Cerebrospinal Fluid Metabolomics Identified Ongoing Analgesic Medication in Neuropathic Pain Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Collection
2.3. Metabolomics Analysis
2.4. Statistics
2.5. Ethics
3. Results
3.1. Background Data
3.2. Overview and Quality Control of Metabolic Data
3.3. OPLS-DA Model Comparing Patients and Controls
3.4. OPLS Models in Patients
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sommer, C. Exploring pain pathophysiology in patients. Science 2016, 354, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef] [PubMed]
- Yezierski, R.P.; Hansson, P. Inflammatory and Neuropathic Pain from Bench to Bedside: What Went Wrong? J. Pain 2018, 19, 571–588. [Google Scholar] [CrossRef] [PubMed]
- Bäckryd, E.; Tanum, L.; Lind, A.L.; Larsson, A.; Gordh, T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J. Pain Res. 2017, 10, 515–525. [Google Scholar] [CrossRef]
- Bäckryd, E.; Lind, A.L.; Thulin, M.; Larsson, A.; Gerdle, B.; Gordh, T. High levels of cerebrospinal fluid chemokines point to the presence of neuroinflammation in peripheral neuropathic pain: A cross-sectional study of 2 cohorts of patients compared with healthy controls. Pain 2017, 158, 2487–2495. [Google Scholar] [CrossRef]
- Gonçalves Dos Santos, G.; Delay, L.; Yaksh, T.L.; Corr, M. Neuraxial Cytokines in Pain States. Front. Immunol. 2019, 10, 3061. [Google Scholar] [CrossRef]
- Sommer, C.; Leinders, M.; Uceyler, N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018, 159, 595–602. [Google Scholar] [CrossRef]
- Bäckryd, E.; Ghafouri, B.; Carlsson, A.K.; Olausson, P.; Gerdle, B. Multivariate proteomic analysis of the cerebrospinal fluid of patients with peripheral neuropathic pain and healthy controls—A hypothesis-generating pilot study. J. Pain Res. 2015, 8, 321–333. [Google Scholar] [CrossRef]
- Balogh, M.; Aguilar, C.; Nguyen, N.T.; Shepherd, A.J. Angiotensin receptors and neuropathic pain. Pain Rep. 2021, 6, e869. [Google Scholar] [CrossRef]
- Rice, A.S.; Dworkin, R.H.; McCarthy, T.D.; Anand, P.; Bountra, C.; McCloud, P.I.; Hill, J.; Cutter, G.; Kitson, G.; Desem, N.; et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: A randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 2014, 383, 1637–1647. [Google Scholar] [CrossRef]
- Jensen, T.S.; Baron, R.; Haanpaa, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.; Treede, R.D. A new definition of neuropathic pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Binder, A.; Wasner, G. Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010, 9, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpaa, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Gerdle, B.; Ghafouri, B. Proteomic studies of common chronic pain conditions—A systematic review and associated network analyses. Expert Rev. Proteom. 2020, 17, 483–505. [Google Scholar] [CrossRef] [PubMed]
- Teckchandani, S.; Nagana Gowda, G.A.; Raftery, D.; Curatolo, M. Metabolomics in chronic pain research. Eur. J. Pain 2021, 25, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, B.; Thordeman, K.; Hadjikani, R.; Bay Nord, A.; Gerdle, B.; Bäckryd, E. An investigation of metabolome in blood in patients with chronic peripheral, posttraumatic/postsurgical neuropathic pain. Sci. Rep. 2022, 12, 21714. [Google Scholar] [CrossRef]
- Malatji, B.G.; Meyer, H.; Mason, S.; Engelke, U.F.H.; Wevers, R.A.; van Reenen, M.; Reinecke, C.J. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol. 2017, 17, 88. [Google Scholar] [CrossRef]
- Chang, L.; Munsaka, S.M.; Kraft-Terry, S.; Ernst, T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2013, 8, 576–593. [Google Scholar] [CrossRef]
- Zabek, A.; Swierkot, J.; Malak, A.; Zawadzka, I.; Deja, S.; Bogunia-Kubik, K.; Mlynarz, P. Application of (1)H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J. Pharm. Biomed. Anal. 2016, 117, 544–550. [Google Scholar] [CrossRef]
- Wheelock, A.M.; Wheelock, C.E. Trials and tribulations of ‘omics data analysis: Assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol. Biosyst. 2013, 9, 2589–2596. [Google Scholar] [CrossRef]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi- and Megavariate Data Analysis: Basic Principles and Applications, 3rd ed.; MKS Umetrics AB: Malmo, Sweden, 2013. [Google Scholar]
- Bäckryd, E.; Sorensen, J.; Gerdle, B. Ziconotide Trialing by Intrathecal Bolus Injections: An Open-Label Non-Randomized Clinical Trial in Postoperative/Posttraumatic Neuropathic Pain Patients Refractory to Conventional Treatment. Neuromodulation 2015, 18, 404–413. [Google Scholar] [CrossRef]
- Jönsson, M.; Bäckryd, E.; Jonasson, L.; Gerdle, B.; Ghafouri, B. Differences in plasma lipoprotein profiles between patients with chronic peripheral neuropathic pain and healthy controls: An exploratory pilot study. Pain Rep. 2022, 7, e1036. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, T.; Sæbø, S.; Liland, K.H. Comparison of variable selection methods in partial least squares regression. J. Chemom. 2020, 34, e3226. [Google Scholar] [CrossRef]
- Ranganathan, P.; Pramesh, C.S.; Buyse, M. Common pitfalls in statistical analysis: The perils of multiple testing. Perspect. Clin. Res. 2016, 7, 106–107. [Google Scholar] [CrossRef]
- M.G. Why is multiple testing a problem? 2008. Available online: http://www.stat.berkeley.edu/~mgoldman/Section0402.pdf (accessed on 16 April 2023).
- Hasselstrom, J.; Olsson, G.L. Smärtbehandling. In Läkemedelsboken; Bogentoft, S., Ed.; Apoteket AB: Stockholm, Sweden, 2001; pp. 675–698. [Google Scholar]
- Sharma, C.V.; Mehta, V. Paracetamol: Mechanisms and updates. Contin. Educ. Anaesth. Crit. Care Pain 2014, 14, 153–158. [Google Scholar] [CrossRef]
- Jóźwiak-Bebenista, M.; Nowak, J.Z. Paracetamol: Mechanism of action, applications and safety concern. Acta Pol. Pharm. 2014, 71, 11–23. [Google Scholar]
- Mallet, C.; Desmeules, J.; Pegahi, R.; Eschalier, A. An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. J. Pain Res. 2023, 16, 1081–1094. [Google Scholar] [CrossRef]
- Pavlou, M.P.; Diamandis, E.P.; Blasutig, I.M. The long journey of cancer biomarkers from the bench to the clinic. Clin. Chem. 2013, 59, 147–157. [Google Scholar] [CrossRef]
- Mischak, H.; Vlahou, A.; Righetti, P.G.; Calvete, J.J. Putting value in biomarker research and reporting. J. Proteom. 2014, 96, A1–A3. [Google Scholar] [CrossRef] [PubMed]
ICD-10 Code | Nerve Structure | Number of Participants |
---|---|---|
S342 | Root of lumbar or sacral spine | 8 |
S142 | Root of cervical spine | 3 |
S740 | Sciatic nerve at hip and thigh level | 1 |
S549 | Unspecified nerve at forearm level | 1 |
S949 | Unspecified nerve at ankle or foot level | 1 |
S841 | Peroneal nerve at lower leg level | 1 |
S343 | ICauda equina | 1 |
G629 | Polyneuropathy, unspecified | 1 |
Feature ID | Tentative Annotation | Pain Patients Intensity | Healthy Controls Intensity | p(corr) | VIP | p-Value |
---|---|---|---|---|---|---|
_43_C | Tyrosine + acetaminophen | 46,954 (40,742–58,404) | 36,427 (34,508–40,219) | 0.81 | 1.48 | 0.041 * |
_26_C | Acetaminophen | 35,906 (0–59,894) | 0 (0–0) | 0.79 | 1.48 | 0.001 * |
_44_C | Acetaminophen + tyrosine | 54,407 (17,385–86,355) | 15,232 (11,381–16,918) | 0.79 | 1.47 | 0.005 * |
_41_C | Acetaminophen | 14,400 (0–26,768) | 0 (0–0) | 0.76 | 1.42 | 0.005 * |
_40_C | Acetaminophen | 42,075 (0–66,636) | 0 (0–0) | 0.76 | 1.42 | 0.005 * |
_29_C | Acetaminophen | 34,118 (0–59,041) | 0 (0–0) | 0.76 | 1.42 | 0.005 * |
_30_C | Acetaminophen | 5111 (0–14,300) | 0 (0–0) | 0.73 | 1.35 | 0.010 * |
_450_C | Unknown singlet; acetamide? | 58,600 (43,259–65,879) | 39,481 (34,774–43,149) | 0.73 | 1.34 | 0.005 * |
_36_C | Unknown; diclofenac? | 10,885 (0–16,224) | 0 (0–0) | 0.73 | 1.33 | 0.005 * |
_503_C | Unknown singlet | 37,373 (23,829–65,360) | 25,998 (18,988–29,115) | 0.72 | 1.32 | 0.020 * |
_416_C | Acetaminophen | 122,276 (98,341–146,314) | 91,822 (84,232–97,395) | 0.71 | 1.29 | 0.023 * |
_333_C | 23558 (21,121–26,910) | 20,066 (14,804–23,496) | 0.70 | 1.30 | 0.150 | |
_21_C | Unknown; diclofenac? | 5046 (0–12,759) | 0 (0–0) | 0.69 | 1.25 | 0.010 * |
_352_C | Unknown singlet; dimethylamine? | 66,322 (56,259–74,161) | 51,341 (45,414–62,591) | 0.68 | 1.25 | 0.051 |
_546_C | Pregabalin? | 23,466 (20,505–49,519) | 17,954 (15,269–19,301) | 0.67 | 1.21 | 0.003 * |
_396_C | Unknown singlet; acetylsalicylate? | 17,326 (14,477–23,720) | 13,263 (12,062–14,112) | 0.67 | 1.21 | 0.007 * |
_28_C | Acetaminophen | 5756 (0–18,558) | 0 (0–0) | 0.67 | 1.24 | 0.010 * |
_322_C | 23,721 (21,822–25,907) | 21,357 (13,720–22,045) | 0.66 | 1.24 | 0.086 | |
_502_C | Unknown singlet | 19,648 (16,848–30,175) | 15,496 (5388–17,337) | 0.66 | 1.20 | 0.023 * |
_543_C | Pregabalin? | 20,593 (16,462–42,854) | 15,809 (14,127–20,877) | 0.65 | 1.17 | 0.014 * |
_339_C | Unknown singlet; N,N-dimethylglycine? | 12,799 (10,537–15,528) | 0 (0–5595) | 0.64 | 1.16 | 0.007 * |
_35_C | Unknown; diclofenac? | 5230 (0–12,274) | 0 (0–0) | 0.63 | 1.18 | 0.010 * |
tyr_33_C | Tyrosine | 35,814 (30,869–39,163) | 32,743 (28,207–33,807) | 0.62 | 1.13 | 0.114 |
_545_C | Pregabalin? | 20,732 (14,992–50,151) | 16,375 (15,239–18,050) | 0.62 | 1.12 | 0.041 * |
_548_C | Pregabalin? | 20,748 (18,226–47,331) | 18,624 (15,957–22,198) | 0.61 | 1.10 | 0.063 |
ala + fructose_205_C | ALANINE + fructose | 248,350 (214,837–268,264) | 199,950 (190,866–223,795) | 0.60 | 1.22 | 0.020 * |
_43_C | _26_C | _44_C | _41_C | _40_C | _29_C | _30_C | _450_C | _36_C | _503_C | ||
---|---|---|---|---|---|---|---|---|---|---|---|
_43_C | Rho | 1.000 | 0.856 ** | 0.842 ** | 0.867 ** | 0.881 ** | 0.872 ** | 0.777 ** | 0.284 | 0.540 * | 0.424 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | 0.326 | 0.046 | 0.131 | ||
_26_C | Rho | 1.000 | 0.960 ** | 0.978 ** | 0.973 ** | 0.983 ** | 0.823 ** | 0.290 | 0.571 * | 0.254 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.315 | 0.033 | 0.381 | |||
_44_C | Rho | 1.000 | 0.947 ** | 0.956 ** | 0.956 ** | 0.819 ** | 0.270 | 0.641 * | 0.160 | ||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.350 | 0.014 | 0.584 | ||||
_41_C | Rho | 1.000 | 0.981 ** | 0.995 ** | 0.779 ** | 0.204 | 0.581 * | 0.190 | |||
p-value | <0.001 | <0.001 | 0.001 | 0.485 | 0.029 | 0.516 | |||||
_40_C | Rho | 1.000 | 0.990 ** | 0.828 ** | 0.213 | 0.562 * | 0.199 | ||||
p-value | <0.001 | <0.001 | 0.465 | 0.037 | 0.495 | ||||||
_29_C | Rho | 1.000 | 0.789 ** | 0.194 | 0.557 * | 0.199 | |||||
p-value | 0.001 | 0.505 | 0.038 | 0.495 | |||||||
_30_C | Rho | 1.000 | 0.406 | 0.574 * | 0.289 | ||||||
p-value | 0.150 | 0.032 | 0.317 | ||||||||
_450_C | Rho | 1.000 | 0.384 | 0.486 | |||||||
p-value | 0.175 | 0.078 | |||||||||
_36_C | Rho | 1.000 | 0.318 | ||||||||
p-value | 0.268 | ||||||||||
_503_C | Rho | 1.000 | |||||||||
p-value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bäckryd, E.; Thordeman, K.; Gerdle, B.; Ghafouri, B. Cerebrospinal Fluid Metabolomics Identified Ongoing Analgesic Medication in Neuropathic Pain Patients. Biomedicines 2023, 11, 2525. https://doi.org/10.3390/biomedicines11092525
Bäckryd E, Thordeman K, Gerdle B, Ghafouri B. Cerebrospinal Fluid Metabolomics Identified Ongoing Analgesic Medication in Neuropathic Pain Patients. Biomedicines. 2023; 11(9):2525. https://doi.org/10.3390/biomedicines11092525
Chicago/Turabian StyleBäckryd, Emmanuel, Katarina Thordeman, Björn Gerdle, and Bijar Ghafouri. 2023. "Cerebrospinal Fluid Metabolomics Identified Ongoing Analgesic Medication in Neuropathic Pain Patients" Biomedicines 11, no. 9: 2525. https://doi.org/10.3390/biomedicines11092525
APA StyleBäckryd, E., Thordeman, K., Gerdle, B., & Ghafouri, B. (2023). Cerebrospinal Fluid Metabolomics Identified Ongoing Analgesic Medication in Neuropathic Pain Patients. Biomedicines, 11(9), 2525. https://doi.org/10.3390/biomedicines11092525