Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purpose
- Does the intestinal microbiota affect cIMD pharmacology (pharmacokinetics, efficacy or tolerability)?
- Do cIMDs modify the composition of intestinal microbiota?
2.2. Population
- Metagenomic characterization of fecal or ileal microbiota,
- Pharmacokinetics analysis of the administered immunosuppressant drugs,
- Analysis of cIMD efficacy and/or toxicity, and
- Analysis of the effect of wide-spectrum antibiotics on points from 1 to 3.
2.3. Intervention
2.4. Comparison
2.5. Outcome
2.6. Information Sources and Search Strategy
2.7. Data Extraction
2.8. Risk of Bias in Individual Studies
2.9. Data Synthesis
3. Results
3.1. Search Results
3.2. Quality Assessment
3.3. Effect of Intestinal Microbiota on cIMDs
3.4. Effect of cIMDs on Intestinal Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karam, S.; Wali, R.K. Current State of Immunosuppression: Past, Present, and Future. Crit. Rev. Eukaryot. Gene Expr. 2015, 25, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R.; Vanrenterghem, Y.C. Tailoring immunosuppressive therapy. Nephrol. Dial. Transpl. 2002, 17, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Albring, A.; Wendt, L.; Harz, N.; Engler, H.; Wilde, B.; Kribben, A.; Lindemann, M.; Schedlowski, M.; Witzke, O. Relationship between pharmacokinetics and pharmacodynamics of calcineurin inhibitors in renal transplant patients. Clin. Transpl. 2015, 29, 294–300. [Google Scholar] [CrossRef] [PubMed]
- McCune, J.S.; Bemer, M.J. Pharmacokinetics, Pharmacodynamics and Pharmacogenomics of Immunosuppressants in Allogeneic Haematopoietic Cell Transplantation: Part I. Clin. Pharmacokinet. 2016, 55, 525–550. [Google Scholar] [CrossRef] [PubMed]
- McCune, J.S.; Bemer, M.J.; Long-Boyle, J. Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics of Immunosuppressants in Allogeneic Hematopoietic Cell Transplantation: Part II. Clin. Pharmacokinet. 2016, 55, 551–593. [Google Scholar] [CrossRef]
- Johnston, A.; Holt, D.W. Immunosuppressant drugs--the role of therapeutic drug monitoring. Br. J. Clin. Pharmacol. 2001, 52 (Suppl. S1), 61S–73S. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, H.; Naesens, M.; Kuypers, D.R. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: Possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther. Drug Monit. 2009, 31, 416–435. [Google Scholar] [CrossRef]
- Nobakht, E.; Jagadeesan, M.; Paul, R.; Bromberg, J.; Dadgar, S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transpl. Direct. 2021, 7, e650. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Doestzada, M.; Vila, A.V.; Zhernakova, A.; Koonen, D.P.Y.; Weersma, R.K.; Touw, D.J.; Kuipers, F.; Wijmenga, C.; Fu, J. Pharmacomicrobiomics: A novel route towards personalized medicine? Protein Cell. 2018, 9, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.; Rizkallah, M.R.; Aziz, R.K. Gut Pharmacomicrobiomics: The tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog. 2012, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.T. Is p-aminobenzenesulphonamide the active agent in protonsil therapy? Lancet 1937, 229, 194–198. [Google Scholar] [CrossRef]
- Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut 2020, 69, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Klünemann, M.; Andrejev, S.; Blasche, S.; Mateus, A.; Phapale, P.; Devendran, S.; Vappiani, J.; Simon, B.; Scott, T.A.; Kafkia, E.; et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 2021, 597, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Liu, J.; Ao, H.; Yue, S.; Peng, C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics 2020, 10, 11278–11301. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. (Eds.) GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations; Updated October 2013; Evidence Prime Inc.: Hamilton, ON, Canada, 2013; Available online: https://www.rama.mahidol.ac.th/ceb/sites/default/files/public/pdf/journal_club/2017/GRADE%20handbook.pdf (accessed on 15 January 2023).
- Braghieri, L.; Jennings, D.L.; Bohn, B.; Habal, M.; Pinsino, A.; Mondellini, G.M.; Ladanyi, A.; Latif, F.; Clerkin, K.; Restaino, S.; et al. Temporal shifts in safety and efficacy profile of mycophenolate mofetil 2 g versus 3 g daily early after heart transplantation. Pharmacotherapy 2022, 42, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Doki, N.; Suyama, M.; Sasajima, S.; Ota, J.; Igarashi, A.; Mimura, I.; Morita, H.; Fujioka, Y.; Sugiyama, D.; Nishikawa, H.; et al. Clinical impact of pre-transplant gut microbial diversity on outcomes of allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 2017, 96, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Enright, E.F.; Govindarajan, K.; Darrer, R.; MacSharry, J.; Joyce, S.A.; Gahan, C.G.M. Gut Microbiota-Mediated Bile Acid Transformations Alter the Cellular Response to Multidrug Resistant Transporter Substrates in Vitro: Focus on P-glycoprotein. Mol. Pharm. 2018, 15, 5711–5727. [Google Scholar] [CrossRef]
- Gu, B.; Bo, G.Z.; Ke, C. Exploration of Fecal Microbiota Transplantation in the Treatment of Refractory Diarrhea After Renal Transplantation. Transpl. Proc. 2018, 50, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Crnkovic, C.M.; Won, K.J.; Yang, X.; Lee, J.R.; Orjala, J.; Lee, H.; Jeong, H. Commensal Gut Bacteria Convert the Immunosuppressant Tacrolimus to Less Potent Metabolites. Drug Metab. Dispos. 2019, 47, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Javdan, B.; Lopez, J.G.; Chankhamjon, P.; Lee, Y.J.; Hull, R.; Wu, Q.; Wang, X.; Chatterjee, S.; Donia, M.S. Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell 2020, 181, 1661–1679.e22. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.L.; Bohn, B.; Zuver, A.; Onat, D.; Gaine, M.; Royzman, E.; Hupf, J.; Brunjes, D.; Latif, F.; Restaino, S.; et al. Gut microbial diversity, inflammation, and oxidative stress are associated with tacrolimus dosing requirements early after heart transplantation. PLoS ONE 2020, 15, e0233646. [Google Scholar] [CrossRef]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Taur, Y.; Jenq, R.R.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS ONE 2015, 10, e0122399. [Google Scholar] [CrossRef]
- Lee, J.R.; Magruder, M.; Zhang, L.; Westblade, L.F.; Satlin, M.J.; Robertson, A.; Edusei, E.; Crawford, C.; Ling, L.; Taur, Y.; et al. Gut microbiota dysbiosis and diarrhea in kidney transplant recipients. Am. J. Transpl. 2019, 19, 488–500. [Google Scholar] [CrossRef]
- Ly, L.K.; Rowles, J.L., 3rd; Paul, H.M.; Alves, J.M.P.; Yemm, C.; Wolf, P.M.; Devendran, S.; Hudson, M.E.; Morris, D.J.; Erdman, J.W., Jr.; et al. Bacterial steroid-17, 20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1, 4-androstanediene-3, 11, 17-trione, a metabolite that causes proliferation of prostate cancer cells. J. Steroid. Biochem. Mol. Biol. 2020, 199, 105567. [Google Scholar] [CrossRef]
- Qian, L.; Ouyang, H.; Gordils-Valentin, L.; Hong, J.; Jayaraman, A.; Zhu, X. Identification of Gut Bacterial Enzymes for Keto-Reductive Metabolism of Xenobiotics. ACS. Chem. Biol. 2022, 17, 1665–1671. [Google Scholar] [CrossRef]
- Saqr, A.; Carlson, B.; Staley, C.; Rashidi, A.; Al-Kofahi, M.; Kaiser, T.; Holtan, S.; MacMillan, M.; Young, J.A.; Jurdi, N.E.; et al. Reduced Enterohepatic Recirculation of Mycophenolate and Lower Blood Concentrations Are Associated with the Stool Bacterial Microbiome after Hematopoietic Cell Transplantation. Transpl. Cell Ther. 2022, 28, 372.e1–372.e9. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.B.; Sekela, J.J.; Graboski, A.L.; Borlandelli, V.B.; Bivins, M.M.; Barker, N.K.; Sorgen, A.A.; Mordant, A.L.; Johnson, R.L.; Bhatt, A.P.; et al. Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate. Gut Microbes 2022, 14, 2107289. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R.; Flannigan, K.L.; Rahim, H.; Mohamud, A.; Lewis, I.A.; Hirota, S.A.; Greenway, S.C. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. Sci. Adv. 2019, 5, eaax2358. [Google Scholar] [CrossRef] [PubMed]
- Turner, G.; Smith, M.; Hoeschen, A.L.; Wilson, J.A.; Kennedy, J.; Abramson, M.; Cao, Q.; El Jurdi, N.; MacMillan, M.L.; Weisdorf, D.J.; et al. Shotgun sequencing of the faecal microbiome to predict response to steroids in patients with lower gastrointestinal acute graft-versus-host disease: An exploratory analysis. Br. J. Haematol. 2021, 192, e69–e73. [Google Scholar] [CrossRef] [PubMed]
- Vertzoni, M.; Kersten, E.; van der Mey, D.; Muenster, U.; Reppas, C. Evaluating the clinical importance of bacterial degradation of therapeutic agents in the lower intestine of adults using adult fecal material. Eur. J. Pharm. Sci. 2018, 125, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yadav, V.; Smart, A.L.; Tajiri, S.; Basit, A.W. Stability of peptide drugs in the colon. Eur. J. Pharm. Sci. 2015, 78, 31–36. [Google Scholar] [CrossRef]
- Zhang, L.T.; Westblade, L.F.; Iqbal, F.; Taylor, M.R.; Chung, A.; Satlin, M.J.; Magruder, M.; Edusei, E.; Albakry, S.; Botticelli, B.; et al. Gut microbiota profiles and fecal beta-glucuronidase activity in kidney transplant recipients with and without post-transplant diarrhea. Clin. Transpl. 2021, 35, e14260. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, R.; Guo, P.; Li, P.; Huang, X.; Wei, Y.; Yang, C.; Zhou, J.; Yang, T.; Liu, Y.; et al. Effects of intestinal microbiota on pharmacokinetics of cyclosporine a in rats. Front. Microbiol. 2022, 13, 1032290. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, J.; Yang, Z.; Miao, Y. High-throughput sequencing analysis of differences in intestinal microflora between ulcerative colitis patients with different glucocorticoid response types. Genes Genom. 2020, 42, 1197–1206. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Kakiyama, G.; Cox, I.J.; Nittono, H.; Takei, H.; White, M.; Fagan, A.; Gavis, E.A.; Heuman, D.M.; Gilles, H.C.; et al. Alterations in gut microbial function following liver transplant. Liver Transpl. 2018, 24, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Pasini, E.; Copeland, J.; Angeli, M.; Husain, S.; Kumar, D.; Renner, E.; Teterina, A.; Allard, J.; Guttman, D.S.; et al. Impact of Immunosuppression on the Metagenomic Composition of the Intestinal Microbiome: A Systems Biology Approach to Post-Transplant Diabetes. Sci. Rep. 2017, 7, 10277. [Google Scholar] [CrossRef] [PubMed]
- Bitto, A.; Ito, T.K.; Pineda, V.V.; LeTexier, N.J.; Huang, H.Z.; Sutlief, E.; Tung, H.; Vizzini, N.; Chen, B.; Smith, K.; et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 2016, 5, e16351. [Google Scholar] [CrossRef]
- de Lima, A.M.D.L.; de Lima Rosa, G.; Müller Guzzo, E.F.; Padilha, R.B.; Costa da Silva, R.; Silveira, A.K.; de Lima Morales, D.; Conci de Araujo, M.; Fonseca Moreira, J.C.; Barth, A.L.; et al. Gut microbiota modulation by prednisolone in a rat kindling model of pentylenetetrazol (PTZ)-induced seizure. Microb. Pathog. 2022, 163, 105376. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, K.L.; Taylor, M.R.; Pereira, S.K.; Rodriguez-Arguello, J.; Moffat, A.W.; Alston, L.; Wang, X.; Poon, K.K.; Beck, P.L.; Rioux, K.P.; et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J. Heart Lung Transpl. 2018, 37, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jiang, X.; Ling, Q.; Wu, L.; Wu, P.; Tang, R.; Xu, X.; Yang, M.; Zhang, L.; Zhu, W.; et al. Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice. Front. Med. 2019, 13, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wu, L.; Ling, Q.; Wu, P.; Zhang, C.; Jia, L.; Weng, H.; Wang, B. Intestinal Dysbiosis Correlates with Sirolimus-induced Metabolic Disorders in Mice. Transplantation 2021, 105, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Kong, X.; Shao, T.; Zhang, Y.; Wen, C. Alterations of the Gut Microbiota Associated with Promoting Efficacy of Prednisone by Bromofuranone in MRL/lpr Mice. Front. Microbiol. 2019, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Hurez, V.; Dao, V.; Liu, A.; Pandeswara, S.; Gelfond, J.; Sun, L.; Bergman, M.; Orihuela, C.J.; Galvan, V.; Padrón, Á.; et al. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 2015, 14, 945–956. [Google Scholar] [CrossRef]
- Jia, J.; Tian, X.; Jiang, J.; Ren, Z.; Lu, H.; He, N.; Xie, H.; Zhou, L.; Zheng, S. Structural shifts in the intestinal microbiota of rats treated with cyclosporine A after orthotropic liver transplantation. Front. Med. 2019, 13, 451–460. [Google Scholar] [CrossRef]
- Jiang, J.W.; Ren, Z.G.; Lu, H.F.; Zhang, H.; Li, A.; Cui, G.Y.; Jia, J.J.; Xie, H.Y.; Chen, X.H.; He, Y.; et al. Optimal immunosuppressor induces stable gut microbiota after liver transplantation. World J. Gastroenterol. 2018, 24, 3871–3883. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, Z.; Xu, Y.; Gong, L.; Zhang, W.; Tang, H.; Zeng, S.; Zhang, Q.; Sun, Z.; Liu, L.; et al. Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota. Am. J. Transpl. 2020, 20, 2413–2424. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.J.; Lee, J.; Shin, N.R.; Kim, M.S.; Hyun, D.W.; Yun, J.H.; Kim, P.S.; Whon, T.W.; Bae, J.W. Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Sci. Rep. 2016, 6, 30887. [Google Scholar] [CrossRef] [PubMed]
- Kamata, K.; Watanabe, T.; Minaga, K.; Hara, A.; Sekai, I.; Otsuka, Y.; Yoshikawa, T.; Park, A.M.; Kudo, M. Gut microbiome alterations in type 1 autoimmune pancreatitis after induction of remission by prednisolone. Clin. Exp. Immunol. 2020, 202, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Feng, D.; Law, H.K.; Qu, W.; Wu, Y.; Zhu, G.H.; Huang, W.Y. Compositional alterations of gut microbiota in children with primary nephrotic syndrome after initial therapy. BMC Nephrol. 2019, 20, 434. [Google Scholar] [CrossRef] [PubMed]
- Lähteenmäki, K.; Wacklin, P.; Taskinen, M.; Tuovinen, E.; Lohi, O.; Partanen, J.; Mättö, J.; Vettenranta, K. Haematopoietic stem cell transplantation induces severe dysbiosis in intestinal microbiota of paediatric ALL patients. Bone Marrow Transpl. 2017, 52, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Llorenç, V.; Nakamura, Y.; Metea, C.; Karstens, L.; Molins, B.; Lin, P. Antimetabolite Drugs Exhibit Distinctive Immunomodulatory Mechanisms and Effects on the Intestinal Microbiota in Experimental Autoimmune Uveitis. Invest. Ophthalmol. Vis. Sci. 2022, 63, 30. [Google Scholar] [CrossRef]
- Lyons, J.; Ghazi, P.C.; Starchenko, A.; Tovaglieri, A.; Baldwin, K.R.; Poulin, E.J.; Gierut, J.J.; Genetti, C.; Yajnik, V.; Breault, D.T.; et al. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol. 2018, 16, e2002417. [Google Scholar] [CrossRef]
- Pigneur, B.; Lepage, P.; Mondot, S.; Schmitz, J.; Goulet, O.; Doré, J.; Ruemmele, F.M. Mucosal Healing and Bacterial Composition in Response to Enteral Nutrition Vs Steroid-based Induction Therapy-A Randomised Prospective Clinical Trial in Children with Crohn’s Disease. J. Crohn’s Colitis 2019, 13, 846–855. [Google Scholar] [CrossRef]
- Qiu, D.; Xia, Z.; Deng, J.; Jiao, X.; Liu, L.; Li, J. Glucorticoid-induced obesity individuals have distinct signatures of the gut microbiome. Biofactors 2019, 45, 892–901. [Google Scholar] [CrossRef]
- Robles-Vera, I.; de la Visitación, N.; Sánchez, M.; Gómez-Guzmán, M.; Jiménez, R.; Moleón, J.; González-Correa, C.; Romero, M.; Yang, T.; Raizada, M.K.; et al. Mycophenolate Improves Brain-Gut Axis Inducing Remodeling of Gut Microbiota in DOCA-Salt Hypertensive Rats. Antioxidants 2020, 9, 1199. [Google Scholar] [CrossRef]
- Robles-Vera, I.; de la Visitación, N.; Toral, M.; Sánchez, M.; Gómez-Guzmán, M.; Jiménez, R.; Romero, M.; Duarte, J. Mycophenolate mediated remodeling of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rats. Biomed. Pharmacother. 2021, 135, 111189. [Google Scholar] [CrossRef] [PubMed]
- Schepper, J.D.; Collins, F.; Rios-Arce, N.D.; Kang, H.J.; Schaefer, L.; Gardinier, J.D.; Raghuvanshi, R.; Quinn, R.A.; Britton, R.; Parameswaran, N.; et al. Involvement of the gut microbiota and barrier function in Glucocorticoid-Induced osteoporosis. J. Bone Miner. Res. 2020, 35, 801–820. [Google Scholar] [CrossRef] [PubMed]
- Sivaraj, S.; Copeland, J.K.; Malik, A.; Pasini, E.; Angeli, M.; Azhie, A.; Husain, S.; Kumar, D.; Allard, J.; Guttman, D.S.; et al. Characterization and predictive functional profiles on metagenomic 16S rRNA data of liver transplant recipients: A longitudinal study. Clin. Transpl. 2022, 36, e14534. [Google Scholar] [CrossRef] [PubMed]
- Swarte, J.C.; Douwes, R.M.; Hu, S.; Vich Vila, A.; Eisenga, M.F.; van Londen, M.; Gomes-Neto, A.W.; Weersma, R.K.; Harmsen, H.J.M.; Bakker, S.J.L. Characteristics and Dysbiosis of the Gut Microbiome in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Tourret, J.; Willing, B.P.; Dion, S.; MacPherson, J.; Denamur, E.; Finlay, B.B. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation 2017, 101, 74–82. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Z.; Lin, X.; Li, H.; Wen, C.; Bao, J.; He, Z. Gut microbiota mediated the therapeutic efficacies and the side effects of prednisone in the treatment of MRL/lpr mice. Arthritis Res. Ther. 2021, 23, 240. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, C.; He, D.; Jiang, N.; Bai, Y.; Xin, Y. Rapamycin and MCC950 modified gut microbiota in experimental autoimmune encephalomyelitis mouse by brain gut axis. Life Sci. 2020, 253, 117747. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Tang, H.; Jiao, W.; Zeng, S.; Xu, Y.; Zhang, Q.; Sun, Z.; Mukherjee, A.; Zhang, X.; et al. Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice. Am. J. Transpl. 2018, 18, 1646–1656. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, D.; Law, H.K.; Wu, Y.; Zhu, G.H.; Huang, W.Y.; Kang, Y. Integrative Analysis of Gut Microbiota and Fecal Metabolites in Rats after Prednisone Treatment. Microbiol. Spectr. 2021, 9, e0065021. [Google Scholar] [CrossRef]
- Bansal, R.; Park, H.; Taborda, C.C.; Gordillo, C.; Mapara, M.Y.; Assal, A.; Uhlemann, A.C.; Reshef, R. Antibiotic Exposure, Not Alloreactivity, Is the Major Driver of Microbiome Changes in Hematopoietic Cell Transplantation. Transpl. Cell. Ther. 2022, 28, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, J.S.; Hittle, L.; Xiong, Y.; Saxena, V.; Smyth, E.M.; Li, L.; Zhang, T.; Wagner, C.; Fricke, W.F.; Simon, T.; et al. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight 2020, 5, e142528. [Google Scholar] [CrossRef]
- Browne, B.J.; Johnson, C.P.; Edmiston, C.E.; Hlava, M.A.; Moore, G.H.; Roza, A.M.; Telford, G.L.; Adams, M.B. Small bowel transplantation promotes bacterial overgrowth and translocation. J. Surg. Res. 1991, 51, 512–517. [Google Scholar] [CrossRef]
- Bu, F.; Ding, Y.; Chen, T.; Wang, Q.; Wang, R.; Zhou, J.Y.; Jiang, F.; Zhang, D.; Xu, M.; Shi, G.; et al. Total flavone of Abelmoschus Manihot improves colitis by promoting the growth of Akkermansia in mice. Sci. Rep. 2021, 11, 20787. [Google Scholar] [CrossRef]
- Cox, L.M.; Maghzi, A.H.; Liu, S.; Tankou, S.K.; Dhang, F.H.; Willocq, V.; Song, A.; Wasén, C.; Tauhid, S.; Chu, R.; et al. Gut Microbiome in Progressive Multiple Sclerosis. Ann. Neurol. 2021, 89, 1195–1211. [Google Scholar] [CrossRef]
- Cui, B.; Li, P.; Xu, L.; Peng, Z.; Xiang, J.; He, Z.; Zhang, T.; Ji, G.; Nie, Y.; Wu, K.; et al. Step-up fecal microbiota transplantation (FMT) strategy. Gut Microbes 2016, 7, 323–328. [Google Scholar] [CrossRef]
- Dizman, N.; Hsu, J.; Bergerot, P.G.; Gillece, J.D.; Folkerts, M.; Reining, L.; Trent, J.; Highlander, S.K.; Pal, S.K. Randomized trial assessing impact of probiotic supplementation on gut microbiome and clinical outcome from targeted therapy in metastatic renal cell carcinoma. Cancer Med. 2021, 10, 79–86. [Google Scholar] [CrossRef]
- Eun, C.S.; Kwak, M.J.; Han, D.S.; Lee, A.R.; Park, D.I.; Yang, S.K.; Kim, Y.S.; Kim, J.F. Does the intestinal microbial community of Korean Crohn’s disease patients differ from that of western patients? BMC Gastroenterol. 2016, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Geunes-Boyer, S.; Heitman, J.; Wright, J.R.; Steinbach, W.J. Surfactant protein D binding to Aspergillus fumigatus hyphae is calcineurin-sensitive. Med. Mycol. 2010, 48, 580–588. [Google Scholar] [CrossRef]
- Gianotti, L.; Alexander, J.W.; Fukushima, R.; Pyles, T. Steroid therapy can modulate gut barrier function, host defense, and survival in thermally injured mice. J. Surg. Res. 1996, 62, 53–58. [Google Scholar] [CrossRef]
- Gibson, C.M.; Childs-Kean, L.M.; Naziruddin, Z.; Howell, C.K. The alteration of the gut microbiome by immunosuppressive agents used in solid organ transplantation. Transpl. Infect. Dis. 2021, 23, e13397. [Google Scholar] [CrossRef]
- Huang, X.; Ai, F.; Ji, C.; Tu, P.; Gao, Y.; Wu, Y.; Yan, F.; Yu, T. A Rapid Screening Method of Candidate Probiotics for Inflammatory Bowel Diseases and the Anti-inflammatory Effect of the Selected Strain Bacillus smithii XY1. Front Microbiol. 2021, 12, 760385. [Google Scholar] [CrossRef] [PubMed]
- Jardou, M.; Provost, Q.; Brossier, C.; Pinault, É.; Sauvage, F.L.; Lawson, R. Alteration of the gut microbiome in mycophenolate-induced enteropathy: Impacts on the profile of short-chain fatty acids in a mouse model. BMC Pharmacol. Toxicol. 2021, 22, 66. [Google Scholar] [CrossRef] [PubMed]
- Jenq, R.R.; Ubeda, C.; Taur, Y.; Menezes, C.C.; Khanin, R.; Dudakov, J.A.; Liu, C.; West, M.L.; Singer, N.V.; Equinda, M.J.; et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 2012, 209, 903–911. [Google Scholar] [CrossRef]
- Kaysen, A.; Heintz-Buschart, A.; Muller, E.E.L.; Narayanasamy, S.; Wampach, L.; Laczny, C.C.; Graf, N.; Simon, A.; Franke, K.; Bittenbring, J.; et al. Integrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation. Transl. Res. 2017, 186, 79–94.e1. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Onyeaghala, G.C.; Rashidi, A.; Holtan, S.G.; Khoruts, A.; Israni, A.; Jacobson, P.A.; Staley, C. Fecal β-glucuronidase activity differs between hematopoietic cell and kidney transplantation and a possible mechanism for disparate dose requirements. Gut Microbes 2022, 14, 2108279. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, Y.; Choi, J.W.; Park, S.H.; Cho, M.L.; Kwok, S.K. Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway. Front. Immunol. 2021, 12, 696074. [Google Scholar] [CrossRef]
- Liu, C.S.; Liang, X.; Wei, X.H.; Chen, F.L.; Tang, Q.F.; Tan, X.M. Comparative metabolism of the eight main bioactive ingredients of gegen qinlian decoction by the intestinal flora of diarrhoeal and healthy piglets. Biomed. Chromatogr. 2019, 33, e4421. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zou, Y.; Zhang, Y.; Liu, L.; Duan, Y.; Zhang, A.; Zhang, X.; Zhang, R.; Zhao, B.; Li, X.; et al. Characteristics in gut microbiome is associated with chemotherapy-induced pneumonia in pediatric acute lymphoblastic leukemia. BMC Cancer 2021, 21, 1190. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, L.; Zhuang, Y.; Ding, Y.; Chen, J. Lactobacillus improves the effects of prednisone on autoimmune hepatitis via gut microbiota-mediated follicular helper T cells. Cell Commun. Signal. 2022, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Maddaus, M.A.; Wells, C.L.; Platt, J.L.; Condie, R.M.; Simmons, R.L. Effect of T cell modulation on the translocation of bacteria from the gut and mesenteric lymph node. Ann. Surg. 1988, 207, 387–398. [Google Scholar] [CrossRef]
- Maraki, S.; Bafaloukos, D.; Chatzinikolaou, I.; Datseris, G.; Samonis, G. Gut colonization of mice by yeast: Effects of methylprednisolone and antibiotics. Hepatogastroenterology 1998, 45, 119–122. [Google Scholar] [PubMed]
- Marazzato, M.; Iannuccelli, C.; Guzzo, M.P.; Nencioni, L.; Lucchino, B.; Radocchia, G.; Gioia, C.; Bonfiglio, G.; Neroni, B.; Guerrieri, F.; et al. Gut Microbiota Structure and Metabolites, Before and After Treatment in Early Rheumatoid Arthritis Patients: A Pilot Study. Front. Med. 2022, 9, 921675. [Google Scholar] [CrossRef] [PubMed]
- Modena, B.D.; Milam, R.; Harrison, F.; Cheeseman, J.A.; Abecassis, M.M.; Friedewald, J.J.; Kirk, A.D.; Salomon, D.R. Changes in Urinary Microbiome Populations Correlate in Kidney Transplants with Interstitial Fibrosis and Tubular Atrophy Documented in Early Surveillance Biopsies. Am. J. Transpl. 2017, 17, 712–723. [Google Scholar] [CrossRef]
- Muñoz, M.; Guerrero-Araya, E.; Cortés-Tapia, C.; Plaza-Garrido, A.; Lawley, T.D.; Paredes-Sabja, D. Comprehensive genome analyses of Sellimonas intestinalis, a potential biomarker of homeostasis gut recovery. Microb. Genom. 2020, 6, mgen000476. [Google Scholar] [CrossRef]
- O’Reilly, C.; O’Sullivan, Ó.; Cotter, P.D.; O’Connor, P.M.; Shanahan, F.; Cullen, A.; Rea, M.C.; Hill, C.; Coulter, I.; Ross, R.P. Encapsulated cyclosporine does not change the composition of the human microbiota when assessed ex vivo and in vivo. J. Med. Microbiol. 2020, 69, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Raineri, S.; Sherriff, J.A.; Thompson, K.S.J.; Jones, H.; Pfluger, P.T.; Ilott, N.E.; Mellor, J. Pharmacologically induced weight loss is associated with distinct gut microbiome changes in obese rats. BMC Microbiol. 2022, 22, 91. [Google Scholar] [CrossRef] [PubMed]
- Selvig, D.; Piceno, Y.; Terdiman, J.; Zydek, M.; Umetsu, S.E.; Balitzer, D.; Fadrosh, D.; Lynch, K.; Lamere, B.; Leith, T.; et al. Fecal Microbiota Transplantation in Pouchitis: Clinical; Endoscopic; Histologic; and Microbiota Results from a Pilot Study. Dig. Dis. Sci. 2020, 65, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.B.; Allegretti, A.S.; Nigwekar, S.U.; Kalim, S.; Zhao, S.; Lelouvier, B.; Servant, F.; Serena, G.; Thadhani, R.I.; Raj, D.S.; et al. Blood Microbiome Profile in CKD: A Pilot Study. Clin. J. Am. Soc. Nephrol. 2019, 14, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Lin, H.C. Autophagy counters LPS-mediated suppression of lysozyme. Innate Immun. 2017, 23, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Singh-Babak, S.D.; Shekhar, T.; Smith, A.M.; Giaever, G.; Nislow, C.; Cowen, L.E. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. Mol. Biosyst. 2012, 8, 2575–2584. [Google Scholar] [CrossRef]
- Tilahun, A.Y.; Karau, M.J.; Clark, C.R.; Patel, R.; Rajagopalan, G. The impact of tacrolimus on the immunopathogenesis of staphylococcal enterotoxin-induced systemic inflammatory response syndrome and pneumonia. Microbes Infect. 2012, 14, 528–536. [Google Scholar] [CrossRef]
- Vossen, J.M.; Guiot, H.F.; Lankester, A.C.; Vossen, A.C.; Bredius, R.G.; Wolterbeek, R.; Bakker, H.D.; Heidt, P.J. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLoS ONE 2014, 9, e105706. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, D.; Liang, S. Identification and metabolomic analysis of chemical elicitors for tacrolimus accumulation in Streptomyces tsukubaensis. Appl. Microbiol. Biotechnol. 2018, 102, 7541–7553. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Dalla Gassa, A.; Felis, G.; Granata, S.; Torriani, S.; Lupo, A. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS ONE 2017, 12, e0178228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Nardini, C. A method for automated pathogenic content estimation with application to rheumatoid arthritis. BMC Syst. Biol. 2016, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tsunoda, S.M.; Gonzales, C.; Jarmusch, A.K.; Momper, J.D.; Ma, J.D. Contribution of the Gut Microbiome to Drug Disposition, Pharmacokinetic and Pharmacodynamic Variability. Clin. Pharmacokinet. 2021, 60, 971–984. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta. Pharm. Sin. B 2021, 11, 1789–1812. [Google Scholar] [CrossRef] [PubMed]
- Katsila, T.; Balasopoulou, A.; Tsagaraki, I.; Patrinos, G.P. Pharmacomicrobiomics informs clinical pharmacogenomics. Pharmacogenomics 2019, 20, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Siddiqui, Z.A.; Musharraf, S.G.; Nawaz, S.A.; Atta-Ur-Rahman. Microbial transformation of prednisone. Nat. Prod. Res. 2005, 19, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.S.; El-Hadi, A.A.; Abo-Zied, K.M. Biotransformation of prednisolone to hydroxy derivatives by Penicillium aurantiacum. Biocatal. Biotransform. 2017, 35, 215–222. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, L.; Wu, M.; Zhang, R.; Xie, L.; Wang, H. Transformation of prednisolone to a 20β-hydroxy prednisolone compound by Streptomyces roseochromogenes TS79. Appl. Microbiol. Biotechnol. 2011, 92, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.K.; Doden, H.L.; Ridlon, J.M. Gut feelings about bacterial steroid-17, 20-desmolase. Mol. Cell. Endocrinol. 2021, 525, 111174. [Google Scholar] [CrossRef] [PubMed]
- Nabarro, J.D.; Moxham, A.; Walker, G.; Slater, J.D. Rectal hydrocortisone. Br. Med. J. 1957, 2, 272–274. [Google Scholar] [CrossRef]
- Wade, A.P.; Slater, J.D.; Kellie, A.E.; Holliday, M.E. Urinary excretion of 17-ketosteroids following rectal infusion of cortisol. J. Clin. Endocrinol. Metab. 1959, 19, 444–453. [Google Scholar] [CrossRef]
- Schöneshöfer, M.; Weber, B.; Nigam, S. Increased urinary excretion of free 20 alpha- and 20 beta-dihydrocortisol in a hypercortisolemic but hypocortisoluric patient with Cushing’s disease. Clin. Chem. 1983, 29, 385–389. [Google Scholar] [CrossRef]
- Kornel, L.; Miyabo, S.; Saito, Z.; Cha, R.-W.; Wu, F.-T. Corticosteroids in human blood. VIII. Cortisol metabolites in plasma of normotensive subjects and patients with essential hypertension. J. Clin. Endocrinol. Metab. 1975, 40, 949–958. [Google Scholar] [CrossRef]
- Morgan, R.A.; Beck, K.R.; Nixon, M.; Homer, N.Z.M.; Crawford, A.A.; Melchers, D.; Houtman, R.; Meijer, O.C.; Stomby, A.; Anderson, A.J.; et al. Carbonyl reductase 1 catalyzes 20β-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Sci. Rep. 2017, 7, 10633. [Google Scholar] [CrossRef]
- Travers, S.; Bouvattier, C.; Fagart, J.; Martinerie, L.; Viengchareun, S.; Pussard, E.; Lombès, M. Interaction between accumulated 21-deoxysteroids and mineralocorticoid signaling in 21-hydroxylase deficiency. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E102–E110. [Google Scholar] [CrossRef]
- Bullingham, R.E.; Nicholls, A.J.; Kamm, B.R. Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. 1998, 34, 429–455. [Google Scholar] [CrossRef]
- Simoons, M.; Naipal, K.A.T.; de Jong, H.; den Hoed, C.M.; de Winter, B.C.M.; Mulder, M.B. Oral antibiotics lower mycophenolate mofetil drug exposure, possibly by interfering with the enterohepatic recirculation: A case series. Pharmacol. Res. Perspect. 2023, 11, e01103. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lee, H.; Edusei, E.; Albakry, S.; Jeong, H.; Lee, J.R. Blood Profiles of Gut Bacterial Tacrolimus Metabolite in Kidney Transplant Recipients. Transpl. Direct. 2020, 6, e601. [Google Scholar] [CrossRef]
- Degraeve, A.L.; Haufroid, V.; Loriot, A.; Gatto, L.; Andries, V.; Vereecke, L.; Elens, L.; Bindels, L.B. Gut microbiome modulates tacrolimus pharmacokinetics through the transcriptional regulation of ABCB1. Microbiome 2023, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Gabarre, P.; Loens, C.; Tamzali, Y.; Barrou, B.; Jaisser, F.; Tourret, J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am. J. Transpl. 2022, 22, 1014–1030. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A. Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Infection 2021, 49, 569–589. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef]
- Bentley, R. Mycophenolic Acid: A one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 2000, 100, 3801–3826. [Google Scholar] [CrossRef]
- Gosio, B. Sperimentate su culture pure di bacilli del carbonchio demonstrarano notevole potere antisettica. CR Acad. Med. Torino 1893, 61, 484. [Google Scholar]
- Ashley, D.; Hernandez, J.; Cao, R.; To, K.; Yegiazaryan, A.; Abrahem, R.; Nguyen, T.; Owens, J.; Lambros, M.; Subbian, S.; et al. Antimycobacterial Effects of Everolimus in a Human Granuloma Model. J. Clin. Med. 2020, 9, 2043. [Google Scholar] [CrossRef]
- Bianco, D.M.; De Maio, F.; Santarelli, G.; Palucci, I.; Salustri, A.; Bianchetti, G.; Maulucci, G.; Citterio, F.; Sanguinetti, M.; Tamburrini, E.; et al. Evaluation of Everolimus Activity against Mycobacterium tuberculosis Using In Vitro Models of Infection. Antibiotics 2023, 12, 171. [Google Scholar] [CrossRef]
- High, K.P. The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation 1994, 57, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Pamer, E.G. Immune responses to commensal and environmental microbes. Nat. Immunol. 2007, 8, 1173–1178. [Google Scholar] [CrossRef]
- Okafuji, H.; Iida, N.; Kitamura, K.; Seishima, J.; Wang, Z.; Yutani, M.; Yoshio, T.; Yamashita, T.; Sakai, Y.; Honda, M.; et al. Oral Corticosteroids Impair Mucin Production and Alter the Posttransplantation Microbiota in the Gut. Digestion 2022, 103, 269–286. [Google Scholar] [CrossRef]
- Tena-Garitaonaindia, M.; Arredondo-Amador, M.; Mascaraque, C.; Asensio, M.; Marin, J.J.G.; Martínez-Augustin, O.; Sánchez de Medina, F. Modulation of intestinal barrier function by glucocorticoids: Lessons from preclinical models. Pharmacol. Res. 2022, 177, 106056. [Google Scholar] [CrossRef]
- Qasim, M.; Rahman, H.; Ahmed, R.; Oellerich, M.; Asif, A.R. Mycophenolic acid mediated disruption of the intestinal epithelial tight junctions. Exp. Cell. Res. 2014, 322, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Krych, L.; Hansen, C.H.F.; Hansen, A.K.; van den Berg, F.W.J.; Nielsen, D.S. Quantitatively different, yet qualitatively alike: A meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE 2013, 8, e62578. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Vieira-Silva, S.; Liston, A.; Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model Mech. 2015, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nallu, A.; Sharma, S.; Ramezani, A.; Muralidharan, J.; Raj, D. Gut microbiome in chronic kidney disease: Challenges and opportunities. Transl. Res. 2017, 179, 24–37. [Google Scholar] [CrossRef]
- Rukavina Mikusic, N.L.; Kouyoumdzian, N.M.; Choi, M.R. Gut microbiota and chronic kidney disease: Evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers Arch. 2020, 472, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Ishimoto, T.; Fu, L.; Zhang, J.; Zhang, Z.; Liu, Y. The Gut Microbiota in Inflammatory Bowel Disease. Front. Cell Infect. Microbiol. 2022, 12, 733992. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Ruff, W.E.; Longbrake, E.E. Influence of immunomodulatory drugs on the gut microbiota. Transl. Res. 2021, 233, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Baghai Arassi, M.; Zeller, G.; Karcher, N.; Zimmermann, M.; Toenshoff, B. The gut microbiome in solid organ transplantation. Pediatr. Transpl. 2020, 24, e13866. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Sze, C.; Barbar, T.; Lee, J.R. New insights into the microbiome in kidney transplantation. Curr. Opin. Organ. Transpl. 2021, 26, 582–586. [Google Scholar] [CrossRef]
- Lei, Y.M.; Chen, L.; Wang, Y.; Stefka, A.T.; Molinero, L.L.; Theriault, B.; Aquino-Michaels, K.; Sivan, A.S.; Nagler, C.R.; Gajewski, T.F.; et al. The composition of the microbiota modulates allograft rejection. J. Clin. Investig. 2023, 126, 2736–2744. [Google Scholar] [CrossRef] [PubMed]
- Oh, P.L.; Martínez, I.; Sun, Y.; Walter, J.; Peterson, D.A.; Mercer, D.F. Characterization of the Ileal Microbiota in Rejecting and Nonrejecting Recipients of Small Bowel Transplants. Am. J. Transpl. 2012, 12, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Jiang, J.; Lu, H.; Chen, X.; He, Y.; Zhang, H.; Xie, H.; Wang, W.; Zheng, S.; Zhou, L. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats. Transplantation 2014, 98, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Rey, K.; Manku, S.; Enns, W.; Van Rossum, T.; Bushell, K.; Morin, R.D.; Brinkman, F.S.L.; Choy, J.C. Disruption of the Gut Microbiota with Antibiotics Exacerbates Acute Vascular Rejection. Transplantation 2018, 102, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, C.; Gao, P.; Zhang, C.; Zhang, P.; Zhang, L.; Dai, C.; Zhang, K.; Shi, B.; Liu, M.; et al. Intestinal microbiota links to allograft stability after lung transplantation: A prospective cohort study. Signal Transduct. Target Ther. 2023, 8, 326. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kim, B.S. Ex Vivo Transdermal Delivery of Nicotinamide Mononucleotide Using Polyvinyl Alcohol Microneedles. Polymers 2023, 15, 2031. [Google Scholar] [CrossRef]
- Jeong, H.R.; Kim, J.Y.; Kim, S.N.; Park, J.H. Local dermal delivery of cyclosporin A, a hydrophobic and high molecular weight drug, using dissolving microneedles. Eur. J. Pharm. Biopharm. 2018, 127, 237–243. [Google Scholar] [CrossRef] [PubMed]
First Author/ Year/Ref. | Species | Tested cIMDs | Changes Observed (Yes/No) | Observed Effects |
---|---|---|---|---|
Braghieri et al., 2022 [21] | Humans, HT | MMF ± TAC | YES |
|
Doki et al., 2017 [22] | Humans, aHSCT | CyA or TAC + MTX | YES | Higher Firmicutes abundance in the pre-transplant fecal microbiota of patients developing aGvHD |
Enright et al., 2018 [23] | Humans, Cultured intestinal cell lines | CyA | YES | Increased CyA cytotoxicity by DCA and CDCA through the impairment of ABCB1 activity |
Gu et al., 2018 [24] | Humans, KT | TAC + PRED ± MMF ± Mizoribine | NO | No change in CsA or TAC plasma concentrations after fecal transplantation in patients with diarrhea |
Guo et al., 2019 [25] | Intestinal bacteria cultured in vitro Stools from KTR and normal donors | TAC | YES |
|
Javdan et al., 2020 [26] | Bacteria from human stool, cultured in vitro | BMET, CORTa, CyA, DEX, HCORT, HCORTa; MFA, MMF, mPREDN PRED, PREDN | YES |
|
Jennings et al., 2020 [27] | Humans, HT | Induction: mPREDN Maintenance: TAC + MMF + PRED | YES |
|
Lee et al., 2015 [28] | Humans, KT | TAC + MMF ± PRED | YES |
|
Lee et al., 2019 [29] | Humans, KT | TAC ± MMF ± PRED MMF ± TAC ± PRED | YES |
|
Ly et al., 2020 [30] | Bioinformatic analysis. Incubation in vitro of GCs with bacteria or recombinant enzymes | aTCORT, CORT, CORTN, DEX, FLUD, PRED, PREDN | YES |
|
Qian et al., 2022 [31] | Enzymes cloned from bacterial strains | HCORT, TAC | YES | Identification in Enterocloster bolteae of three drug-degrading enzymes: DesE for nabumetone and hydrocortisone and TacA and TacB for TAC. Similar enzymes cloned from Firmicutes, Proteobacteria and Bacteroidetes |
Saqr et al., 2022 [32] | Humans, HSCT | MMF + TAC | YES |
|
Simpson et al., 2022 [33] | Humans, KT | TAC + MMF | YES | No difference in fecal microbiota between patients with or without MMF-induced diarrhea Higher rate of MMF reactivation from MPAG by fecal extracts of KTR as compared with control. Reactivation rate related to GUS and with the Streptococcus parasanguinis abundance |
Taylor et al., 2019 [34] | Mice Humans, HT | Mice: MMF- ± Vancomycin Humans: MMF | YES |
|
Turner et al., 2021 [35] | Humans, aHSCT | PRED | YES |
|
Vertzoni et al., 2018 [36] | Human fecal material, in vitro | Budesonide | NO | No significant budesonide degradation with either ileal or colonic simulated microbiota |
Wang et al., 2015 [37] | Human fecal material, in vitro | CyA | NO | No significant CyA degradation in vitro |
Zhang et al., 2021 [38] | Humans, KT | MMF ± PRED | YES |
|
Zhou et al., 2022 [39] | Rat | CyA ± ABX ± FT | YES |
|
Zhu et al., 2020 [40] | Humans, UC | PRED | YES |
|
First Author/ Year/Ref. | Species | Tested cIMDs | Changes Observed (Yes/No) | Observed Effects |
---|---|---|---|---|
Bajaj et al., 2018 [41] | Humans, LT | Peri-operative: GC + MMF. Manteinance: TAC + MMF CyA + MMF | YES |
|
Bhat et al., 2017 [42] | Rats, normal | TAC or SIR | YES |
|
Bitto et al., 2016 [43] | Mice, normal aging | SIR | YES | Higher abundance of segmented filamentous bacteria (Candidatus Arthromitus sp.) in the SIR group |
de Lima et al., 2022 [44] | Rats, PTZ-kindling | PREDN | YES |
|
Flannigan et al., 2018 [45] | Mice, normal | MMF | YES |
|
Han et al., 2019 [46] | Mice, normal | TAC TAC ± ABX | YES |
|
Han et al., 2021 [47] | Mice, normal | SIR | YES |
|
He et al., 2019 [48] | Mice, SLE (MRL/lpr mice) | PRED | YES |
|
Hurez et al., 2015 [49] | Mice, normal | SIR | YES |
|
Jia et al., 2019 [50] | Rats, LT | CyA | YES |
|
Jiang et al., 2018 [51] | Rat, LT | TAC | YES |
|
Jiao et al. 2019 [52] | Mice, normal | TAC | YES |
|
Jung et al., 2016 [53] | Mice, DIO | SIR | YES |
|
Kamata et al., 2020 [54] | Humans, AIP | PREDN | YES |
|
Kang et al., 2019 [55] | Humans, children with NS | PRED | YES |
|
Lähteenmäki et al., 2017 [56] | Humans, children with HSCT | CyA+ (MTX and MMF only in 1 patient) | YES |
|
Llorenç et al., 2022 [57] | Mice, EAU | MMF | YES |
|
Lyons et al., 2018 [58] | Mice, experimental colitis | SIR | NO | No change in fecal microbiota induced by SIR |
Pigneur et al., 2019 [59] | Humans, children with CD | PRED | YES |
|
Qiu et al., 2019 [60] | Humans, TM | PRED | YES |
|
Robles-Vera et al., 2020 [61] | Rat, DOCA salt hypertension | MMF | YES |
|
Robles-Vera et al., 2021 [62] | Rats, SHR | MMF | YES |
|
Schepper et al., 2020 [63] | Mice, GC-induced osteoporosis | PREDN | YES |
|
Simpson et al., 2022 [33] | Humans, KT | TAC + MMF | YES |
|
Sivaraj et al., 2022 [64] | Humans, LT | TAC + SIR + PRED | YES |
|
Swarte et al., 2020 [65] | Human, KT | CyA (18%) TAC (57%) AZT (9%) MMF (72%) PRED (96%) | YES |
|
Taylor et al., 2019 [34] | Mice, normal | MMF | YES |
|
Tourret et al., 2017 [66] | Mice, normal | PRED TAC MMF EVERO PRED + TAC + MMF | YES |
|
Wang et al., 2021 [67] | Mice, SLE (MRL/lpr mice) | PRED | YES |
|
Xu et al., 2020 [68] | Mice, EAE | SIR | YES |
|
Zhang et al., 2018 [69] | Mice, ST | TAC | YES |
|
Zhang et al., 2021 [70] | Rat, normal | PRED | YES |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manes, A.; Di Renzo, T.; Dodani, L.; Reale, A.; Gautiero, C.; Di Lauro, M.; Nasti, G.; Manco, F.; Muscariello, E.; Guida, B.; et al. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023, 11, 2562. https://doi.org/10.3390/biomedicines11092562
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, et al. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines. 2023; 11(9):2562. https://doi.org/10.3390/biomedicines11092562
Chicago/Turabian StyleManes, Annalaura, Tiziana Di Renzo, Loreta Dodani, Anna Reale, Claudia Gautiero, Mariastella Di Lauro, Gilda Nasti, Federica Manco, Espedita Muscariello, Bruna Guida, and et al. 2023. "Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review" Biomedicines 11, no. 9: 2562. https://doi.org/10.3390/biomedicines11092562
APA StyleManes, A., Di Renzo, T., Dodani, L., Reale, A., Gautiero, C., Di Lauro, M., Nasti, G., Manco, F., Muscariello, E., Guida, B., Tarantino, G., & Cataldi, M. (2023). Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines, 11(9), 2562. https://doi.org/10.3390/biomedicines11092562