759 | 0.4 ± 1.1 | p = 0.322 |
Fasting glycaemia (mg/dL) | 12.5 ± 3 | p = 0.024 | 31.4 ± 3.3 | p = 0.045 | 10.6 ± 3.5 | p = 0.025 |
HbA1c (%) | 0.3 ± 0.07 | p = 0.426 | 0 ± 0.9 | p = 0.952 | 0 ± 0 | p = 0.24 |
HDL-cholesterol (mg/dL) | 1 ± 0.6 | p = 0.342 | 1 ± 0.6 | p = 0.536 | 1 ± 0.8 | p = 0.442 |
Triglycerides (mg/dL) | 6 ± 0.1 | p = 0.51 | 2 ± 12.5 | p = 0.974 | 16 ± 8.1 | p = 0.798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmen, T.; Rizvi, A.A.; Rizzo, M.; Pietrosel, V.-A.; Bica, I.-C.; Diaconu, C.T.; Potcovaru, C.G.; Salmen, B.-M.; Coman, O.A.; Bobircă, A.; et al. Antidiabetic Molecule Efficacy in Patients with Type 2 Diabetes Mellitus—A Real-Life Clinical Practice Study. Biomedicines 2023, 11, 2455. https://doi.org/10.3390/biomedicines11092455
Salmen T, Rizvi AA, Rizzo M, Pietrosel V-A, Bica I-C, Diaconu CT, Potcovaru CG, Salmen B-M, Coman OA, Bobircă A, et al. Antidiabetic Molecule Efficacy in Patients with Type 2 Diabetes Mellitus—A Real-Life Clinical Practice Study. Biomedicines. 2023; 11(9):2455. https://doi.org/10.3390/biomedicines11092455
Chicago/Turabian StyleSalmen, Teodor, Ali Abbas Rizvi, Manfredi Rizzo, Valeria-Anca Pietrosel, Ioana-Cristina Bica, Cosmina Theodora Diaconu, Claudia Gabriela Potcovaru, Bianca-Margareta Salmen, Oana Andreia Coman, Anca Bobircă, and et al. 2023. "Antidiabetic Molecule Efficacy in Patients with Type 2 Diabetes Mellitus—A Real-Life Clinical Practice Study" Biomedicines 11, no. 9: 2455. https://doi.org/10.3390/biomedicines11092455
APA StyleSalmen, T., Rizvi, A. A., Rizzo, M., Pietrosel, V.-A., Bica, I.-C., Diaconu, C. T., Potcovaru, C. G., Salmen, B.-M., Coman, O. A., Bobircă, A., Stoica, R.-A., & Pantea Stoian, A. (2023). Antidiabetic Molecule Efficacy in Patients with Type 2 Diabetes Mellitus—A Real-Life Clinical Practice Study. Biomedicines, 11(9), 2455. https://doi.org/10.3390/biomedicines11092455